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Abstract

Predictions for the angular distribution of massive qLIarks and leptons are presented, including

QCD and QED corrections. Recent results for the ferlnionic part of the two-loop corrections to the
electromagnetic form factors are combined with the BLhl scale fixing prescription. Two distinctly

different scale; arise as arguments of a, (p2) near thresholcl: the relative momentum of the quarks

governiug the soft gluon exchange responsible for the Coulomb potential, and a large momentum

scale approximately equal to twice the quark mass for the corrections induced by transverse glu-

ons. Numerical predictions for charmed, bottom, and top quarks are given. One obtains a direct

determination of tiv(Q2), the coupling in the heavy quark potential, which can be compared with

lattice gauge theory predictions. The corresponding QED results for T pair production allow for a

measurement of the magnetic moment of the ~ and could be tested at a future ~-charm factory.

(Submitted to Physics Letters B.)

*Tile complete postscript file of this preprint, iacluding figures, is available via anonymous ftp at ttpux2.pllysik. uni-

karlsruhe.de (129.13.102.139) as /ttp95-26/ttp95 -26. ps or via }v\v\v at llttl>://ttpllx2 .pl,ysik.ul,i-karlsr~ llle.de/cgi-

bia/prgp~iats/ Report-uo: TTP95-26.

‘Work supported b} BhlFTJ]56 KA 931’.

‘e–mails: lLoal~gtlt t1]~ls2.1]l~ysik .~llli-karlsr llll<:.cle and tt[~tt1>llx2 .l>l~ysik.ll lli-k:Lrlsril he. de

Worksupportedby Depment of EnergycontractDE-AC03-76SFO0515.



I .

1. Introduction

QCD predictions for the angular distributions of partons can be tested in a variety of ways. For

massless partons, i.e. light quarks or gluons, the canonical approach is based on

tions of jets or related quantities, like the thrust axis. In fact, the observation

M (1+ COS26) for two-jet-events has provided convincing evidence for the spin-1/2

angular distribu- -

of a distribution

nature of partons

produced in e+ e– annihilation. Alternatively, for charmed or bottom quarks one may directly iden-

tify the heavy quark and heavy meson directions. This approach has been employed frequently in

the analysis of the b quark angular dist ribut ions at high energies. In this kinematical region gluon

radiation affects the shape of the distribution, typically rendering th; lowest order predictions more

isotropic. Real and virtual corrc~ctions m~lst be considered jointly, since only the sum leads to an

infrared finite predict ion.

In this paper a different kinematical region will be considered: heavy quark production close to

threshold, where the cross section is dominated by a. few exclusive channels. In this case one expects

that the heavy mesons will essentially follow the heavy quark directio]~-a simple consequence of

_ Newton’s law of inertia. To employ the parton model in the case of hadron pair production may be

somewhat surpri~ing, since the structure of form factors for exclusive channels imposes stringent

constraints on the angular distributions of the hadrons. However, as a consequence of the near

degeneracy of the pseudoscalar and vector mesons B and B*, the sum of the various channels (B~,

B~* + c.c., B*~*) may easily combine to saturate the prediction for the angular distribution of the

quarks. For definiteness, we will subsequently discuss the case of 6 quarks. For certain kinematical

regions our calculation can be applied for charm quarks and will be valid a jorteriori for top quarks.

Close to threshold, in the linlit P = [/[ /~m = ~= ~ O, the cm angular distri-

bution for e+e- ~ Q ~ is of course isotropic, a result of S-wave dominance. The small admixture

of P-waves slightly above threshold provides a contribution m ~2 COS2O which will be studied in

this paper. The tree graph prediction for the angular distribution is trivial. The leading O(a~)
--
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corrections havebeen evaluated in [1] for arbitrary quark mass and energy. However, unavoidably,

the renormahzation scale at which the strong coupling as(}~2) has to be evaluated in these formulae

can only be fixed by a two-loop calculation. In the high energy region one may convincingly argue

on physical grounds that the scale for the dominant correction terms should be of order X. In -

the threshold region, however, both X and the quark momentum 1~1 are viable options for the

energy scale. In the BLhl procedure [2] the renormalization scale is fixed by resumming all terms

proportional to the QCD beta-function into the running coupling. To carry out the BLM procedure

to leading order, it is sufficient to identify the nf terms in the next to leading order coefficients.

Recent results for the fermionic part of the two-loop corrections to the total rate [3], and in partic-

. —
ular to tile V* + Q Q form factors allow for a solution of the scale-setting problem, at least in the

threshold region. In fact, employing the BLM scale-setting prescription, one may even fix not only

the scale but perhaps even accommodate the bulk of the two-loop corrections.

Real radiation is strongly damped in the threshold region, decreasing m ~2 relative to the tree

contributions. Hence, dropping the terms of higher power in ~, one may dispose of real radiation

(even if multiplied by an infrared cutoff) and limit the cliscussion to virtual radiation; i.e. to the

corrections to the form factors. Cent ributiolls from the instantaneous Coulomb potential and from

hard photon exchange can be clearly distinguished, allowing for the resummation of the former.-.

The contribution from the Coulomb part of the heavy quarli rescattering yields a series in (Ta./~)~.

If one utilizes the aV scheme, defined for the heavy qua~li potential 1,7(Q2) = -4r CF av(Q2)/Q2,

2 the square of the relativethen we find that the scale of Q17is set to a value proportional to .513,

momentum. TIIUS

near threshold. In

one can obtain a determination of aI~(Q2) from measurements of e+e– + Q ~

particular we shall show that the “anisotropy’> A(P2 ) defined by

is sensitive to of a~~(s 82). Precise predictions for

+ A COS29 (1)

av (Q2 ) have been given in [4] using heavy quark

lattice gauge theory with constraints from the T spectrum.- ..

l~le also will discuss tl~e application of the anisotropy formalism to the QED process e+e- +
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~+r–. We shall show that the anisotropy of the angular distribution provides a new way to measure

the Pauli form factors of the leptons, the analog of the anomalous magnetic moment in the timelike

region. In addition, the radiative corrections we discuss here change the normalization of the cross

section near threshold.

2. Forln factors, angular distributions, and infrared singularities

The amplitude for the creation of a massive fermion pair from a virtual photon is characterized by

the Dirac (Fl ) and Pauli ( F2 ) form factors:

~A1, v = ieQ~ti[~P Fl(q2) + &afluqv F2(q2)]v (2)

where UPV:= ~[~P, ~“ ]. The photon momentum flowing into the vertex is denoted by q, the fermion

mass by m. The resulting angular distribution is conveniently expressed in terms of the electric

and magnetic form factors G~ and

d o(e+e- ~ f~)

d~ =

_ with

-. G, =

The anisotropy is thus given by

(3)

(4)

~ = IG,,,12-(1 - P2)]G,12
IG,,,12t (1 - P2)IG,12

/i——
x) (5)

where

~= ~ IF112(1-P2)-IF212
2 lF1+F212(l– @2) .

(6)

In Born approximation ABO,n = B2/(2 – @2). Note that for F2 = O, the anisotropy is identical

to the Born prediction, independent of F1. Thus the form

-..

(7)
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isolates F2(s). This provides a way to experimentally determine the timelike Pauti form factor of

the r lepton. The QED prediction is

(())
2

F2(4nz2)=–; +o : (8)

which is, up to the sign, equal to the familiar Schwinger result F2(0) = a/2m. .4way from threshold

the one-loop QED prediction is

(9)

We neglect this type of higher twist corrections in the following.

In Born approximate ion F1 = 1 and F2 = O. The impact of one- and two-loop radiative cor-

rections on the form factors and angular distributions will be discussed in the context of QED in

the remainder of this section; the case of immediate interest, namely QCD, will be discussed in.,..

section 3. To demonstrate the line of reasoning, we first shall present the arguments for the leading

order calculation in some detail.

In the QED calculation the order a correction to the Dirac form factor 6F1 in the timelike

region exhibits an infrared singularity which can be regulated using a nonvanishing photon mass A:

with -

(11)

(12)

The leading term of ~~n is proportional ma/~ and exhibits the familiar Coulomb singularity. Also

the constant term and the term linear in ~ are infrared finite. The infrared singular part of F1 is

strongly suppressed at threshold w ~2, giving rise to a 83 contribution to the rate. The correction

to the Paub form factor 6F2 is infrared finite and approaches a constant value at threshold:

- ..
-- 6F2=-; ;+o(p2). (13)
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Real radiation, in contrast, vanishes as @3 in the threshold region, where two powers of @ result

from the square of the dipole matrix element, and one power of ~ comes from phase space. It

exhibits the same logarithmic dependence on the infrared cutoff as the F1 form factor and the same

leading ~ dependence as the infrared singular part of the virtual correction. As a consequence -

of the strong suppression u ~3 it call be neglected in the threshold region, together with the

corresponding infrared divergent part of the form factor. The angular distribution and, similarly,

the correction to the total cross section in the threshold region are therefore determined by the the

infrared finite parts of the form factors. To order a one thus finds for the coefficient describing the

angular dependent piece

(14)

As we shall show there are interesting modifications of the anisotropy due to the running of the

QCD ‘coupling, and the dependence of the renormalization scale on W ancl 1~1 will be crucial.

The 0(a2)-QED corrections to the form factors, induced by light fermion loops, have been

calculated analytically in [3]. In the threshold region one obt sins

(15)

(16)

The calculation has been performed in the limit where the mass of the light virtual fermion mf is

far smaller than m, a situation appropriate for the subsequent translation to QCD. The factor n~

is introduced to allow for several light fermions and, in our

terms. These formulae provide the first step on the way

a2. As we shall see, the results require two conceptionally

case, to single out the fermion-induced

to a full two-loop calculation in order

different scales in the argument of the
- ..

running couphng, a scale ~f order s from the hard virtual correction from transverse photons and
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a soft scale of order s ~2 from the Coulomb rescattering. Supplemented by

they even determine the dominant two-loop gluon-induced terms in QCD.

The linear combination appearing ill the denominator of ~ in Eq. (6) is

the BLM prescription

thus given by

(17)

The nf terms arise from the vacuum polarization insertions and thus can be resummed into the

QED running coupling:

The constant 5/3

This corresponds

for the scattering

(18)

is the usual term in the Serber-Uellling vacuum polarization H(Q2) at large Q2.

to the usual QED scheme where V(Q2) = – 4m a(Q2)/Q2 is the QED potential

of heavy test charges. One thus obtains

F1t F2 = 1+
a(sp2)n _ 2 a(se314/4)

4p T

(19)

Two distinctly d(fferent correction factors arise. The first originates from hard transverse photon

exchange, with the scale set by the short distance process; the second from the instantaneous

Coulomb potential. It is remarkable and non-trivial that the non-logarithmic terms in the ma/@

corrections are absorbed if the relative momentum is adopted as the scale for the coupling. Up to

two loops the running coupling governing the Coulomb singularity is thus identical to the running

couphng in the potential. This will provide an important guide for the application of these results

to QCD.

The proper resummation of the l/~ terms based on Sommerfeld’s rescattering formula then

leads to
- ..

(20)
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In a similar way one finds for the relevant combination in the numerator of (6)

( a(m2 e716)
IF*12-IF,12= 1-3 ~

)

X1
1 _ e-z’

with

(21)

(22)

(23)

The [F212 term in the numerator can actually be ignored in the present approximation. The scales

of the effective coupling differ between the numerator and denominator of (6): In particular in the

factor arising from Coulomb exchalige the scale is significantly smaller in the numerator than in

the denominator. This behavior is consistent with qualitative considerations based on the relative

dist antes relevant for ,S- versus P-waves in the Coulomb part. In the factor arising from hard

photon exchange the scales are quite comparable, with a slightly larger value in the numerator.

One thus arrives at the prediction in the context of QED for the anisotropy which involves four

(24)

To display the effects more clearly, the ratio of the anisotropy to the Born prediction A/ABO,n is

shown in Fig. 1 for the case of ~ pair production. The dashed curve gives the prediction for constant

aQED; the solid curve shows the effect of the lepton vacuum polarization H(Q2) in the QED running

coupling. The vacuum polarization affects the anisotropy for small ~ because two different scales

appear in the S- and P-wave Coulomb rescattering corrections. Away from threshold A essentially

measures the anomalous magnetic moment.

3. From QED to QCD

- .-

The QED coupling Q(Q2) ~ranslates ilito the the QCD coupling av( Q2 ), defined as the effective
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Figure 1: ‘Ratio between the anisotropy A and the Born prediction ABor,,asf unction of~for the
process e+e– - ~-~~–. Dashed curve: constant a; solid curve: including the running of a.

c-barge in the potential

for the scattering of two

arising from the lioil-zero

coefficients ~anish in the

in fact, a result expected

instantaneous potential.

(25)

heavy quarks in a color-singlet state. In the BLM procedure all terms

beta-function are resummed into av(Q2). For example, all nf-dependent

ma/~ terms if the scale of the relative momentum is adopted. This is,

on general grounds: threshold physics is governed by the nonrelativistic

Below threshold, the potential leads to bound states, above threshold it

affects the cross section through final state interactions. It is, therefore, natural to take for the QCD

case the coupling governing the QCD potential at the momentum scale involved in the rescattering.

To relate av to am, we use

a~(Q2) = av(e+5/3 1Q2) [I+2; +o(a~). (26)

In a tillar way, BLM scale-fixing is adopted for the correction from hard gluon exchange. In the
--

radiative correction, there still remain O(cY~) terms, identical to the radiative corrections for the
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Figure 2: -Anisotropy for charmed, bottom and top quark production as a function of ~. Also shown
is the Born prediction. We have assumed the effective quark masses nlC = 1.7 GeV, mb = 5 GeV
and mt = 175 GeV.

theory with a fixed coupling constant. With the same scheme convention for the coupling as above,

one arrives at

(1 – 4 @“(m;’7’6
‘)

(
~ _ y a“(m2e3/4

T ‘)

where -

4 T av(47112B2 )
(2s)

The anisotropy A is plotted in Fig. 2 versus the velocity ~ in the range 0.2< @ <0.5 for charmed,

bottom, and top quarl{s. For comparison, the tree level prediction is also shown. For charmed

quarks, only ~ values above 0.4 are admitted in order to allow for the simultaneous production of

D~ and D*D. The charm prediction is particularly sensitive to the QCD parameters, since very

low scales are accessible. Measurements of the anisotropy

determining av in the regime where perturbation theory
- ..

(~f=5)(Aflf;) =The curves are based ofi an tilput value o~
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Figure 3: Sensitivity of the anisotrol>y A for (a) e+e- - Jtand (b) e+e- - c?
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to evolve am to lower momenta and then used Eq. (26) to calculate av(Q2). To investigate the

sensitivity of the predictions for bottom quarks, the input value for a~(fllj) has been varied by

+0.00S from the central value of 0.11.5. As demonstrated in Fig. 3a the variation of the anisotropy

parameter amounts to about 10%, and could therefore be accessible experimentally. The charm -

predictions (see Fig. :3b) are even more sensitive.

4. Conclusions

An important consequence of heavy q~lark kinematics is that the production angle of a heavy hadron

follows the direction of the parent heavy quark. This applies not only at Born approximation, but

also after QCD corrections have been applied. In this paper we have shown that the anisotropy

A(~2)-in the cm angular distribution clo(e+e- ~ Q~)/dQ m 1+ A COS29of heavy quarks produced

near threshold is sensitive to the QCD coupling av(Q2) at specific scales determined by the quark

relatlve momentum I)cn, = @6. The coupling QV(Q2) is the physical effective charge defined

through heavy cluark scattering. The predictions provide a connection between observable and

thus are independent of theoretical conventions.

An importan~feature of our analysis is the use of BLh4 scale-fixing, in which all higher-order

corrections associated with the beta-function are resummed into the scale of the coupfing. The

resulting scale for av (Q2) corresponds to the mean gluon virtuality. In the case of the soft rescat-

tering corrections to the S-wave, the BLM scale is s ~2 = p~,,,. One thus has sensitivity to the

running coupling over a range of momentum transfers within the same experiment. The anisotropy

measurement thus can provide a check on other determinations of c~v(Q2), e.g. from heavy quark

lattice gauge theory, or from the conversion of am determinations to aV as given in Eq. (26).

Our analysis also shows that the running coupling appears within the cross section with several

different scales. This is particularly apparent at low ~ where the physical origin of the O(a~)

corredions can be traced to gluons with different polarization
--

and virtuality.
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In principle, the anisotropy of ~ pairs produced in e+e- - ~+r- could be used to measure the

Pauh form factor F2(s) near threshold s 2 4m~. A highly precise measurement of the anisotropy thus

could provide a measurement of a fundamental parameter of the ~ lepton, its timelike anomalous

magnetic moment.
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