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I. INTRODUCTION

In order to achieve the high luminosity required by heavy quark factories,

multi-bunch operation is almost the only choice.  The key to gain luminosity in

multi-bunch operation is to reduce the bunch spacing.  Therefore, colliding beams

with a crossing angle becomes the favorite interaction region scheme.

The introduction of a crossing angle in e+e-  colliders causes non-

linear coupling between horizontal motion and longitudinal motion.  This is

illustrated in Figure 1.  The beam-beam kick occurs when the particle passes the

center of the opposing bunch.  The strength of the kick, ∆r' = F(r), is a nonlinear

function of the distance, r, between the particle and the center of the opposite

bunch.  In head-on collisions, r is the transverse displacement, and the kick is in

the transverse plane, so that the process is nonlinear but not influenced by the

longitudinal motion.  In collisions with a crossing angle, however, r is a function of

longitudinal displacement, s, and the crossing angle, Φ, as well as transverse

displacement.  The distance r between the test particle and the bunch center can be

written as:

r = x + tanΦ.s (1)
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The kick is a function of both transverse and longitudinal positions and, as a result,

non-linear synchro-betatron coupling is generated by the crossing angle collision.
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Figure 1.  Kick in crossing angle collision

Previous experience on crossing angle collision indicate that the major

problem is having bad lifetime.  Following discussion will concentrate on this

issue.

II. PRELIMINARY SIMULATIONS

A simple simulation program similar to Piwinski's work[1] was written to

study the crossing angle collision problem.  The  simulation program adopts a

weak-strong beam-beam interaction model, and consists of only a single beam-

beam kick and a linear map for the ring.  The beam-beam kick incorporates the

crossing angle collision.  Three dimensional motion is simulated.  Particles are

launched in six dimensional phase space with 6σ amplitudes, which are the typical

large amplitude particle that may affect lifetime.  For convenience of studying

resonances, the program scans the horizontal fractional tune from 0 to 1.  The

maximum amplitude of all particles ever reached during the 1000-turn tracking is

recorded as a function of horizontal tune.



The simulation was performed based on CESR B design.  The half crossing

angle Φ is 10 mrad.  The beam sizes σx and σs, are taken as  0.36mm and 1cm

respectively.  The normalized crossing angle, defined as 
σ s

σ x

Φ , is 0.278.  The

results of a simulation with Φ=10mrad crossing angle are shown in figure 2.

Some one-dimensional resonances, such as Qx=1/2, 1/4 and 1/6, already exist in

head-on collision.  They are not introduced by the crossing angle.  Besides these

resonances, one can find many synchro-betatron resonances appeared.  The

strongest new resonances are identified as 5Qx±Qs=integer resonances.  The

coupling resonance Qx±Qs=integer can also be seen in this picture.
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Figure 2.   Maximum horizontal amplitude vs. tune for crossing angle collision.
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III. ANALYSIS

From the simulation result of previous section, one would ask why the

particular resonance family, 5Qx±Qs=integer, is excited.  To answer this question,

a resonance analysis method is introduced here.  The analysis is good for a linear

storage ring with a single nonlinear thin element[2], which is a reasonable approach

to the beam-beam interaction problem.  This method is developed to employ the

Fourier Transform to expand the non-linear force, and relates the Fourier

expansion components to certain resonances.

In the crossing angle problem, we are interested in the horizontal (x) and

longitudinal (s) motion.  Two dimensional difference equations are used to

describe the motion.  If we sit at one point of a linear ring observing a particle, its

motion can be described by :

xt+1 - 2xt cosµx + xt-1 = 0 (2)

st+1 - 2st cosµs + st-1 = 0 (3)

where t stands for turn number and µx  and µs  are the whole-turn phase advances

of the oscillations.  It is straight forward to find their solutions:

xt = Ax cos(µxt) (4)

st = As cos(µst). (5)

With the crossing angle collision, the difference equations become:

xt+1 - 2cosµx xt + xt-1 = -βxsinµxF(xt +tanΦ¥st )cos2Φ (6)

st+1 - 2cosµs st + st-1 = βssinµsF(xt +tanΦ¥st )sinΦcosΦ. (7)



where F is the horizontal beam-beam kick, which can be approximated by a

Dawson's integral[3]:

F(r) = Fd( 
r

2σx
 ) (8)

and Fd(y) = e−y2

et2

dt
0

y

∫ . (9)

where σx is the horizontal beam size.  βs can be defined in an analogous way to the

transverse motion[4].  In the difference equations (6) and (7), the kick modulation

of the arrival time is neglected.  This is because: (1), The βx at the IP is much

larger than the bunch length.  The βx change in the bunch length range is

negligible.  (2), If the kick (∆x') is transferred back to the IP through drift space, it

has the same amount.  For small crossing angle Φ , the non-linear kick in the

longitudinal plane is very weak.  In addition, the longitudinal emittance is much

larger than the horizontal emittance, which means s is much larger than x.

Therefore, the longitudinal non-linear kick is negligible.  Thus, the above

equations are simplified:

xt+1 - 2cosµx xt + xt-1 = -βxsinµxF(xt +tanΦ¥st )cos2Φ (10)

st+1 - 2cosµs st + st-1 = 0. (11)

Equation (11) has the same solution as (5).  As the first step approximation,

substitute (4) into the right hand side of (10).  Particles at large amplitude were

used to evaluate the resonances, because previous studies have shown that crossing

angles would mostly affect the large-amplitude particles[1].  6σ amplitude is chosen

because it is the typical amplitude for large amplitude particles which we

concentrate on, and changes near this amplitude does not change the qualitative

conclusion.  Taking Ax=6σx and As=6σs, the Dawson's integral becomes:

Fd(
6

2
  
σxÊcosµxtÊÊ+σstanΦÊcosµstÊ

σx
 ). (12)



From (12), we notice that the coupling term is actually proportional to 
Αs
σx

 tanΦ,

rather than tanΦ.  Since As~σs, the coupling generally scales as 
σs
σx

 tanΦ.  This is

called the normalized crossing angle.

Expanding the non-linear kick in a two-dimensional Fourier Series, the right

hand side of (10) can be written as:

RHS = 
1
2 ∑

m,n

cm,nÊcos[(mµx+nµs)tÊ]+Êdm,nÊcos[(mµx-nµs)tÊ ] (13)

Similarly, a solution is expected in the form:

xt = 
1
2 ∑

m,n

am,nÊcos[(mµx+nµs)tÊ]+Êbm,nÊcos[(mµx-nµs)tÊ ] (14)

Substituting the above equations into (10), it is easy to find the resonance driving

relations:

am,n = 
cm,n

2sin
1
2[(m+1)µx+nµs]sin

1
2[(m-1)µx+nµs]

 (15)

bm,n = 
dm,n

2sin
1
2[(m+1)µx-nµs]sin

1
2[(m-1)µx-nµs]

 . (16)

Near resonances  (m±1)Qx±nQs= integer, the denominator is small.  Then,

(a,b)m,n  has strong response to (c,d)m,n .  Therefore, we can say that cm,n  and

dm,n  drive these resonances.

Figure 3 shows the power spectrum of the Dawson's integral (12), created by

two-dimensional FFT.  The power spectrum c
2
m,n+d

2
m,nÊÊ  gives the resonance driving

strength.  The phase of the driving terms are not important.  Due to the symmetry



of the function, the terms with m+n=even vanish.  In the calculation, the parameter

are the same as the simulation.
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Figure 3.  The power spectrum of the crossing angle beam-beam kick.

From figure 3, we can easily see that, besides the 1-dimensional resonance

driving terms( n=0), the strongest coupling resonance (n ≠0) driving terms are those

with m =4,n =1 and m =6, n =1.  According to the previous analysis, these two

terms will drive 3Qx± Qs= integer, 5Qx±Qs= integer and 5Qx±Qs= integer,

7Qx±Qs= integer resonances respectively.  It is natural to conclude that the

5Qx±Qs= integer resonances are the strongest coupling resonances, since they are

driven by both of the two largest driving terms.  This conclusion consists with the

simulation result.  Note that the spectrum in Figure 3 is a function of the



normalized crossing angle.  The conclusion here is only for the small normalized

crossing angle.

IV.  MEASUREMENTS

The experiment is designed to observe the 5Qx+Qs resonance associated

with crossing angle collision, which is predicted by the theory in previous section

and simulations.  The theory shows that the 5Qx±Qs resonances are driven for

large amplitude particles, and simulation shows these particles are sent to even

larger amplitudes, which can result in losing those particles.  Therefore, one should

expect to see a bad lifetime near those resonances.

The experiment is based on the setup of the CESR crossing angle

experiment[5].  CESR has been running with multi-bunch mode (7 bunches of e- on

7 bunches of e+ ).  The key point of making multi-bunch mode possible is to

separate bunches around the ring except at the interaction point where the detector

is located.  In CESR, four electrostatic separators were used to separate electron

and positron orbits at parasitic crossing points.  As shown in figure 4, the orbits

(thin lines) were separated at 13 would-be collision points, but were merged

between the two south (lower) separators, including the interaction point (IP)

where the collision takes place.  The crossing-angle lattice is essentially a modified

version of the normal-operation lattice.  The experiment was performed with one

bunch on one bunch.  A certain amount of anti-symmetric voltage was applied to

the south separators, which creates anti-symmetric orbits about the IP.  This is

displayed in figure 5 as the thick lines.  It is easy to see from the picture that the

beams will collide at the IP with an angle.  The half crossing angle can go up to

about ±2.5 mrad.  The crossing angle is limited by the physical aperture at the

interaction region (IR) quadrupoles, where the closed orbit is moved to 8.6σ from

vacuum chamber.
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Figure 4.  Diagram of the orbits for the crossing angle experiment

The procedure of the experiment is similar to the simulation: scan the

horizontal tune while the beams collide at an angle, and measure the decay rate

(time derivative of the beam current).  The weak-strong scenario is reproduced via

collisions of a 2 mA beam of electrons and a 10 mA beam of positrons.  The tune

scan is carried out near the 5Qx+Qs = 43 (for Qs=0.064, Q x=8.587) resonance.

The reason to choose this resonance is that the crossing angle lattice working point

is close to the resonance (nominal horizontal tune Qx=8.57).  It is easy to move the



tune to the vicinity of the resonance.  In addition, simulation shows that this

resonance is in a ÒcleanÓ area, i.e., there are no other strong resonances near by.

The experiment consists two measurements.  The first one is to measure

5Qx+Qs resonance with and without crossing angle.  The synchrotron tune was Qs

= 0.0628.
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Figure 5.  (a). Simulation result, maximum amplitude versus horizontal tune.  (b).

Experimental data, decay rate as a function of horizontal tune.  Solid lines are the

head-on collision data, and dashed lines are the crossing angle data.

For comparison, figure 5 gives both the simulation and experimental results.

Figure 5a shows the simulation results for head-on collisions (solid line) and

crossing angle collisions (dashed line).  The plot gives the maximum horizontal



amplitude as a function of horizontal tune.  It shows that the 5Qx+Qs  resonance

appears only when the beams collide at an angle.  Figure 5b plots the measured

results.  The data is from two separate measurements: one with the crossing angle

turned on (dashed line), and the other one with the angle turned off (solid line).

Both measurements employ strong-weak collisions, i. e., 10 mA positron on 2 mA

electron.  The weak beam (electron) is driven by the resonance, suffering bad

lifetime (or large decay rate).  The decay rate is obtained by digitally

differentiating the electron current versus time (as the result of differentiation,

some jitters in the current measurement creates bi-polar spikes, which result in

unrealistic negative decay rates).   The predicted resonance at Qx=0.587 appears in

the data plotted in figure 5.
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Figure 6.  Tune scans versus different crossing angles.

The second measurement is the resonance (5Qx+Qs) strength as a function

of crossing angle.  The crossing angle was set to different values and a one-



dimensional tune scan was performed to measure the decay rate as a function of

tune at each angle.  The angle is controlled by the anti-symmetric voltage applied

to the south separators.  Figure 6 gives the measured results.  Test runs have

indicated that the resonance is not measurable for  half crossing angle smaller than

1.4 mrad.  Hence, detailed measurements took place at larger half crossing angles,

up to 2.4 mrad.  The picture shows a clear ridge of the decay rate at the 5Qx+Qs

resonance, growing as the crossing angle increases.

V.  LIFETIME SIMULATIONS

The simulation described in section II tracks only 1000 particles for 1000

turns, which is far not enough to provide lifetime information.  To simulate the

lifetime, extremely long CPU time is required.  A new technique was proposed by

J. Irwin to do the simulation with dramatically reduced CPU time[6].  With this

method, we can investigate the development of beam-beam tails and calculate

lifetime[7].

Using the new program, the simulation is repeated.  Similar to the

experiments, tune scan and angle scan are simulated separately.  The simulation

gives the lifetime as a function of horizontal and vertical apertures.  In the crossing

angle case, horizontal tail excited by the 5Qx+Qs resonance dominates the lifetime.

Figure 7 plotted the simulated lifetime at the horizontal aperture of 8.5 σ.  The

measurement data, converted from that of figure 5 (b), is shown in the same plot.

The angle scan simulation was done at Qx= 0.5855.  The half crossing angle

was scanned from 1.2 mrad to 2.4 mrad.  The lifetime at 8.5 σx is shown in figure

8.  The minimum lifetime at various angles from the data in figure 6 isÊalso plotted

for comparison.
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VI.  REMARKS

This is one of the preliminary attempt to compare simulated lifetime with

measurements.  In the tune scan data, the minimum lifetime at the resonance is

missing by a factor of 10.  For the angle scan data, simulated results fluctuate

strongly.

Many uncertainties may affect the simulation results.  The aperture that

determines the lifetime is not well known, and it is a sensitive parameter.  The

most important factor, I believe, is the lattice errors.  Studies have shown that

lattice errors, including nonlinearities, solenoid coupling, misalignment,

chromaticities, etc., can dramatically change the tail distribution, as well as

lifetime.  For CESR, these are not negligible.  However, there is not enough

information on those errors to put in the simulation.
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