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ABSTRACT

In this paper the high-ener~ expansion for scattering from extended targets

that the authors previously applied to beamstrahlung radiation and pair production

is applied to the problem of radiation in a medium with multiple scattering. The

suppressiofi of the emission of long wave-length photons, the Landau-Pomeranchuk-

Migdal effect, is treated and explained in physical terms. This treatment of single-

photon emission extends previous classical treatments of the problem to the quan-

tum domain and corrects certain approximations made in these earlier works. The

effects of finite target thickness is be treated. A quantum treatment of multiple

scattering is also given to aid in the physical interpretation of the suppression effect

and to completely define our model of multiple scattering.
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1. Introduction and Motivation

Perhaps the most ubiquitous process in high-ener~ physics is the bremsstrahlung

of photons by a charged particle in the field of an atom first described by Bethe

and Heitler!l} Following the experimental confirmation in 1993 of the Landau-

Pomeranchuk-Migdal (LPM) effect ~-5] there is renewed interest in extensions of

this process as well w its strong interaction analogue, gluon radiation at very high

energies in heavy nuclei. In this paper we describe the application of eikonal tech-

niques developed for the beamstrahlung process ‘6] that lead to a simpler, more

straight forward, and physically transparent quantum mechanical derivation of the

LPM suppression of soft photon radiation from high-energy electrons in dense

matter. This exposition fills in some of the important steps omitted in our re-
. ...-.

cent preprint”1 and extends the treatment in two ways. We analyze more fully

our model of the random-scattering medium, and we also analyze the effects of

finite-target thickness for comparison with the recent data.

This effect w= first described by Landau and Pomeranchuk~] who treated

_ the clmsical radiation of a high-ener~ particle in the fluctuating and random

“” field inside an infinitely thick medium. The minimum longitudinal-momentum

transfer, qll, by a high-energy electron of momentum p and mass m, radiating a

photon of momentum k - (1 – x)p, is given by q~n = m2(l – z)/2xp. The

uncertainty principle is used to define the formation length 1f = (1 /qr), which

at high energies (p >> m) and soft photon emission (1 — z) << 1 can become

large relative to the scattering mean free path of the electron. When this occurs,

coherence is lost, leading to suppression of the radiation.

In their classical derivation, which is appropriate to this kinematic limit, k <<

p, Landau and Pomeranchuk were the first to show that the familiar Bethe-Heitler

radiated photon spectrum, d~ w dk/k, is modified by the multiple scattering of

the electron as it traverses the rapidly varying electric fields of the medium. When

the mean free path of the electron, tiL, is comparable to or less than

length lf, they found that the spectrum is suppressed, ultimately

the formation

achieving the
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form

dN - dk/(pfi) . (1.1)

Subsequently, Migdal ‘9] presented a quantum mechanical derivation of this effect,

treating multiple scattering via the Vlasov equation and including the effects of

electron spin and energy loss. His derivation contains a number of approximations

that are formally difficult, not very transparent on physical grounds, and numeri-

cally not well controlled. These works have been extended by several authors; lo]

The approach presented here is a simple application of the eikonal formalism
..

previously developed for high-energy beamstrahlung processes and h= the ad-

vantage of greater generality and physical transparency. Aside from providing a

simple’and intuitive framework for more accurate studies oft he LPM effect, includ-

ing finite target thickness, our motivation is to provide a formalism that may be

adapted to other problems such m radiation by electrons transiting random mag-

netic domains and non-abelian gluon radiation by quarks transiting heavy nuclei
[11,12]

and undergoing multiple inelastic collisions.

. . As described earlier, the essential physics used in LPM leading to the behavior

in (1.1) is the random scattering of the electron while transiting matter. The

radiation- ~ength L is energy independent at high energy, being given for screened

coulomb fields by

1

E
= 4nar~Z21n(183/Z~ ) , (1.2)

where re = o/m = 2.8F and n is the number density of target particles. The

mean free path is defined M aL. In traversing a path length z, the longitudinal

momentum transfer due to multiple scattering of the electron increases to

m2 + (6~L)2
qz=(E–

2p
)_(k+.~_m2+(~Fl)2) =

2xp
* (m2 + (6~~)2) ,

-- (1.3)

where the clmsically calculated, mean-square, transverse momentum transfer is
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given by

0

+
E ~ (z’) is the random (from one electron to the next) atomic

scatters the elect ron over its path length of ~z, the average for

and scattered electron; higher-order effects, such as scattering

(1.4)

electric field that

both the incident

of the photon by

the medium, are neglected!13] The standard formula for multiple scattering by
[14]

statistically independent atoms is

Identifying qm, w l/z by the uncertainty principle, we obtain from (1.3)

E:
—2]–1 ,~ w lf [1 + ~m2L

(1.5)

(1.6)

;. so that in the Beth~Heitler limit of no multiple scattering, ZBH w lf a 1/k,

whereas for strong multiple scattering, ZLp~ w A m l/fi.

This s;mple argument, confirming (1.1), indicates that the l/p corrections are

necessary in the eikonal trest ment. As emphmized in Ref. 6, the zeroth-order

eikonal approximation treats straight-line propagation through the medium in the

limit of zero transfer of longitudinal momentum, q. + O. In contrmt, here the

multiple scattering corrections to a finite qz ~ l/p are of interest, as shown in

(1.3). Let us now turn to some details of the formulation and calculation.

-.
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2. Eikonal ~eatment

We review here the eikonal formulation for high-ener~ scattering by the static

fields of a“medium at rest; for more details, see Ref. 6. For simplicity ’15]we consider

the Klein-Gordon equation for a scalar particle of m~s m in a static external field,

which can be written

[(E - V)2 + 72- m2]@(F) = 0,

and write the scattering potential in cylindrical coordinates,

. .

v(r)= V(z,71)

(2.1)

(2.2)

. .----

We look for solutions satisfying the requisite initial and final (outgoing and incom-

ing) boundary conditions. The solution will be written in the form

#(F) = exp(2@(~)) , (2.3)

where the phme function @ satisfies the equation. .

(E - V)2 - m2 = (~@(F))2 - i~2@(F) . (2.4)

For the incident wave, the leading term in @i will be p’ z for the incident

particle momentum along the z axis. The phase function to order ( l/pz) for initial

(outgoing) scattering boundary conditions is written

02 = piz – Xo(z, 71) – $ [xl(z, 71)+ 2X2(Z, 71)] .

SubAitution into (2.4)then yields

(2.5)

(2.6)
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which is recognized as the usual eikonal form. The leading (1/p) corrections are

(2.7)

For the final state with incoming-wave boundary conditions, the leading term

‘f= (Zpf + 7Pi).. . in Of must contain the final electron momentum written as p

The ph~e function to order ( l/pf) will be written as

and then substitution into (2 .4)yields the solution

m

. . 70(2,71) =1dz’ V(z’, %1) , (2.9)

z

which is again in the familiar eikonal form, and the leading corrections in this case

are

z

The total ph~e appearing in the bremsstrahlung matrix element also includes

the ph~e of the photon wave function ’16]A(F). Defining the momentum transfer

6
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~f + +2
to the medium as ~ = p + k – p , the total phase can be written in the form

where from now on p s pi, and total phase functions have been introduced as the

appropriate sum of a x and a ~. Therefore the zeroth-order term is independent

(2.12)

. .----
while the first-order terms still retain some z-dependence

(2.13)

. .

where, as defind earlier, z = pf /pz. The term x~t is crucial in a proper description

of both multiple scattering and the LPM process. It represents a leading correction

to the z dependence of the total phme, since m we saw in (1.3), qz is also of order

l~p. However, there is no need to retain the l/p corrections to the amplitude at

high energies. Therefore the term Xyt, which describes the amplitude change of

the wave functions, can be neglected as unimportant in this application.

--
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3. Model of the Random Medium

To define a model for the medium, we use the fact that the eikonal phase, as

shown in”Eqs. (2. 6)–(2. 13), involves longitudinal-line int egrals through the target.

As the electron traverses the target, it will be subject to accelerations due to the

electric fields of the individual nearby atoms that it pwses.

The simplest model of a random medium incorporates the physical assumption

that the sum of transverse fields along any segment of the particle’s trajectory

that includes many atoms — i.e., when the segment is long compared with the
+

interatomic spacing — is independent of b ~, the particle’s impact parameter in. .
the medium. Therefore, in this model the l/p terms in the eikonal phase that

record the transverse momenta transferred to the particle depend only on the path
. .----

length z:

X1-(Z, 71) = xl(~) and Tl(z, 71) = 71(2) . (3.1)

“Consistent with this assumption, we set

V(Z771) = –71. El(z) . (3.2)
. .

The transverse field varies with depth z from atom to atom. The quantity El(z) dz

is the differential transverse momentum acquired in traversing from z to z + dz.

Its fluctuating nature, from one incident particle to the next, is expressed by the

stat ist ical, or ensemble, average given by

(3.3)

in the absence of correlations between fields at different depths. In Eq. (3.3)

+2
< p ~ > is the average transverse momentum accumulated via multiple scattering

in tmversing a radiation length L. This relation, independent of b, allows one to

compute all the statistical averages that will be needed in the following discus-

sion. This is a quantum version of the clinical model introduced by Landau and

Pomeranchuk ‘8] in their original paper.

8
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A simple physical description can be given of this model of the scattering along

the trajectory of the projectile by approximating the screened coulomb potentials

by a gaussian potential. In this case, the delta function in Eq. (3.3) is replaced

by C(Z2 – Zl) = (a@)-l exp{–(z2 –

potential. For all but the lightest nuclei

than the interatomic spacing, and C(Z2 –

z1)2/2a2}, where a is the range of the

the screening radius a is much smaller

Zl) + 6(Z2 – 21).

For notational clarity we define the integrals

—m
. .----

(3.4)

z

. .

+
The quantity A ~ (Z2, Z1) evidently represents the total transverse momentum ac-

cumulated in going “from the point Z1 to the point Z2 in the target.

The zeroth order phases can be written w

XO(Z, b L) = –TL .~:(z)+
TO(2,71) = –71 .l;(z)

(3.5)

--
+

where X$t ( b ~) depends only on
+
b ~. On the other hand, the real first-order
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correction terms depend only upon z in this model:

z

xl(z) = ;
/[

dz’ ~;(z’) . ~;(z’)
‘1

—w

m

/[

+f +f +f ,
T1(2)= ; dz’ Al(z’) . ~~(z’) – 2 p ~ . Al(z)

1

(3.6)

z

xpt(~) = xl(z) + :71(Z) .

4. Multiple Scattering
... ---

In this section we consider the propagation of a wave packet through the scat-

tering medium in order to develop a geometric picture that confirms the interpre-
+

tation we gave to A ~ as the net transverse momentum acquired by the particle in

traversing the medium.

We resume an incident plane-wave packet of the form. .

#o(r, t) = Id3p

(2n)3
<~,~i > expi~. P– ~(p)t] , (4.1)

where < ~, ~ > is a normalized gaussian packet of width w:

< ~,~i > = N exp[–w2(~–~i)2] , (4.2)

with N the normalization constant. Expanding E(p) to linear terms in (~ – ~),

the incident packet becomes

do(r, t) = expi~ .F– Eit] exp[–(~– tiit)2/(4W2)] , (4.3)

--

where Gi = (Vi, 01) is the incident packet velocity and Ei = E(pi). Thus the
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packet probability distribution is

in

l#o(r, t)12 = exp[–(F– tizt)2/(2w2)] . (4.4)

We consider a particle traversing a medium extending from z = O to z = 1

which the scatterers are randomly placed, and calculate the eikonal phase of

its wave function @(r, t) as defined in Eqs. (2.5) and (3.1). For (Z < O), there

are no interactions and the phase is ~ . F. Inside the medium (O < z S 1), the

phase changes as a function of z as the particle trajectory encounters additional. .
scatterers. On the far side on the medium, (z > 1), beyond the range of any

potential, the phase integrals saturate and remain constant:
... ---

where

(4.5)

(4.6)

(4.7)

Expanding the phase function to first order around the central value of the

packet momentum, F = (pi, OL) , one gets

--

0 – @i = (~–p~) . E(Z,7L) ,

11
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where

Therefore, the probability distribution of the wave packet after emerging from the

medium is

I@(r, t)12 = exp
[ 1

-(R(Z, 71) - ti~t)2/(2w2) . (4.9)

... --- +
Introducing ‘(Z, B ~ ) as the coordinates of the center of the packet and T1 as

the time the packet emerges from the medium, one finds from (4.8) that

1,
1

vi Tl=l+—
/

dz’~; (z’) . ~:(z’)
2(pi)2

(4.10)

o

“‘ and

(z-l)= Va

[

+2

1

(t-~).

-Al(l)1 + 2(;Z)2

After passing through the medium, the packet moves linearly with time with a

reduced z component of velocity, and it is therefore compelling to identify the

angle of deviation of the particle 0, as

1
Cos(e) =

[

+2 ‘
-Al(l)1 + 2(;2)2

1

(4.11)

+ +
or 02 w [A ~(1) /pi]2. This is in agreement with the interpret at ion of A ~ as the

net transverse momentum squired ‘by the particle in traversing the medium, and

is consistent with (3.3).

12
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The transverse position of the center of the packet also tracks the longitudinal

position,

(4.12)

The center of the packet moves at an angle Owith respect to the incident direction,

where to order l/pz, sin(~) N l~l(l)[/pz.

Using Eq. (3.3) to perform the ensemble averages over the packet probability

distribution for multiple scattering through the random medium, we find to the

inherent accuracy of our eikonal wave function and as expected from Eq. (4.11):

or

The average transit time also shows quadratic growth with the thickness

. . 1

A.s the statistically averaged packet exits from
+

same value of b ~ m wm the incident packet.

(4.13)

(4.14)

the target it is centered about the

However, the square of the packet

width W2 is increased. The mean-square width of the packet when it emerges from

the medium at the point z = 1 is therefore

For large times,

packet increases

13
W2+<B2>=W2+<02>Z . (4.15)

one finds t+at the root mean-square width of the transmitted

as z, which in turn grows linearly in t.

13
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5. Bremsstrahlung in a Fixed Field

Weturn now to a derivation ofsingl~photon emission bya

traversing the target medium. At a later appropriate point, the

spinless electron

extension to the

cwe of Dirac electrons will be made. The simplified model of the medium intro-

duced in Chapter 3, Eq. (3.2), will be resumed.

The general form of the matrix element of interest is

(5.1)

‘-) and #\+) are respectivelywhere ~ ~ ie(~ – ~) is the electron current, and #f

the final. (incoming) and initial (outgoing) scattering eigenstates of the electron in

the static field of the target. The calculation will be carried out in the target rest

frame.

For scalar electrons, the matrix element takes the form

}
–iej [Ez + Ef – 2V(Z, b) ]#}–)*#[+) ,

(5.2)

where k is the momentum, F the polarization vector of the photon, and from gauge
+

invariance, 60 = 7. k /k. where k. = Ei – Ef. Gauge invariance is emily proven

by replacing Cp by ku, replacing ~ by a derivative acting on the photon wave

function, and integrating by parts. The result is zero if the wave functions satisfy

the Klein-Gordon equation. Using the eikonal forms (2.3) and (2.11), the matrix

element can be written as

+
M=–e

1!
dz d2b1 C*. ~P(z, b ~) exp[i@tOt(z, b ~)] , (5.3)

-.

+ +
where the factor P (z, b ~) involves the sum of the initial and final local momen-

14
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turn at the point (z, ~1)

Using the earlier expressions given for the phme functions, the convection current

is

V.(@Z+@j)= (l+z)p

.. vl(@i+@f)= ~~+l:(z)–~:(z).
(5.5)

Combining the previous formulas, we find
. .----

‘P.(Z,7L)= o

where onl~ terms of relevant leading order in 1/p were retained.

The z component of the difference vector ~ (= ~f + ~ – ~) is

–qz =

——

+f ~
m2+(p~) (71)2 m2

2xp + 2(1–x)p – 2p

[m2(l - X)2+ Z(7L)2+ (1 - X)( F[)2]
2X(1 – Z)p

(5.7)

Now the matrix element ean be simplified by noting that the current ~(z, ~1)

is actually independent of b in the model of Eq. (3.2) for the external field, and

15
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hence

Defining A to be the frontal area of the target, the square of the matrix element

summed over polarization is

wit h

—m —m

. .---- m 22

1=2
!/

dz2 dzl So(z2, 21) cos[A@~o~(z2, z1)]

SO(22,Z1)= SO(Z1,Z2)= ~7* .P(Z2,0):.P(zl,o) .
pol

. . The phase difference is written as

22

A@tot(~2, 21) =
I

d~ d@tot(z, O)

dz ‘

(5.9)

(5.10)

Z1

where

1 dx~t(z)d@tot(~, O) = _qz _ –

dz P dz .

Eliminating ~~ in this expression in favor of ~; and IL ( = ~1) by (5.8), and

using the explicit expression (5. 7) for qz, this quantity simplifies to

where the transverse mmentum dependence of the photon is measured relative to

the modulated path of the electron as it moves through the medium.
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Since F is orthogonal to ~, the polarization sum is straightforward:

= F~(z2,0).Fl(zl,o) (5.12)

—— 4 [71 -(1 - Z)(2;(Z2)]~[71 - (1 -X)(1:(2,)],
(1-Z)2

+
where the relation 71 = A ~ h= been used and terms of order (1 /p2) have been

dropped.
. .

Here we also introduce the explicit corrections to the polarization sum for Dirac

electrons. Following the details as given by D. Schroeder~17] we substitute S(Z2, Z1)... ---

for So (z2, Z1), where

SO(Z2,Z1)+ S(Z2,21)= 1+X2 12m2(l – X)2~so(z2, zl)+ ~ 1 (5.13)
x

where the two terms correspond, respectively, to no-helicity flip and to helicity flip

~- by the radiating electron. We also introduce the notation r(x) = (1 + x2)/2x for

later use. “

The p~obability that an electron incident upon the target will emit a photon

of energy k = (1 – x)p is

(5.14)

Note that if there is no scattering in the target, then S(Z2, Z1) does not depend

upon the z’s and d@tOt(z, O)jdz = constant. Thus the integrals over the z’s are

zero; they yield delta functions that cannot be satisfied. It proves convenient to

17
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regulate (5, 14)by subtracting this zero from the integrand. Later we will want to

interchange the orders of integration to simplify the numerical evaluation. This

will require care due to the infinite limits. By introducing suitable convergence

factors we will show that the integrals smoothly approach their finite values m the

convergence factors go to one. Thus the z integrals will be regulated by replacing

dz by dzC(z) where the cutoff function C(z) is chosen to restrict integration to

the physical region and to go smoothly to one after all integrations have been

performed. The simplest choice is

. . C(z) = exp –Zlzl

with. ... . .

(5.15)

dC(z)
— = –c(z) z [o(z)– 0(–2)]= –c(z) z e(z) .

dz

With the understanding that ~ will be taken to zero at the end of the calcula-

tion, the emission probability can now be written as

–= /% Td22c(z2)ldzlc(zl)Ap(l – Z)2dP(%)

2Q dx
—m —m (5.16)

[

+

‘1
AB(z2, z1) = B(z2, z1, k 1) – Bo(z2, z1, k ~) ,

where

(5.17)

B(z2, z~, 71) = r(x)(; – ~) sin(A@tOt(z2, Zl))

+2

-(l-x)
22m2+r(x)Al(z2, z1)

2X(1 – X)p
cos(A@tOt(z2, 21)) .

--

+
B. (Z2, Z1, k ~) is the same expression in the limit of no interaction, 71(2) = o.

18
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Anintegration bypartsonzl andz2now leads to

+2

-(l-x)
22m2+r(z)A1(z2, z1)

2%(1 – X)p
cos(A@tot(z2, zl)) .

(5.18)

Ourproblem nowis to evaluate (5.16 )with (5.18 )inthephysical situations of in-

terest. First, however, we must confirm that the subtracted term, proportional to

B. in (5.17), still vanishes and that we have not introduced a false contribution to

. . the radiation probability by the choice of the convergence factor (5.15).

To examine this point, perform the integrals over Z1 and 22 in the zero-field

limit for’the term involving

BO(Z2, Zl, ~1) = Zr(Z)[C(Z2) – e(zl)] sin(A@o(z2, Zl))

2m2(l – X)2—
2X(1 – Z)p

cos(A@o(z2, 21)) ,

The lmt form follows from (5.8) and (5.9). The result is

p(l – X)2dPo(x) =

dx – !
~[FI1 _ 2~2(1 - X)2

12]
2a 2X(1 – Z)p

and

(5.19)

(5.20)

+2
;=m2(l–x)2+k1

2X(1 – X)p .

19
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We obtain

p(l – Z)2 dPo(z) = Id2k1 4g2

[

m2(l – Z)2

2a dx – (2~)2 (E2 + ~2)2 ~(x)w - 12X(1 – X)p .
(5.21)

+
The integration over k ~ is well convergent and therefore the probability of emis-

sion vanishes as < goes to zero, as it must.

The regulated probability of radiation can now be written in the form

–= /%7dz2”(’2)7P(1 – X)2 dP(x)
dzlC(zl) AB(z2, zl, IL) , (5.22)

2Q dx
—m —w

... .-.

where the integrand has become

AB(z2, Zl, ~1) = Eric – C(zl)] [sin(A@tOt(z2, Zl)) – sin(A@o(z2, Zl))]

2m2(l – X)2—
2X(1 – X)p

[cos(A@,0,(z2, z,)) - COS(AOO(Z2, Zl))]

. .

(1 – x)2r(x)7:(z2, z~) cos(A@tot(z2, ~1))—
2X(1 – Z)p

(5.23)

~ Equation (5.22) can be simplified further by defining

and

+2
m2 A(z2, Zl,l) = A1(z2, z1) . (5.24)

--

Now we interchange the order of the integrals to do J d2~1 first, and then shift

20
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the integration variable from k ~ to K ~ where

Z1

The resulting expression is a function only of the magnitude ~~, and we find for

Eq. (5.22)

where

~d2K1 {
AB(z2,~l) = —

(2T)2
FT(X)[E(Z2) – E(zl)] [sin(A(z2, z1, ~1)) – sin(6(z2, z1, Fl))]

2m2(l – X)2—
2Z(1 – X)p

[cos(A(z2, 21, 1~)) – COS(6(Z2,~1, El))]

T(x)m2(l – Z)2A(Z2, 21)
—

2X(1 – X)p
COS(A(Z2, 21, ~L)) } ,

(5.27)
. .

and

Using the (regulated) integrals

m m

Idg COS(~) = O
/

dy y COS(g) = –1

o 0

Idy sin(y) = 1
/

dy y sin(g) = O

0 --’ 0

(5.28)

(5.29)

which were also regulated by setting dy = dyC(y) and then taking the limit as
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+2
E goes to zero, the integral over y = K ~ can be performed. The result for the

probability of emission is

{ [1+ ~r(x)A(z2, ZI, 1)] sin(c) - sin(b)
(5.30)

‘pT(z)[E(Z2)-E(Z,)][coS(c) - Cos(b)] } ,
+~m2(l _ x)

. .

where

. .---- C = b [1 +q(~2,~l,z)]

~ = m2(l – Z)(Z2– 21)
2xp .

(5.31)

Note that there is no singularity as (22 – Z1) goes to zero. In all the examples that

we shall discuss, the last term in the integrand vanishes smoothly in the limit as z

1. goes to zero; this term can be safely dropped.

+2
For later use, note that to first order in the square of the net impulse, A ~,

the proba~ility of emission becomes

w 22

();(1 – X) dP(x) m2(l – x)

II
dz2

dzl C(Z2)C(Z1)— =
ax dx ~ 2xp (22 - z~) x

—m —m (5.32)

{r(x) A(z2, z,, 1) sin(b) + 2q(z2, z,, l)b cos(b)} .

This result holds for any fixed-field distribution in the target within our approx-

imateions. For a single (impulse) scattering, the probability of emission can be

evaluated and compared to the Bethe-Heitler and to known classical formulae.

Furthermore, if the fields in-the target are averaged over, as is necessary in the

multiple scattering case, simplifications are also possible. These simplifications
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allow a direct comparison to the LPM result for very thick targets as well as an

extension to the finite target-thickness cme. These various limits are discussed in

the next sections.

6. Thin Target – Single Scattering

As a first application we apply the lowest-order result, Eq. (5.32), to scattering

by a thin target consisting of a single electric field slab, described by the potential

function
. .

... ---

and

(6.1)

+
where Q ~ is the total transverse momentum imparted by the field slab and clearly

1 = O. The phase integrals, (3.4) , then become
. .

The first order correction terms of interest depend

be written simply for this case

xl(z) = ;Zo(z)[a:l

@Lo(z2)o(-zl) .

upon z only, and Eq. (3.6) can

(6.3)

--

xyt(~)= xl(z) + ;71(2) .
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Two integrals that we will need are

(6.4)

Thus we find
-2

. .

... ---
(-z~z2)

q(22, 21, o) = A(Z2, 21)
(22 - z~)2 ~

(6.5)

Using (5.32), the probability of emission to lowest order in the impulse 61 and

in the limit of e ~ 0, can be written as

m 22

T(l – z) d~(~) = m2(l – z)

!1

A(Z2, 21, o)~
dz2

dx
dzl C(Z2)C(ZI). .

ax 2xp (22 - z~)
—w —m (6.6)

Now change variables to bz = ~i/lf with b = b2 – bl. Recall that the formation

length is given by

2xp
Zf = ~2(1 –x) ‘ (6.7)

Interchange the orders of integration, use the explicit forms for q(z2, 22 – z, O) and

A(z2 ,Z2 – z, O), and the probability of emission becomes

+2 ~

T(1 = x)-dP(x) Q *

I

db C(b)— =—
dx

— l(b) ,
ax ~2 b2

o
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where

b

I(b) = Jdbz [r(z) bsin(b) – 2b2(b2 – b) cos(b)]

o (6.8)

—— b2 [r(z) sin(b) + ~bcos(b)]

The result of the final b integral is [see Eq. (5.29)]

where 1(u) is the radiated energy per unit-frequency interval at w = p( 1 – z). If

the appropriate value for the momentum transfer is used, this agrees with Bethe-

-Heitler.

In the x ~ 1 limit this result can of course be simply obtained by a clmsi-

~ cal calculation. It is instructive to do this following the analysis of Landau and

Pomeranchuk. Consider this thin-target example of a charged particle undergoing

an instanbneous transverse impulse. Evaluate formula (1) and then the approx-

imate formula (2) m given in their work?] As demonstrated in Appendix A, the

result of the latter calculation is one-half that of the former. This is important

for understanding the difference between their results and those we find from the

eikonal method in both the Bethe-Heitler and in the LPM limits as shown in the

following sections. The term omitted by LP gives rise to Cherenkov radiation un-

der the appropriate conditions, i.e., when the dielectric constant is greater then

(E/p)2.

--
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7. Finite-Target Thickness and Field Averaging

Our next t=k is to manipulate Eq. (5.30) into a more convenient form in the

cme of a target of finite thickness. First note that the first term in the integrand

leads to a finite integral; it can be safely dropped in the limit of vanishing e. In

the remaining terms it is convenient to change variables as in the previous section

from z to b = z/if, where the inverse formation length ww defined earlier. The

radiation length L and the formation length lf will play important roles in our

result as will the scaled-target thickness bl = 1/1f. The result for the probability

of emission given in (5. 30)can now be written as..

—m —m

m bz
T(l. -. z) dP(z) = IJdb2

dbl C(b2)C(bl) ~

ax dx b

[1+
r(z) A(b2, bl, bl)

2m2(l – X)2
sin(c)

where

The target is ~surned

variables O < b < bl. The

to extend from

sin(b)

(7.1)

(7.2)and b= b2–bl.

O < z < 1, or in terms of the scaled

fact that the particles see no fluctuating field outside

these limits requires that the integrals over the b’s in equation (7. l)be divided as

follows:

m b2

-JJdb2 dbl =

—m —m

o b2

JJdb2 dbl +

—m —m

m o

+- JJdb2 dbl

(7.3)
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In an obvious notation, these integration regions will be denoted by

m b2

II
db2 dbl=(––) +(O–)+(OO) +(+–)+(+O) +(++). (7.4)

—w —w

The notation emphasizes the possible coherence between emission regions in the

matrix element.

7.1 STATISTICAL AVERAGES

The main formulae that we will need all arise from noting that the transverse

electzic -field is mro outside the region O < z < 1 so that we may write:

22

2~(22,zl) =
I

dz’O(z’)0(1 – Z’) ~L(Z’)

z]
(7.5)

Z2 22

/

dz~l(z, 21) =
./

dz’~(z’)~(1 – Z’) ~~(Z’) (z2 – Z’) .. .

Z1 - 21

The statistical averages for the six integration regions can be computed directly

from the above. Using Eq. (3.3) one finds in all integration regions that

22 Z2

<

I

dz~:(z, zl) > =< 21(z2, z1) .

I

dz~l(z, 21) >

Z2
<y;>——

L !
dz’9(z’)0(1 – z’)(z2 – Z’) (7.6)

Z1

22

I

+2 ‘2

< [ dz~l(z, z1)~2 >- = < ‘L1 >
I

dz’O(z’)0(1 – Z’)(Z2 – Z’)2

Z1 z]
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and
Z2

< q(z2, zl,l) > = a
~

dz’o(z’)o(l – 2’)
(22 - 2’)(2’ - z~)

(22 - z~)2 ‘

where

In terms of scaled variables the other statistical average that we need is

Z2

..
< A(z2, z1,1) > = a

!
dz’o(z’)o(l – z’) , (7.7)

Z1

or - “’-’

bz
P

< A(b2,bl,b~)> = alf
J

db’o(b’)e(bl – b’)

bl

After some algebra, the explicit results in the various regions in terms of the

;. scaled variables are:

Region < T(b2, bl, bl) > 6/(al~) < A(b2, bl, bl) > l/(alf)

(~~) o 0
(o-) $[3b – 2b2] b2

(+-) $ [3(b2 + bl)b~ – 2b~ – 6blb2] bl

(O O) b b

(+ o) ~[3b- 2(b,- bl)] (bl - bl)

(++) o 0

The interested reader can check that these formulas join smoothly at all common

boundaries of the integration regions. Furthermore, the symmetry between (+)

and (–), that is (b2 * b~– bl), is also evident.
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The

8. Emission Probability—Bethe-Heitler Regime

probability of emission to lowest order, given in (5.32), is written m

where

. .

and

-..

All

1~(+0)

b2

“/1
Ii = W db2 dbl C(b2)C(bl)

6q(b2, bl, bl)
cos(b) .

alf
—m —m

(8.1)

regions except ( –– ) and (++) contribute to lJ, and from symmetry

= lJ(O–). Changing variables from dbl to db, interchanging orders of

integration, and performing the b2 integral yields

m

IA(+–) = bl
I

sin(b)
dbC(b) [b – bl]~

bl

bl

IJ(OO) =
I

dbC(b) [bl – b] sin(b)

o

and

(8.2)

w

I~(tot) = bl
I

dbC(b) sin(b) = bl ,

0
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The same regions contribute to Jq and again, lV(+O) = lT(O–), so that

bl

!
Iv(o–)= ; dbc(b)b2cos(b)+;bj

/

‘db~ [2b – bl] cos(~)

o bl

bl

IV(OO) =
/

dbC(b)b[bl – b] cos(b)

. . 0

and
m

. ...-.

I
~~(tOt) = bl dbC(b)b cos(b) = –bl ~

o

The complete emission probability to linear order in a is therefore

(8.3)

(8.4)

~ Since lfbl = 1, the final result is

dP(x) 2a<3; >l
: (l-x) (~)l = 3. m2——

~ [X+:(1-X)2] ~ (8.5)

Note that (8.5) agrees with the thin-target result given earlier, Eq. (6.9), if one

makes the obvious identification ~~ = < ~~ > Z/L.
.

Our model of multiple scattering is normalized by choosing < ~~ > so that

the emission probability agrees with the value quoted by Rossi ’14]for incoherent

multiple Coulomb scattering to leading order in a screened field:

dP(x)
~~[x+:(l-x)2],

+2 2Tm2
where <p~>=—.(l: X)(~)1=3L

a (8.6)

In our model of multiple~cattering, the average < ~~ > acquired in each scatter-

ing event is smaller by a factor of two than the value given by Rossi for scattering
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in a screened coulomb field. In their clwsical study of this same multiple-scattering

model, Landau and Pomeranchuk were led to use the Rossi value by an error in

their approximations that was discussed at the end of Section 6 and is demon-

strated explicitly

Eq. (8.6) for this

9.

in Appendix A. If their error is corrected, it is necessary to use

random-scattering model.

Emission Probability – LPM Regime

Recall that the probability of emission to all orders, given in (5.30), which

includes the LPM effect, can be written in the form

m bz
X(1 – z) dP(z)

— = I(tot) =
//

db2 dbl I(b2, bl, bl) ,... .-.
&x dx

—m —m

(9.1)

where

I(b2, bl, bl) = 2
{ }

c(b2~(bl) [1+ ~r(x)A(b2, bl, bl)] sin(c) - sin(b) ,
(9.2)

C= b[l+q(b2, bl, b~)],

and, of coyrse, bz = Zz/lf and b = b2 – bl. The integral ~(tot) must be divided into

all the sub-regions as defined in Eq. (7.3).

~ The regions (––) and (++) do not contribute since A and q vanish. The first

non-zero region is (recall that from symmetry, 1(0–) = 1(+0)):

b, o

1(0–) =
II

db2 dbl 1(0–; b2, bl, bl)

o

- = [~~db2+[dbjdb2] I(o-;b2b2-bbl) ’93)

where the (O–) in the integrand indicates that A and q, are evaluated appropriately.

31

—



I *

The central region yields:

bl b~

1(00) =
II

db2 dbl 1(00; b2, b2 – b, bl)

o 0

b[ bl

——

II
db db2 1(00; b2, b2 – b, bt) (9.4)

Ob

bl
r

= j db(bl -b) ~(oo;b2,b2-b,bl) ,

0

since in this region neither A nor q depend upon b2. The external region contributes:... .-.

m o

1(+–) = JJdb2 dbl 1(+–;b2,bl,b~)

bl –~

m b

—— JJdb db2 l(+–; b2, b2 – b,bi) ,
. .

bl bl

9.1 THICK TARGET

(9.5)

Let us now look at the (O O) contribution to this amplitude, Eq. (9.4) and take

the limit of large 1. Using the results given in the table in Chapter 7 for < A >

and < q >, we find

1(0-0) = Jbldb2C(b)

{ }
~(bj -b) [1+ ~r(z)al~b] sin(b + ~alfb2) - sin(b) , (9.6)

o

where C(b) can be set t~one;In the limit of large 1 this result agrees with the form

given by LP, however the formation length lf is given correctly by Eq. (6.7) and
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the electron spin is properly accounted for by the factor r(x). If ~alf bl N l/(aL)

is small compared to one, that is, if the target thickness is small compared to the

mean free path, the LPM coherence vanishes since the phme behavior is essentially

linear; this is the Bethe-Heitler regime. A direct expansion to order a of the above

formula agrees with the result quoted in the previous section. As alfbl becomes

very large, which is the extreme LPM limit, only one term in (9.2 )survives and it

is of the order square root of a, that is,

bl
T(1 – z) dP(z) ~ ~t

dx /
~ db(bl – b) sin(b + ~alfb2).r(x) , (9.7)

ax
o

or ... .-.

– ‘axbl@r(x) = /vr(x)

(1 -X) dP(x)

ldx

Note that the emission probability is proportional to r(x), indicating that the

radiating electron does not flip helicity. The classical LP result in the limit of

~ ~alfbl >> 1 is
. .

‘x ‘$W- (1 - X)” dPLP(x)

1
(9.8)

which is smaller than our result, Eq. (9.7), by a factor of 0.471 for x near one. The

calculation by Migdal, the LPM effect, yields the result

(1 -X) dPLP~(x)

1 dx
=2~~7r(x), (9.9)

when his approximate formulae are normalized to the correct result in the Bethe-

Heitkr limit. Equation (9.9) is roughly 8% smaller than Eq. (9.7).

-.
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9.2 FINITE TARGET

All the regions of integration must be evaluated explicitly for the cme of a

target of finite thickness. The full expression is written in a form suitable for

numerical int egrat ion:

I(tot) = 1(0 –) + 1(+ o)+ 1(00)+ 1(+ –) , (9.10)

where

. . 1(0–) = 1(+0) = [~db\db2+[db~db2]x
. .. . ..

{ }
“~ [1+ ~r(x)aljb2 ] sin[b + ~alf~(3b - 2b2)] - sin[b] ,

(9.11)

m b

1(+ –) =
II

db db2
{ }

~ [1+ ~r(z)aljbl ] sin[b + ~alf~P(b, bz)] - sin[b] ,

bl bl

T. where

P(b, bz) = bl(3b – 2bl) + 6(b2 – bl)(b – b2) ,

and 1(0 O) is given in Eq. (9.6).

In the BH and soft photon limit, x ~ 1, it has already been shown that

I(BH) = ~alfbl = ~al .

(9.12)

(9.13)

Therefore it is natural to introduce a form factor F and two scaling variables that

track the LPM effect by defining

I(tot) = I(BH) F(N, T, z) , (9.14)

where the x dependence ‘arises only from the spin factor r(x), N = ~al f is essen-

tially the number of formation lengths contained in a mean free path, and T is the
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thickness of the target in units of the mean free path, i.e.,

T= Nbl =;;
T lf

wit h N=~alf=z Z. (9.15)

The form factor F will be divided into separate contributing regions w was the

integral 1. Inserting the scaling variables

the relation bl = T/N then leads to

bl b

F(o–) = F(+o) =
~1 !

db db2 +

00

{
~ [1+ 3r(z)Nb2

into Eqs. (9. 12) and (9.6) and recalling

bl

7/]
db db2 X

bl O

}
] sin[b + N~(3b - 2b2)] - sin[b] ,

(9.16)

F(+ –) = ~db]db2${
}

[ 1 + 3r(z)T] sin[b + T~P(b, b2)] - sin[b] ,

bt bl

where

P(b, b2) = bi(3b – 2bl) + 6(b2 – bl)(b – b2) , and finally (9.17)

-bl

F(o 0) =
-/

dbC(b)
~(bl -b){ [ 1 + 3r(r)Nb] sin[b + Nb2] - sin[b]} . (9.18)

o

These contributions to the form factor cannot be interpreted w radiation from the

surfaces, from the exterior, and from the interior oft he target respectively, because

the contributions from each region is not positive definite. The total sum, the form

factor F, is positive definite.

Note that in the BH limit of small T, F ~ 1, the defined normalization. In

the LPM limit of T >> N >> 1, which ensures that bl = T/N is also much

largel than one, the form factor can be shown to be dominated by F(O O). One

then finds F ~ ~ r(z) fi. Since N is proportional to (1 – Z)–l, the form factor

F vanishes w the square rod of k in the soft photon limit. This is the expected

suppression from the LPM effect.
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10. Physical Interpretation and Numerical Results

In this chapter we discuss and illustrate the physical phenomena that are re-

flected in the behavior of the form factor F(N, T, x) as a function of the scaling

variables T and N. First, recall the definitions of the scaling variables:

Tl
T=–—

3 aL

bl=~
2xp 2p~pf

lf = ~2(~ _ x) = ~2~ .lf

(10.1)

The behavior of the form factor in certain limiting regimes is quite easy to inter-

pret physically. Keep in mind that T is determined by the target geometry and. ...-.

composition, not kinematics. On the other hand, the value of N is determined by

kinematics and target composition, not target geometry; N increases as the photon

energy k decreases.

Small T: In this regime, the target thickness is much less than the mean free path.

Thus there can be little multiple scattering and the form factor must be close to 1,

‘” signifying the predominance of the Bethe-Heitler process. For N << T, the value

of the form factor F is controlled by the integration region (00). Contributions

from the-~xterior regions grow for larger N values. Eventually, the double exterior

region (+ —) dominates:

Large T: The target thickness is much greater than the mean free path. Thus the

electron will definitely undergo many multiple scattering events in traversing the

target. The form-factor behavior and its physical interpretation depend strongly

upon the value of N. For N much smaller than 1, that is for lf << aL, the

quadratic-phase oscillation is negligible, the region (00) dominates, and F ~ 1;

the physics is that of the Bethe-Heitler process. For larger N in the region T >>

N >>1, the quadratic-phase oscillation is important and it controls the value of

F(OO). This is the LPM-regtie in which the form factor asymptotically varies as

N–lf2, the characteristic of LPM suppression of bremsstrahlung. For even larger
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N in the region N >> T >>1, the formation length is larger than the large target

thickness. The LPM suppression is incomplete in that the multiple scattering only

takes place over a fraction of the formation length. The integration region (00)

contributes less to the form factor F, and the mixed regions (O–), (+0), and (+–)

eventually become the dominant contributors as N incremes further into the region

N > T2.

The behavior discussed above can be directly seen in the numerical evaluation

’18]All calculations were done in the soft photon limit r(z) N 1.of the form factor.

It is found that F(N, T = 0.01) N 1 for all N. As N varies from 0.001 up to

10, that is for 10> bl >0.001, the form factor decreases very slightly, less than 1

percent. For N S T, the (00) region dominates, while for larger values the exterior
. ...-.

regions dominate.

In Figs. 1, 2, and 3, the form factor F(N, T) is plotted as a function of N for

select ed T values in the experimental range of int crest. The computer data is not

smoothed and the curves are composed of straight-line segments connecting the

_ computed points. The dmhed lines show the contribution of the purely internal

“” region (00). The dotted lines arise from the remaining mixed and external regions,

[(0–) + (+0)+ (~–)]. The total form factor always has an overall smooth behavior,

but definite oscillatory contributions from the interior and external integration

regions arise from -the sinusoidal integrand. For N S T, the internal region

dominates the form factor. For somewhat larger N values, the external regions

dominate.

In Fig. 1, F(N, T = 0.1) is plotted for N ranging from 0.01 to 50, or bl ranging

from 10 down to 0.002. In Fig. 2 F(N, T = 1) is plotted for N ranging from

0.02 to 200 ( 500 > bl > 0.05). In Fig. 3 the form factor F(N, T = 10) is

plott~d for N, again ranging from 0.02 to 200. The small-scale oscillations in the

individual contributions are evident. The LPM regime is the region 1 < N ~ T

where (asymptotically) the form factor should

the regime N > T2, in which the form factor
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dependent, is evident. As N increases, one eventually enters into the regime of

low-photon energies and the index of refraction of the medium becomes important.

These effects are not treated here.

In Fig. 4theform factor F(N, T) for different Tvalues is plotted against N.

This plot shows the behavior m the target thickness incre~es from a thin target,

T = 0.1, to the very thick target LPM limit, T >100. Finally, in Fig. 5 the form

factor F(N, T) for two T values is plotted against the photon momentum k. We

emphasize that this calculation resumed single-photon emission only. The values

of T = 10 and T = 1 approximately correspond to the SLAC experiment for a gold
. .

target of 6% L and 0.7% L, respectively. The break in the slope at k = 50 MeV is

an effect of finite-target thickness. This break is present in the data of Ref. 5 for a

beam en~r~ of 25 GeV (in which the radiation length L is denoted by Xo). For k

values smaller than this value, the formation length becomes larger than the target

thickness. Detailed comparisons of our results for finite target thickness and the

experimental data are in preparation by the SLAC E-146 Collaboration.
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APPENDIX A

In thk appendix we show the error in the Landau-Pomeranchuk classical deriva-

tion that led them to choose < ~~ > = % in order to get the correct Bethe-

-Heitler limit instead of (8.6). Our starting point is Eq. (1) in Section 76 entitled

“Electron-Cascade Processes at Ultra-High Energies,” in the collected works of

Ref. 8. If the higher-order terms in l/g are not neglected, where g - wr12 with

712 = 71 – 72, one finds, in place of their Eq. (2), the result

. . dI = dI1 + d12 ,

where “’ -‘

m
e2wdw

dIi = —
1/

dtldt2 exp[iw(tl – t2)] ~,

T
a.

r12
—w

(Al)

The integrand are

‘2=[-271;21” [gcos(gi~sin(g)l ~
(A.2)

The leading contributions to these integrals comes from the slowly oscillating terms

with phwe ti[(tl – t2) – r12]. That is, when w(1 – V) (tl – t2) S 1, where V is the

velocity. In this cme g w (1 – V)–l >> 1.

This argument led Landau and Pomeranchuk to neglect all terms of order l/g2.

Although this approximation is valid for the second term in J1, it is invalid for J2,
++

which hw a coefficient V-l. V-2 ~ 1 in contrast to the coefficient in J1 that vanishes

in the limit of small scattering.
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To be specific, consider a single scattering (classical) at t = O so that we can

write, to order IAV12 << 1,

Defining di = O(tz), we find

[

1 IAV1271. F2=V(0)2 l–-—
2 V(0)2 ’01 – ‘2)2 1

[

1 IAV12
g = Ov(o)(tl –t2) l+-— ‘1t2 (e, - 02)2

2 V(0)2 (tl – t2)2 1
(A.4)

——

The Landau-Pomeranchuk result is 11, which can be readily evaluated as

which is precisely 1/2 the correct cl~sical answer. Next, one readily finds that the

integral 12 is also, to leading order, proportional to IApl 2/m2 with the contribution

coming from the term in g proportional to AV2. The result is that 11 = 12 which

accounts for the missing contribution.

--
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FIGURE CAPTIONS

Amorphous and Crystalline

Nasonov, and N.F. Shul’ga,

FIG. 1. A plot of the form factor F(N, T) at T = 0.1, that is, the target

thickness is one-tenth of the radiation length, for a range of N values. The solid

curve is the total form factor. The dashed curve labeled (O O) is the contribution

from inside the target. The dotted curve is the contribution when at least one

source coordinate is outside the target. The curves are computed only at the

indicated points and connected by straight lines.
... .-.

FIG. 2. A plot of the form factor F(N, T) at T = 1.0, that is, the target

thickness is equal to one radiation length. The various curves are described in the

caption to Fig. 1.

FIG. 3. A plot of the form factor F(N, T) at T = 10, that is, the target

thickness is ten times the radiation length. The various curves are described in the

caption to Fig. 1.

FIG. 4.. A plot of the form factor F(N, T) for a range of T values is plotted

against N. The important dependence on the target thickness and the approach

to the thick target limit of LPM is evident.

FIG. 5. Plots of the form factor F(N, T) versus k for T = 10 and T = 1 are

given. The physical parameters were chosen to roughly correspond to the SLAC

experiment for a gold target of thickness 670 L and 0.770 L respectively. Note the

break at k H 50 MeV in the T = 1 data.
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