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ABSTRACT

We extend Seiberg’s qualitative picture of the behavior of supersymmetric

QCD to nonsupersymmetric models by adding soft supersymmetry breaking
terms. In this way, we recover the standard vacuum of QCD with Nf flavors

and N= colors when N~ < NC. However, for Nj ~ N., we find new exotic states—
new vacua with spent aneously broken baryon number for Nj = N., and a vacuum
state with unbroken chiral symmetry for Nj > N.. These exotic vacua cent ain
massless composite fermions and, in some cases, dynamically generated gauge
bosons. In particular Seiberg’s electric-magnetic duality seems to persist also

in the presence of (small) soft supersymmetry breaking. We argue that certain,
specially tailored, lattice simulations may be able to detect the novel phenomena.
Most of the exotic behavior does not survive the decoupling limit of large SUSY
breaking parameters.
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1 Introduction

When we ask how a gauge theory behaves at strong coupling, we want first of all to under-

stand how the chiral symmetry of this theory is realized. In the familiar strong interactions,
we know from experiment that the approximate chiral SU(3) x SU(3) symmetry is spon-
taneously broken to a vector SU(3) symmetry. This chiral symmetry breaking allows the

quarks to obtain dynamical m~ses and so justifies the quark model of hadrons. For a long .
time, physicists have wondered whether this same qualitative behavior should be found in
any ~ymptotically free gauge theory. In a Yang-Mills theory in which the chiral symmetries
are not spontaneously broken, these unbroken symmetries can protect composite fermions
from obtaining masses [1], leading to a completely new dynamical picture.

In the early 1980’s, this same question, which had not been resolved in the case of ordinary
Yang-Mills theory, was studied in the supersymmetric extension of Yang-Mills theory. In
stages, the qualitative behavior was worked out for supersymmetric pure Yang-Mills theory
[2] and for supersymmetric Yang-Mills theory with a small number of quark flavors [3,4, 5].

Recently, Seiberg has returned to this question and, in a remarkable set of papers [6, 7], has

given a coherent picture of the qualitative behavior of supersymmetric QCD (SQCD) for all
numbers of flavors. Seiberg has emphasized that his solution includes dynamical features
that are quite exotic, including vacuum states with baryon number violation and massless
composite fermions, and he has speculated that these features can potentially also appear
in nonsupersymmetric models.

In this. paper, we will investigate the extension of Seiberg’s vacuum states to nonsuper-

symmetric models. To do this, we will study how these vacua are perturbed by the addition
of soft supersymmetry breaking terms to the Lagrangian. This method is quantitative only
when the soft supersymmetry breaking masses are much smaller than the strong-coupling

scale A of the Yang-Mills theory. Despite this limitation, we will show that many of the
exotic features found by Seiberg, notably chiral symmetry realizations and duality, do sur-
vive in softly broken nonsupersymmetric theories. We will suggest the way in which the

supersymmetric limit connects to ordinary Yang-Mills theories of quarks alone.

Soft breaking of supersymmetric Yang-Mills theory was studied previously, with a very
different motivation, by Masiero and Veneziano [8, 9]. We will follow some of the route
uncovered in their papers, but the recent improved understanding of supersymmetric Yang-
Mills theory will allow us to obtain a more complete picture.

- In addition to the intrinsic interest of exploring nonsupersymmetric extensions of Seiberg’s
mechanism, this investigation has a broader significance. Today, the most important tool

for investigating strong-coupling gauge theories is numerical simulation on the lattice. Up to

now, lattice gauge theory simulations have found evidence only for the conventional pattern
of chiral symmetry breaking. However, it is by no means clear that the current simulations
have exhausted the possibilities to be discovered. Seiberg’s work suggests that lattice gauge
theorists should look harder, and in theories with colored fundamental scalars as well as
fermions. If supersymmetry were essential to Seiberg’s vacuum states, these states would

- .-
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be very difficult to reproduce in simulations, since, in general, there is no known method of
ensuring supersymmetry on the lattice. * Thus, lattice gauge theorists could reasonably ex-

pect success in demonstrating the presence of massless composite fermions and other exotic

features only if these phenomena exist in nonsupersymmetric models. Our analysis provides
evidence that they do, and it suggests the particular nonsupersymmetric models which are
the most promising for finding them.

In this paper, we consider SU(NC) Yang-Mills theories coupled to N~ flavors of quarks .
and squarks. In Section 2, we define our notation and set up a general strategy for analyzing
these models. In Section 3, we consider the case Nf < NC. For this case, we show that soft
breaking of supersymmetry leads to the conventional pattern of chiral symmetry breaking,

SU(N~ ) x SU(Nj ) spontaneously broken to the diagonal SU(Nj ). In Section 4, we consider
the case Nj = NC. In this case, we find that this conventional vacuum state still exists, but
that a new vacuum state also appears, with m=sless composite fermions and spontaneously
broken baryon number.

In Section 5, we consider the case Nj = (NC+ 1). In this case, we find that, for small soft

supersymmetry breaking terms, the chiral symmetry remains unbroken. The vacuum state
.. of this theory contains massless composite fermions with quark and squark constituents;

these remain massless even when the squarks have nonzero mass, illustrating a possibility
for composite states first discussed by Preskill and Weinberg [11, 12]. In Section 6, we dis-

cuss the ‘case Nj ~ (NC + 2). Here the physics of chiral symmetry breaking is quite similar
to that found in the previous situation. Seiberg has argued that the supersymmetric limit
of these models also possesses a dynamically generated gauge symmetry which, in some cir-
cumstances, is weakly coupled. This gauge symmetry is often lost in the nonsupersymmetric

case, but we will give some specific models in which it survives. In particular, it seems that
the electric-magnetic duality which Seiberg claimed for this region persists in the presence
of (small) soft supersymmetry breaking.

Most of our discussion will be carried out for the case N. ~ 3. The case N. = 2 has a

number of special complications. However, since this is the case of most interest to people
with computers of finite capacity, we discuss this case specifically in Section 7. Lattice
simulatio”n~ of gauge theories with scalar fields have a practical difficulty that it may not be

possible to reach the continuum limit, due to the presence of a first order phase transition
as a function of the scalar field mass parameter. In Section 8, we discuss how this problem

can arise from perturbation of the supersymmetric Lagrangian, and how it can be avoided.

In all, these models open a wide variety of new phenomena in nonsupersymmetric models,
raising many possibilities for theoretical and numerical investigation and for model-building.

They confirm Seiberg’s intuition that, while supersymmetry is useful for investigating the
variety of behaviors possible in strongly coupled gauge theories, it is not a necessary condition

for their realization.

●See, however, [10], where certain N = 2 supersymmetriclattice theories have been considered.
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2 Notations and Strategy

In this paper, we will be concerned with SU(NC) Yang-Mills theories coupled to Nj flavors

of quarks. We will be perturbing about the supersymmetric limit of these theories. In this
limit, these theories contain fundamental scalar (squark) fields and a fermion (gluino) in the
adjoint representation of the gauge group, in addition to the standard content of Yang-Mills
theories with fermions.

2.1 Fields and Symmetries

The quarks and squarks can be grouped into chiral superfields in the NC and x representa-
tions of SU(NC). We will refer to these superfields as

(1)

where i= l,..., Nj is a flavor index and a = 1,. ... N. is a color index. When we wish

to refer to the individual components of the superfield, we will denote the scalars by Q, ~

and the fermions by @Q, ~. The Hermitian conjugate superfields will be denoted Qt, ~+.
Note that while #Q is a left-handed quark, ~ is a left-handed antiquark; the right-handed

quarks are components of ~+. We will reserve the notation q, ~ to denote Seiberg’s dual

quark superfields, which will appear in Section 6. We will denote the gluino as ~“~, a matrix

in the adjoint representation of SU(NC).

When N. = 2, the representations N. and ~ become equivalent, and this introduces a

number of complications. From this introduction through Section 6, we will restrict ourselves

to N. 23. In Section 7, we will discuss the generalization of our results to NC = 2.

In the classical SQCD theory the quark superfields have no interactions beyond their
couplings to the gauge supermultiplet. In particular, we will assume that they have zero

mass. This implies that the supersymmetric theory has a global symmetry

SU(Nj)~ x SU(N~)R x U(l)B x U(l)R, (2)

where SU(N~)~ acts on the Qi, SU(Nj)R acts on the ~i, and U(l )B denotes baryon number.

We will refer to the vectorial flavor group, the diagonal subgroup of the two SU(Nj)’s, as

SU(Nj)V. The additional factor U(l )R denotes the anomaly-free combination of the axial
U(l) symmetry acting on the quarks and the canonical R symmetry which acts on all fermion
fields. Under this anomaly-free symmetry, the squarks, quarks, and gluinos have the following

charges:
Nj – NC

Q,~ ~ Nj $Q, ~ : ‘$ ~ : 1. (3)

A superpotential W should have R charge 2.

-. .-
-.
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2.2 Effective Lagrangian

The qualitative behavior of supersymmetric Yang-Mills theory is made most clear by writing
an effective Lagrangian in terms of gauge-invariant chiral superfields. As Seiberg especially
has emphasized [6], this Lagrangian is strongly constrained by the condition that its super-
potential must be a homomorphic function of these fields. For small values of Nf, the only

possible gauge-invariant chiral field built from the quark fields is the meson field

Tij = Qi.~j. (4)

Beginning at Nj = Nc, there are also chiral superfields with the quantum numbers of baryons.
Let

N. = (Nf – NC). (5)

Then there is a baryon chiral superfield in the N.-index antisymmetric tensor representation
of SU(Nf)~,

Bil...ific = ~o]aNC~j, ...jNCi....ifiCQ~. . . . Q~c , (6)

and, similarly, an antibaryon chiral superfield ~] ...zficbuilt from NC powers of the field ~.

Using the gauge supermultiplet, it is possible to build another chiral superfield
. .. ..

s = –ir[w”w.] = tr[A.A]+ .. . . (7)

The superfield S has R charge 2 and is neutral under the other global symmetries. In
studies of the qualitative behavior of supersymmetric Yang-Mills theory, the component
fields of S always acquire mass; these fields are associated with the massive hadrons of the
pure glue sector of the theory. However, the dependence of the superpotential on S is still
fixed by symmetry arguments [2, 3], and S can be inserted or removed in an unambiguous
way by Legendre transformations [14]. Though most of our results can be derived without

introducing S i-nto the Lagrangian, it will be useful at some points in our analysis to write
effective .Lagrangians that depend on S as well as T.

2.3 Soft Supersymmetry Breaking

b addition to the superpotential, we will need to know the K5hler potential which determines
the kinetic energy terms of the fields T, B, and ~. A simple hypothesis, introduced in the
work of Masiero and Veneziano [8, 9], is that the Kahler potentials of the gauge-invariant

fields are canonical:

I{[T, B,~ = A~tr[TtT] + A~(BtB + ~~). (8)

rely on weaker =sumptions about the K&hler potential, in particular,Our main results will
that it is nonsingular on the space of supersymmetric vacuum states. However, we will
suppoti our general remarks by explicit calculations using this simple model. We expect (8)

--
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to be the correct form of the Kahler potential near the origin of moduli space, in the cases
for which the mesons and baryons give an effective infrared description of the theory.

We will also need to specify the terms by which we break supersymmetry. In this paper,
we will break supersymmetry by adding m~s terms for the squark fields and for the gaugino,

AL=– ~:(1 Q12+ lg[2) + (mgS + h.C.), (9)

where, in. (9), Q, ~, and S are the scalar component fields of the superfields. The scalar -

mass term is the unique soft supersymmetry breaking term which does not break any of
the global symmetries (2) of the original model. The gaugino mass term breaks only the

U( 1)~ symmetry, and thus breaks the global symmetry of the supersymmetric model down
to that of ordinary Yang-Mills theory with Nj massless flavors. Any other choice for the soft
supersymmetry breaking terms would induce further global symmetry breaking. Because

S is a complex field, any sign or phase inserted in front of the gluino mass term could be
compensated by a phase rotation of S (or, more generally, by a U( 1)n transformation). We
have chosen the phase of this term so that the potential energy of the broken theory will be
minimized when S is real and positive.

Actually, it is not clear whether the ‘correct’ theory of broken supersymmetry should or
should not contain the gluino mass term. If this term is included, and then ma and m~

are taken to infinity, the theory reverts to the standard Yang-Mills theory with Nj flavors.
If this’ term is omitted, and then ma is taken to infinity, the theory becomes a Yang-Mills

theory coupled to Nj flavors in the fundamental representation and one extra flavor in the
adjoint representation. Both of these are theories whose strong-coupling behavior might be
of interest. We will refer to the softly broken theories without and with the m~ term as the

R and ~ theories, respectively.

Since we will be working in the language of the low-energy effective Lagrangian, we must
ask how the supersymmetry breaking term (9) shows up in this Lagrangian. To work this
out, rewrite (9) in the superfield form

- AL = I d4$MQ(QtevQ + ~te-vT~) + J d20M,S + h.c., (lo)

where ~“Q- is a vector superfield whose D component equals ( –m: ) and M~ is a chiral

superfield whose F component equals m~. It is straightforward to see that these superfields

are gauge-invariant and neutral under all of the global symmetries.

The effective Lagrangian description of AZ for N~ S Nc + 1 is then given by writing
the most general Lagrangian built from T, B, ~ and a fixed number of factors of ~Q and
Mg. The supersymmetry breaking terms have an ambiguity related to that of the K&hler
potential, because many possible invariant structures can be built from T, B, and ~. In our
explicit calculations, we will usume that the coefficient of MQ is quadratic in these fields;
again, this =sumption is precise near the origin of moduli space. Then the first order soft

supersymmetry breaking terms in the effective Lagrangian are

AZ = f d40(B~MQtr[TtT] + BBMQ{BtB + ~t~} + EM(T, B, ~) + h.c.)

- .- + f&OM~ (S) + h.c., (11)
--

6



where M (T, B, ~) is a function of the effective Lagrangian superfields which is neutral under
the global symmetries. The quantity (S) in (11) should be a combination of the effective

Lagrangian chiral superfields which has the quantum numbers of S. In general, this condition

restricts that function to be proportional to the expectation value of S as determined from
the effective Lagrangian of refs. [2, 3] which includes S as a b~ic field. In some of our
examples, the symmetry of the vacuum will prohibit S from obtaining a vacuum expectation
value; then the only effect of Mg will be from the D-term in (11). The appearance of this -
unknown D-term, however, will prevent us from making any quantitative predictions after
adding the gluino mass.

The squark mass terms in (11) are not the most general terms that can be written down.
As in the Kahler potential (8), higher order terms in the fields, suppressed by powers of A,
may appear. However, we expect (11) to be approximately true near the origin of moduli

space T= B=B= O. Thus, whenever the vacuum which we analyze will be near the
origin of moduli space (as will be the case for Nf 2 N. + 1), we expect (8) and (11) to give
a good quantitative description of the theory. In other cases, notably for Nj s N. where

some expectation values are expected to be of order A or higher, higher order terms cannot
be neglected. We expect that the qualitative behavior which we will find when using these
simple terms will remain valid also in the exact theory. However, we will not be able to trust
the quantitative- results.

The ratio of coefficients B~/B~ will be important to our later analysis, but this ratio
cannot be determined from the effective Lagrangian viewpoint. At best, we can argue naively
that the coefficient of the mass term of a composite field should be roughly proportional to

the sum of the coefficients of the mass terms of the constituents. This would give the relation

(12)

which the reader might take as qualitative guidance.

To avoid the-proliferation of factors A@, where A is the nonperturbative scale of the strong
interaction: theory, we will generally choose units in which A = 1. Then ma and m~ will

be small dimensionless numbers. We emphasize again that our method makes quantitative
sense only for theories with weakly broken supersymmetry, that is, only when m~ and m~ are

much less than A and will not apply directly to models in which the squarks and gluinos are
completely decoupled. However, in many of our examples, the qualitative behavior we find
in the region m: << A will suggest a smooth continuation to the decoupling limit m: >> A.

In”each c~e that we study, we will offer at least a plausible conjecture, for both the R and
~ cases, of the connection between these two limits.

It is important for our analysis that the behavior of the theory is non-singular when
adding the squark and gluino masses, i.e. that no new non–perturbative effects occur.

In general it is not possible to prove this in non-supersymmetric theories, but a proof of

this is possible in softly broken supersymmetric theories, when the soft breaking can be
viewed as spontaneous breaking of supersymmetry. For SQCD this was done by Evans et al.

[13],-who showed how the squark and gluino mass terms may be obtained by spontaneous

7
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supersymmetry breaking in a theory which includes some additional chiral superfields. When
obtaining the soft breaking terms in this way, from a supersymmetric theory in which we have
control over the superpotential, we can show that the form of the SUSY breaking operators

is indeed as in equation (11). In fact, in [13], the squark m=s is derived from the Kahler

term in the original SUSY theory, so that our lack of - “ ‘” . “ ‘- -‘ . - .
to our lack of control over the Kahler term (8), and
similar ftihion.

control of this term in (11) 1s related
the two are expected to behave in a

3 Nf<Nc

We begin with the simplest situation, NJ < NC. In this case, there are no baryon operators;
thus, in the supersymmetric limit, the only massless particles are those created by the meson
operator T. In this section, we will work out the vacuum and massless spectrum which result
when this theory is perturbed by the soft supersymmetry breaking terms (9).

In this case, the effective theory of the supersymmetric limit is described by the Affleck-

Dine-Seiberg superpotential:

(13)

where we have set A = 1 as described at the end of Section 2. To begin, choose the canonical
Kahler potential (8). We will comment on other choices of the Kahler potential below. Using

(8), we find the potential energy

V(T) =
1

A~l det T\2i(~c-~~)
tr[(T-l)tT-l]. (14)

; Now add the soft supersymmetry breaking term (9). Again, we will begin with a simpler
situation, choosing the R case where m~ = O. The addition to the potential is

To find the vacuum state, we must minimize V + AV.

3.1 Location of the Vacuum State

If ‘we use the freedom of SU(Nj) x SU(Nj) to diagonalized T, this potential can be written
in terms of the complex eigenvalues ii of T, =

The minimization equation is

1 1

[

1 1- .- 0 = ~~m~i~ – —
-- 1A=~2/(Nc-Nj)~flti\2+(Nc–Nj)i~7‘

(16)

(17)

8
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Figurel: Thepotential V(t) forsoftly broken supersymmetric Yang-Mills theory with NC=
3, N~ = 2.

where -.
D=[~ii]; T=~&. (18)

i

Multiplying through by t:,we find an equation of the form

where, for fixed D and T, the function F decreases monotonically as the first term increases

monotonically from O to infinity. This equation h= a unique solution for ii; thus, all of the
ti are equal at the minimum of the potential, up to phases removable by global symmetry
transformations.

Thus, we may set ti= t for all i. This gives the expression

Nj
V + AV = BTm:Njlt[2 + ~ [t[2Nc/(Nc-Nj). (20)

- .-
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It is euy to see that this expression is minimized for

1 w
[t] = t* = [(N !Ni) B~A~mtc 1 (21)

The potential V(t) is shown for the cue Nj = 2, Nc = 3 in Figure 1.

The minimum of the potential can be brought by global symmetry transformations into -
the form

where 1 is the unit matrix.

U(l)B.

3.2 The Spectrum

(T)=t* .1, (22)

This expectation value spontaneously breaks (2) to SU(N~)V x

of the R model

It is straightforward to work out the spectrum of the model by expanding about the minimum

. . of V. Consider first the bosons of the model. A general Nj x Nj complex matrix T can be
parametrized in terms of real-valued component fields as

T = t*e(fv+itA)/~vu , (23)

and the Ai are SU(Nj) matrices, normalized to tr[AiAj] = ~6i~. In this parametrization,
\det TI is a function of i“ only, and the various real-valued components all have kinetic
energy terms of the form

1

The fields tAi and tA drop out of the potential completely. This is natural, because they

are the Gddstone bosons of the spontaneously broken SU(Nj ) and U( 1)R symmetries. The

fields tvi,which form an adjoint representation of the unbroken SU(Nj ) flavor group, obtain
the mass

2 - 2; -:)*( :)2 Nc/(Nc-N,) ,rnvl -(
c— *

and the singlet field tv obtains the mass

NC2– NCNj + Nj2 2 1 2NC

‘i= ( (NC - Nj)2 )~(~) /(N’-N,) .

(26)

(27)

The fermion masses can be read directly from the superpotential (13). Expanding this

formula about the minimum according to

- .-
(28)

10
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we find mass terms for the flavor-singlet and -adjoint fermions:

(29)

No fermions remain massless.

3.3 The ~ Model

Now we introduce the more general supersymmetry breaking term with m~ nonzero. Though

it is possible to discuss this term from the beginning with ma and m~ treated on the same
footing, it is simpler—and one obtains qualitatively the same results—if we treat m~ as a
perturbation on the R model just described.

The superpotential term involving m~ requires (S). Quite generally, we can obtain the
expectation value of S from the superpotential of a supersymmetric effective Lagrangian by
using the formula

(s) = o8log A(3~c-~~) W .
(30)

This equation can be derived by starting from the effective Lagrangian which includes S

explicitly [2, 3], or directly from considerations of anomalies [14].

Restoring A to (13) and applying (30), we find for the supersymmetry breaking potential

— mgs= —
(det ~ff(~c-~,). (31)

This potential depends on the phase of det T, and thus it induces a mass for the field tA in
(23). We find.,

Nf ‘9( 1)(2Nc-N,)/(Nc-Nf)‘i = (Nc –N,)2 AT t*
(32)

The appearance of this mass term is expected: The gluino mass term explicitly breaks the

U(l )~ global symmetry and so should give m~s to the corresponding Goldstone boson.

It is not difficult to work out the general formulae for the other particle mmses to first
or”der in m: and m~. However, there are no surprises. The vacuum remains unique up

to global symmetry transformations, and all of the particles except the SU(Nf ) Goldstone
bosons remain massive.

We can now discuss the extension of our results to more general forms for the Kahler

potential. Because the spectrum we have found is the generic spectrum for the symmetry-

breaking pattern we have observed, sufficiently small perturbations of the Kahler potential
do not affect the qualitative physics. It is possible to choose Kahler potentials which decreme
sufiEle”ntly strongly as the ti increase that the potential has more than one minimum. In--

11
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this situation, it is formally possible to have a minimum of V in which the eigenvalues of T
take distinct values. In such a case, the vectorial flavor SU(NJ) symmetry is also partially
broken. We do not consider this scenario likely, but we cannot rule it out. Nevertheless, we

will disregard this possibility in the rest of our discussion.

3.4 Decoupling of Superpartners

In the arguments just concluded, we have calculated the symmetry breaking pattern and the
spectrum of supersymmetric Yang Mills theory perturbed to first order in soft supersymmetry
breaking terms. It is interesting that our results for the global symmetry and the massless
particles reproduce the standard expectations for chiral symmetry breaking in Nj-flavor

QCD. The final symmetry breaking pattern leaves a global symmetry SU(Nj)V x U(l)B,
and the only massless particles are the Goldstone bosons corresponding to this symmetry
breaking. In QCD, this expectation is not particularly well supported for large values of Nj,
but it is known to hold in the case which has been studied experimentally, NC = 3, Nj = 2,

and in the limit N. + m, Nj fixed [15].

Thus, we feel confident in conjecturing that the results we have obtained, at first order
in supersymmetry breaking, are smoothly connected to the limit ma, m~ a W, in which
the superpartners decouple and the system reverts to an ordinary Yang-Mills theory with
fermions. It is reasonable that this smooth extrapolation should apply quite generally for

Nf < NC. We will need to explore case by case whether a similar extrapolation can hold for
larger numbers of flavors.

There are two features of this extrapolation which deserve further comment. First, in

QCD, chiral symmetry breaking is characterized by a nonzero vacuum expectation value
of the quark-antiquark bilinear, ~~ ~j in our present notation. In the language of the
supersymmetric effective Lagrangian, this operator is a part of the F term of the superfield
Tij. The expectation value-of this term may easily be found to be proportional to

N. N.

t:
N. -N, 2NC-N,

~m Q. (33)

Thus, the F term of T does obtain an expectation value in the vacuum state that we have
found. This expectation value naturally becomes a nonzero expectation value for the quark

bilinear in the decoupling limit. As ~Q incremes, the quark bilinear becomes larger while

the squark bilinear becomes smaller, in exact accord with our expectations.

When ma is small, the vacuum we have identified occurs at a very large value of (T).

When (T) is large, the behavior of supersymmetric Yang-Mills theory can be described

cl~sically, as the spontaneous breaking of the SU(NC) gauge symmetry by squark field
vacuum expect at ion values. In other words, the gauge symmetry is realized in the Higgs

phase. However, since the matter fields belong to the fundamental representation, there
is no invariant distinction between the Higgs and confinement phases of this model, and
so there is no impediment to the Higgs phase at small m; being smoothly connected to a- .-
confinement ph~e at large ma.

12
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4 Nf=NC

In the case Nf < NC, we have found avery natural connection between thephysics of the
theory with weak supersymmetry breaking and the physics of the theory after the supersym-
metric partners have been decoupled. For larger numbers of flavors, however, this connection
will become increasingly tenuous.

We next consider the case Nj = NC. Here the low-energy effective Lagrangian of the
supersymmetric limit contains both meson and baryon superfields. In this special situation,
the baryon fields B, ~ are flavor singlets, and both the meson fields Tij and the baryon fields
have zero R charge. Seiberg has argued [6] that this model has a manifold of supersymmetric

ground states, in which the meson and baryon fields satisfy the relation (in units where A = 1)

det T–B~=l. (34)

Many forms for the superpotential are consistent with this relation. The S-dependent su-
perpotential, for example, has the form

Note that this superpotential
imply” not only (34) but also

spontaneously broken.

W = Slog(det T – B~). (35)

leads to conditions for a supersymmetric vacuum state which
the constraint (S) = O, so that the U(l)R symmetry is not

4.1 Location of the VacuuIn States

The presence of a manifold of degenerate vacuum states not related by a global symmetry
is necessarily accidental unless it is a a consequence of supersymmetry. Thus, any such
degeneracy should be broken as soon as supersymmetry breaking terms are added to the
Lagrangian. At first order, this is the main effect of the soft supersymmetry breaking per-
turbation.. To analyze this effect, we should restrict our attention to the values of T, B, and
~ obeying the constraint (34), for which the vacuum energy vanishes in the supersymmetric

limit, and study the behavior of the supersymmetry breaking potential over this space.

For simplicity, we begin with the R models, for which m~ = O. Then the soft supersym-

metry breaking terms (11 ) lead to the potential

AV = BTm~ir[TtT] + BBm:(BtB + E+B). (36)

Using SU(Nj) x SU(Nj), we can diagonalized T to complex eigenvalues ti.Parametrize the
baryon fields as

B=xb, ~=–~b, (37)
x

with z and b complex. Then b obeys the constraint

- ..- ~ti+b2=l. (38)
-- 1
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The variable x appears in the potential only through the baryon mass term

AV =... + BBm;([z12 + 1:1’)lbl’ , (39)

and this is minimized at [x] = 1 for any b. Thus, we may set 1x1= 1.

The problem becomes that of minimizing

subject to the constraint (38). There are three types of stationary points of this potential:

(1) If b = O, AV is stationary when Itil are all equal:

\til= 1, n ti=l, b=O. (41)
i

. . (2) If T = O, AV is stationary:

T=O, b=~l. (42)

(3) If neither T nor b vanish, there can be an additional stationary point with [ti\(N~-2)=

(BT/B~) for all i. This point is always unstable with respect to the other vacuum states.

The shape of the potential AV, for three choices of (B~/B~ ), is shown in Figure 2. Notice
that the vacuum at b = O is the absolute minimum for sufficiently large values of (B~/B~),
but that the vacuum at T = O is always a local minimum.

The method of effective Lagrangian cannot tell us which of the two vacuum states at
D b = O and T = O is the preferred one. This depends on the ratio B~/BT, which is a

phenomenological input to. the effective Lagrangian analysis. We will see below that the
vacuum at T = O is locally stable if B~ > BT and is globally stable if B~ > (N1/2)B~.

In (12), we attempted to estimate the ratio of B~ and B~. Our naive estimate puts the
theory just at the boundary at which the two vacuum states have equal energy. Probably,
this question can only be decided by computer simulations. We note, however, that if the
vacuum structure of this theory were being studied in a lattice simulation, one could bias

the simulation in favor of one vacuum or the other by adding an explicit BB or BT term to

the Lagrangian. In the discussion to follow, we will treat each locally stable vacuum state
as if it could be separately realized in a such a computer experiment.

Up to now, we have ignored the possible effects of the U( 1)~-violating supersymmetry

breaking term proportional to m~. However, these effects cannot change the qualitative
picture when m~ is small. We showed earlier that the superpotential (35) implies that,

in the manifold of supersymmetric vacuum states about which we are perturbing, (S) = O.
Thus, the superpotential term proportional to Mg does not contribute to the vacuum energy.
Mor~~enerally, since Mg, T, B, and ~ are all invariant under U( 1)~, while a superpotential

has R charge 2, this tern does not contribute to the superpotential to any order in m~.
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Figure 2: The potential AV for softly broken supersymmetric Yang-h4ills theory with NC = 3,
Nj = 3. The potential is shown on the subspace T = t.1, as a function of t. The three
curves correspond to (B~/B~) = ~, 1,3, from bottom to top. The dotted line shows the
location of the stationary point (3) referred to in the text.
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There are possible Kahler potential terms involving Mg. (The simplest one will be discussed
in a moment. ) However, near the vacuum with b = O, these will be polynomials in B and ~
of order at least 2, and near the vacuum with T = O they will be polynomials in T of order

at least 2. Thus, these terms will not affect the presence of stationary points of the vacuum

energy at these positions in the field space. These terms may alter the details of the mass
spectrum computed below, but they will not alter the qualitative physical picture of vacuum
stability which follows from this calculation.

4.2 The Spectrum at b = O

We will now work out the spectrum of particle masses at the two candidate vacuum states
that we have identified. The boson masses can be found by expanding the potential (36)
about the two vacuum states, with fields subject to the constraint (34). At this level, the
fermionic partners of these fields remain massless. Fermion masses will be induced when we
include effects of first order in m~.

To expand about the vacuum at b = O, parametrize T as in (23), with t* = 1, and

parametrize
B= b+c, ~=–(b–c). (43)

The mmplex fields b and c have kinetic energy terms proportional to the factor (2AB), which

must be divided out in computing masses. The fields iV and tA in (23) are removed by the
constraint. To leading order, (34) implies

r~(b2 - C2) ,
‘v+ztA=– N,

(44)

quadratic order in baryon fields. Now we simply expand AV and read off the spectrum

masses. We find, respectively for the masses of t vi, the real part of b and the imaginary

part of c, and the imaginary part of b and the real part of c,

Notice that, just at BB = BT, when the unstable stationary point (3) interposes itself

between the b = O and T = O vacuum states, the b = O vacuum becomes locally stable
with respect to baryon-number violating fields. Since the energies of the b = O and T = O

vacua are (NjBTrn~ ) and (2BBrn~ ),respectively, the vacuum at T = O remains the global
minimum of the potential as long as

Nj
BB < ~BT .- .- (46)

--
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= we claimed at the end of the previous section.

The expectation value of T in this vacuum spontaneously breaks SU(N~) x SU(N~) to

SU(Nj)v. The fields tA~, which are the Goldstone bosons corresponding to this symmetry
breaking, remain at zero mass. Since U(l )~ is not spontaneously broken, we expect no
singlet Goldstone boson in the spectrum, and, indeed, none appears.

Since .(34) is a superfield constraint, it also removes one fermion from the theory, specifi- -
tally, the fermionic part ner of tr [T]. The other fermionic components of T, B, and ~ remain
at zero mass at this level of the analysis. This is natural, because the mass terms for these

fields violate U(l )~ by 2 units, Thus, these mass terms can only be induced when the R-
charge breaking term proportional to m~ is added. We have noted above that this term

cannot induce a superpotential. However, it can induce a D-term contribution of the form
indicated in (11). There are many possibilities for such a term; a set of simple examples is
given by

/-
AL = d46Mg(CTdet T + CBB~) + h.c. , (47)

where CT and CB are some constants. If one begins from the effective Lagrangian including

S, with the canonical superpotential and Kahler terms,

J JZ = d40S*S + d20(Slog(det T – B~) + M~S) + h.c. , (48)

and integrates out S, one finds

JAL = d40~log(det T – B~) + h.c., (49)

which gives qualitatively similar results. In the following discussion, we will work with (47).

To obtain baryon masses from (47), expand the superfields about the vacuum state T = 1,
T b = O according to (28) and

-. B= O. @B, B=e. ~. (50)

We find, ‘for the flavor adjoint and baryonic fermions, the masses

1 CT
m+i = -—mg

2 AT
CB

m$B = —
AB ‘g .

(51)

No zero-mass fermions remain.

4.3 The Spectrum

Using the same techniques,

atT=O

we can work out the spectrum of muses in the vacuum at T = O.

For the scalars, parametrize B and ~ by
- .-

B=(l+b+ c), B=–(l+b–c). (52)
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The constraint (34) allows us to eliminate b:

b=–~det T+~c2. (53)

The contribution from T is higher order than quadratic and so does not affect the mass
spectrum. Inserting (52) and (53) back into AV and expanding to quadratic order, we find
the following mmses for the components of T and the real part of c:

BT 2 BB 2

‘; = zmQ ‘ ‘:R = AB ‘Q .
(54)

The imaginary part of c remains at zero m~s, which is expected, because this field is the

Goldstone boson of spontaneously broken baryon number symmetry U(l)B.

The constraint (34) removes one linear combination of the fermionic components of the
baryon fields. Otherwise, no fermion masses appear until we add the R-symmetry breaking
terms

. .

but it

4.4

involving m~. Then the term (47) gives mass to the remaining baryonic fermion, -

2CB

‘*B = AB ‘g ‘

leaves the fermionic components of T massless.

Toward tile Decoupling Limit

(55)

In the vacuum state at b = O, when we include a nonzero gluino mass m~, we find again
the standard symmetry breaking pattern expected in QCD. The global group SU(Nj) x

SU(Nf) x U(l)B is broken spontaneously to SU(N~)V x U(l )B, leaving no massless particles
except for the required Goldstone bosons. It is reasonable to expect that here, as in the

cases considered in section 3, there is a smooth transition from the situation of weak su-

persymmetry breaking to the decoupling limit m~, mg ~ m. The symmetry breaking term
(47) also- ;nduces a nonzero F term for the SU(NJ)V singlet part of T. This term should
go naturally, in the decoupling limit, into the chiral symmetry breaking expectation value of

the quark-antiquark bilinear.

However, all of the other vacuum states that we have identified are unusual and un-
expected. All of them contain massless composite fermions. The vacua at T = O have

restored chiral symmetry and spontaneously broken baryon number. Could these vacuum
states survive to large values of the supersymmetry breaking parameters?

To answer this question, we must first understand why these vacua contain massless
fermions. In general, in a strongly-coupled gauge theory, chiral symmetries with nonzero

anomalies generate sum rules over the spectrum of zero mass particles. These sum rules can
be saturated either by Goldstone bosons, if one of the symmetries is spontaneously broken,
or by m~sless composite fermions, if the symmetries remain exact. In the latter case, the

- .-
--
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anomalies computed from the composite fermions must match the anomalies of the original
fermions; this is the ‘t Hooft anomaly matching condition [1, 16].

The three unusual vacua discussed in this section, the b = O vacuum of the R model and
the T = O vacua of the R and ~ models, all have unbroken anomalous chiral symmetries. In

all cases, the fermionic content of the supersymmetric model is known to provide a solution
to the ‘t Hooft anomaly conditions associated with these symmetries [6, 17]. In fact, one

might say that the fermions are protected from obtaining masses by the ‘t Hooft anomaly -
conditions, because providing masses for a subset of the multiplet of fermions would leave
over a set of fermions which violates the ‘t Hooft conditions and is therefore inconsistent,
unless the chiral symmetry is broken.

An interesting illustration of this argument is found by comparing the spectra of massless
fermions in the two vacuum states at T = O in the R and E models. In the R model, we
have massless fermions in the following representations of the unbroken symmetry group
SU(N,) x su(Nj) x U(l)R:

(N,, ~,-1) +(1,1,-1) , (56)

corresponding to the fermions in T and a linear combination of the fermions in B and ~.
Both multiples are necessary to satisfy the anomaly conditions involving U( 1)R. When
U(l)R is broken explicitly by m~, these conditions no longer need to be satisfied, and so the
baryonic fermions can obtain mass. According to (55), they do.

Because the massless composite fermions in these vacuum states exist in order to satisfy
the ‘t Hooft anomaly conditions, the qualitative properties of these vacuum states are quite
rigid. We should recall that the T = O vacuum and the b = O vacuum, for BT < B~, are
locally stable minima of the energy for sufficiently small m:; thus, there is a finite range of

ma for which the pattern of symmetry breaking remains unchanged. Given this pattern of
symmetry breaking, the multiplet of composite fermions cannot obtain mass. Even if the
composite fermions contain as constituents bosons Q or ~ which obtain mass from the m~

term, the composites are bound rigidly to remain at zero mass. This idea, that composites
of massive- constituents may be forced to remain massless in order to satisfy the ‘t Hooft

condition, was formulated by Preskill and Weinberg many years ago [1I].

Even if a vacuum with unbroken chiral symmetry is globally unstable to tunneling pro-

cesses, the ‘t Hooft argument applies as long as it is locally stable. Thus, a vacuum with

unbroken chiral symmetry can only disappear, as m~, m~ + 00, through a second-order
phase transition.

With this introduction, we can speculate on the evolution of these vacuum states as ma
and mg are increased from zero. Consider first the b = O vacuum of the R model. As m~

is taken to infinity, the squarks decouple, and the model becomes a purely fermionic Yang-

Mills theory with Nr quark flavors plus one fermion flavor in the adjoint representation of
the gauge group. For small values of the supersymmetry breaking mass m:, this vacuum

contains massless fermions corresponding to the fermionic components of the superfields T,

B, ad ~. We might think of these = being built out of scalars, with one squark replaced
--

19



I .

by a quark to give the composite spin ~. But it is also possible to build objects with the

same quantum numbers purely out of fermions, by replacing

where a is a two-component spinor index and the gauge indices are implicit. Notice that
this combination h= the same quantum numbers as the squark, including zero R charge.
Then, for- example, the fermion created by Tij could be constructed as

(58)

With this replacement, the composite fermions are built only out of constituents which
remain massless as the squarks are decoupled. Thus, it is apriori reasonable that the b = O
vacuum of the R model could go smoothly into a vacuum of the purely fermionic Yang-Mills

theory described above. This vacuum would have broken SU(N~) x SU(Nf ) but unbroken

chiral U( 1)R, zero values for the vacuum expectation values of quark-antiquark bilinears,
massless composite fermions in the adjoint representation of flavor SU(Nj)v, and massless

.. baryons. We will refer to this scenario as ‘option 1‘. It will have analogues in the models to

be discussed later; however, these analogous phases will be less well motivated. It is easy to

see that the replacement (57) can formally be used to build composite fermions with only
fermionic constituents in any model with unbroken R symmetry.

The other possibility for this model is that, after the squarks decouple, the gluino fields
pair-condense, in a second-order phase transition at some value of m:, and the nonzero
value of the condensate (A . A) spontaneously breaks U(l )~. In this case, the physics would

revert to the usual symmetry-breaking pattern of QCD, and the composite fermions would
become massive. The gluino condensate would make itself felt only by providing an extra
SU(Nf )-singlet Goldstone boson. We will refer to this scenario as ‘option 2’.

One way to understand the physical distinction between options 1 and 2 is to consider a

question raised-some time -ago but never answered in a satisfactory way: If a fermion in a ,
large color representation is added to QCD, does its pair condensation to chiral symmetry
breaking ~ccur at the usual QCD scale, or at much shorter distances [18, 19]. If gluinos

pair-condense at very short distances, before normal quarks feel the full forces of the strong
interactions, then option 2 would be favored. If gluinos feel strong interactions at more or

less the same scale as quarks, option 1 is a reasonable possibility. An extreme model in
which gluinos condense and decouple at a very high scale, as suggested in the papers just

cited, appears unlikely as a result of our analysis, because we know that option 1 is actually
realized when squarks are added back to the model.

Consider next the vacuum state at T = O, first in the E case. In this model, the—
massless composite fermions belong to the (Nj, Nf) representation of an unbroken flavor

group SU(Nj) x SU(Nj ). There are no constraints from the U( 1)R symmetry, which is
explicitly broken, or from baryon number, which is spontaneously broken. With this freedom,
can we build these fermionic composites out of fields that survive in the decoupling limit
m~,~ ~ m? For NC even, it is impossible, because the only constituents available are

--
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the quarks +6, ~j, and gauge-invariant states must contain an even number of these. For

NC odd, however, it is possible to build composites with the correct quantum numbers, as
follows:

~Ta’j + E“b”d ~~aa ~jk...l~g~. . .~~+d, (59)

where ~a is the right-handed fermion field in (~)*. The (NC – 1) right-handed fermion fields
must be contracted into a Lorentz scalar combination. For the case Nj = NC = 3, eight of
the nine fermions in (59) have the quantum numbers of the baryon octet in QCD.

However, in this case, there are two compelling arguments that the spectrum which we
find cannot survive to the decoupling limit. In the limit m$ ~ 00, even without introducing
m~, we have a vectorlike gauge theory of fermions. For such theories, the QCD inequalities

of Weingarten [20] and Vafa and Witten [21] apply. In the Appendix, we use Weingarten’s

method to prove that, in the decoupling limit, flavor nonsinglet composite fermions must
be heavier than the pions, which are massive in the T = O vacuum. Alternatively, we can
apply the theorem of Vafa and Witten in the decoupling limit to show that vectorlike global
symmetries, in particular, baryon number, cannot be spontaneously broken.

By either argument, the T = O vacuum state must disappear in a second order phase
transition at a finite value of m~. Most likely, this vacuum becomes locally unstable with
respect to a decrease in the expectation value of b, driving the theory back to the more
famitiar Yacuum at b = O.

Finally, we may consider the T = O vacuum in the R models. The arguments that we

have just presented for the T = O vacuum in the ~ models apply equally well to the R case.
Again, we must have a second-order transition, probably with an instability to the b = O
vacuum. There are then two possible endpoints, depending on which option is chosen for

the b = O vacuum. If the option 1 for the b = O vacuum is correct, it is not necessary that

U(l)R be spontaneously broken in this transition.

5 Nj=(NC+l)

So far we have considered separately models with Nj < N. and models with NJ = NC. The
cases where the number of flavors exceeds the number of colors fall into two classes, those
of Nj = N= + 1 and those of Nj > NC + 1. These two classes of theories have qualitatively
similar physics, in both cases much simpler than that of Nj = NC.

In the case of Nj = N. + 1, like in the cme of Nj = NC, the low-energy effective

Lagrangian in the supersymmetric limit is expressed in terms of the baryon, anti-baryon and
meson superfields. However, now these superfields are not R neutral, and the baryons are

not flavor singlets. Rather, they transform in the representations of the global symmetry (2)

~ : (Nj? 1)1,1-+ B : (l,Nj)-1,1-~ ~ : (Nj,~)o,&
f

(60)

where the second subscript is the R charge of the scalar component of the superfield. In the

supersymmetric theory the low energy effective theory is described (at least near the origin
-.
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of moduli space) by the Kahler potential given by (8), and by the
[6]:

W = BiT~~~ – det T.

The supersymmetric vacuum is, thus, described by a moduli space

following superpotential

(61)

characterized by

As was argued in [6], these equations correctly describe the moduli space of vacuum states
in the full quantum theory. At the origin of the moduli space, < T >=< B >=< ~ >= O,
where the full global symmetry (2) remains unbroken, there is a further consistency check

for the low energy behavior. The fermionic components of the low-energy superfields (60)

match the global anomalies of the underlying theory.

5.1 The Vacuum

When we break supersymmetry by squark and gluino masses, we add to
grangian the mass terms for T, B and ~ indicated in (11). Since we are

the effective La-
adding terms to

the potential which are positive and vanish at the origin of moduli space, it is obvious that

the origin becomes the only vacuum state of the theory. All of the scalar particles in the

effective theory obtain mass terms proportional to B~m~ or B~m~.

Though all of the scalars obtain mass, all of the fermions remain massless. The super-

potential (61) is a least cubic in fields, so any mass term derived from this superpotential

vanishes at the origin. Similarly, in the R case, the M~ term in (11) requires a function
of T, B, and ~ which is neutral with respect to the global group; the only such functions

quadratic in fields are tr[TtT], BtB, and ~+~, and these do not give fermion masses when

integrated with M~. In fact, it is required that no fermions should obtain mass, since the full

multiplet of fermions in T,” B, and ~ is needed to satisfy the ‘t Hooft anomaly conditions
for the remaining global symmetry group SU(Nf) x SU(Nf) x U(l)B.

5.2 Toward the Decoupli~lg Limit

The analysis of the previous section indicates that in a finite region of small ~Q and m~,
the ground state of the theory is a smooth continuation of the origin of the moduli space of

supersymmetric vacuum states. In this region of soft supersymmetry breaking parameters,

chiral symmetry is unbroken, and the full complement of fermions is kept massless by the

requirement that the ‘t Hooft anomaly conditions be satisfied. In the ~ case, since both
gluinos and squarks are m~sive, at least some of the massless composite fermions must have

massive constituents. As in our earlier examples, these particles are protected from receiving
m~s by the ‘t Hooft conditions.

In neither the@ nor the R case, however, can this spectrum of particles be correct in the

decofipling limit. In that-limjt, the Weingarten inequality proved in the Appendix prohibits
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a composite fermion which is nonsinglet in flavor from remaining massless while the pion
is massive. In both cases, then, the phase we have found at small mQ must disappear at a
second-order phase transition when mQ reaches a critical value. In the ~ case, the theory

has no option but to revert to the conventional pattern of symmetry breaking in which the
chiral symmetry group is broken to SU(Nj)v x U(l )B and all fermions become massive.

For the R case, however, there are still two options, corresponding to options 1 and 2
described in Section 4.4. Option 2 is the scenario just described for the ~ case, with symmetry -
breaking to SU(Nf)v x U( 1)B and one extra Goldstone boson. Option 1 is the breakdown
of the chiral symmetry group only to SU(~f)v x U(l )B x U(l)~. In order to satisfy the ‘t
Hooft anomaly conditions associated with the U(l )~, all of the fermionic components of T,
B, and ~ must remain massless. As in the c~e considered in Section 4.4, we can build all

of the required mmsless fermions out of quarks and gluinos by using the replacement (57).
In this case, as opposed to that of Section 4.4, the partial symmetry breaking required in
option 1 is not particularly well motivated. However, we have not been able to rule it out as
a possibility. We should also note that, even if this case is realized in the more conventional
option 2, the case Nj = N. could be realized in option 1. There is no theorem that, when

one quark becomes very heavy, fermions not containing that quark cannot become massless.

No solution of the ‘t Hooft anomaly matching conditions for SQCD involving gauge invariant

bound states is known for Nj > (NC + 1). However, Seiberg has suggested a compelling
solution to these constraints in terms of new gauge degrees of freedom which are dual to the
original quarks and gluons [7]. In this picture, the theory is equivalent in the infrared to an

SQCD theory with gauge group SU(Nf – NC), Nj dual quark flavors, and additional singlet
fields T’j identified with the mesons of the original theory. The original SQCD theory is

infrared-free for Nj ~ 3NC; so that in that case the low energy description of the theory is
in terms of the original quarks and gluons. For Nj ~ ~NC, the dual “magnetic” theory is
infrared-free, and then the low energy description of the theory should be in terms of the

dual quarks, gluons and the singlet meson fields. In the intermediate range ~NC < Nj < 3NC
both theories are asymptotically free. Seiberg suggested that, in this region, the theory has

a non-trivial infrared fixed point, and the theory has dual descriptions in the infrared as
interacting gauge theories with superconformal global symmetry. While the origin of this
dynamically generated gauge symmetry is still unclear, there is ample evidence that Seiberg’s
description of the SQCD theory is correct, and we will assume it throughout this section.

If we break supersymmetry by giving masses to some of the fields of SQCD, the leading
term of the beta function will change for distances greater than the scale of the masses.

The long-distance gauge theories will be asymptotically free in a larger range of Nf, for

Nj < ~NC after adding squark masses, and for Nj < ~NC after adding squark and gluino

masses. Beyond the point where the theory is asymptotically free, we expect the effects of
adding soft SUSY breaking mass terms to be trivial. The massless particles are expected to

--
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be infrared free, and there is no reason for the chiral symmetry to break. We will concentrate
our analysis, then, on the cases of N~ relatively close to the boundary (NC + 2), where the
original gauge theory becomes strongly coupled and the dual description is appropriate in

the infrared. In the next subsection we will analyze the effect of adding soft SUSY breaking
mass terms on the dual description of the theory. In the second subsection we will discuss
in what range of Nj we expect this dual description to be relevant, and speculate on the
infrared behavior of the theory for different values of Nf.

6.1 The Spectrum and Vacuum of the Dual Theory

Seiberg’s dual description of SQCD has an SU(fiC) local gauge symmetry, where N. =
(Nj – NC) ~ in (5). The elementary fields in the dual theory are an SU(fiC) super gauge
multiplet, Nj flavors of dual quarks q: and anti–quarks ~~ in the fundamental and anti–
fundamental representations of SU(~C), respectively, and meson fields Tij. The quark fields
are in the (~, 1) representation of the SU(Nf) x SU(Nf) flavor group, the anti–quark fields
are in the (1, Nj) representation and the meson fields are in the (Nj, ~) representation.

It is useful to think that the dual quarks are obtained by dissociating a baryon (6) into

fic components, and that the new gauge fields parametrize a constraint which gives these

baryons as its solutions. Seiberg also requires a superpotential

W = Tijq~~~

so that the scalar potential, including the F and D terms, is

V(T, q,~) = ~(q+)~(~+)~q!~~ + ~((T+)ij(~+)~Ti~~f + (T’

9

+ ~([q+)iTAqi – (q+)jTATj)2 ,.

(63)

)’j(q+)~T’jqP)

(64)

where g is ~the SU(NC) gauge coupling, and rA are the SU(N~ — NC) generators. AT and Aq

are the coefficients of the corresponding (canonical) kinetic terms. This scalar potential has

a moduli space of vacua, which includes the point < T >=< q >=< ~ >= O at which the
chiral symmetry is unbroken [7].

Now add squark masses to the theory. Their effect should be seen in the effective La-

grangian, and we can represent it by applying the logic of Section 2.3 to the dual theory.
That is, we should add to the effective Lagrangian of the dual theory the term

AV = B~nt~ir(T+T) + Bqm~([q12 + Iql’), (65)

at least near the origin of moduli space. After we add this perturbation, the only minimum of
the potential is at < T >=< q >=< ~ >= O. Thus, adding a squark mass leaves the theory

in the phase in which the chiral symmetry is unbroken. All scalars get masses (originating
only Ti6m AV, since the-original scalar potential is quartic in the fields), while all fermions
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remain massless. As in the original supersymmetric theory, this complement of massless
fermions ha just the right quantum numbers to satisfy the ‘t Hooft anomaly conditions for
completely unbroken chiral symmetry. Thus, our picture of the effect of soft supersymmetry

breaking in this case is just the same as in the c~e Nj = (NC+ 1) considered in the previous
section, except that the baryons of that case are replaced here by their constituent dual
quarks.

The glueball operator tr(W~) is identified (up to a sign) between the original and the -
dud theory [22]. Thus, to leading order in mg, a gluino m-s in the original theory is just
equal to a gluino mass in the dual theory. Adding this term breaks the U(l)~ symmetry,
but the SU(N~) x SU(Nj) global symmetry still remains and protects the dual quarks from
getting a mass. Thus, we find the same spectrum in the R and ~ cases, except that in the

latter c~e the dual gluino, which can be an asymptotic particle, becomes massive.

6.2 Toward the Decoupling Limit

Let us discuss now the infrared description of the theory. We consider first the case of small

mQ (and small mg, in the@ case). We have already remarked that, for Nj > ~NC (Nj > ~Nc

in the @ case), the theory becomes free in the infrared and is well described in terms of the
original variables—gluons and quarks (and gluinos in the ~ case). This statement applies
equally well to the dual version of the theory. Thus, for Nj > ~fiC, or Nj < &NC, the dual
theory is free in the infrared. For the E theory, the corresponding criterion is Nj < ~NC.
In this range of Nj, the spectrum of the theory contains massless dual quarks interacting

weakly through a dual gauge field which becomes asymptotically weak at large distances.

Unfortunately, this range of Nf is rather narrow; the first example requires an SU(8) gauge
group and 10 flavors, even in the ~ case.

However, it is likely that Seiberg’s duality would still hold in the intermediate range of
Nj: ~NC < N1 .< ~Nc in the R case and ~Nc < Nj < ~N, in the B case. As in the
supersymmetric case, we can prove the existence of an infrared fixed point for values of Nj
very close to the boundary of this region by using the fact that the second coefficient of the

QCD beta function is positive when the first coefficient vanishes [23]. Thus, some part of

this intermediate range is controlled by a nonsupersymmetric infrared fixed point. At least
when the fixed point coupling is sufficiently small, the chiral symmetries of the theory remain

unbroken and the spectrum still contains massless quarks or dual quarks. If at some value
of. Nj, the massless fermions are no longer asymptotic states, then also the solution to the
‘t Hooft anomaly conditions is lost and the theory reverts to a scenario with broken chiral

symmetry.

The discussion of the decoupling limit for these theories is very similar to that for the
Nj = (NC+ 1) theory. If the full chiral symmetry group remains unbroken for small values of
mQ, the fermions in the supermultiplet T still cannot remain massless in the decoupling limit
where we have the QCD inequality, precisely as discussed in Section 5.2. Thus, those values

of Nf which have massless fermions for small values of mQ must have a second-order ph~e
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transition as mQ is increased. It is not clear how the theory behaves on the other side of this
phase transition. In the ~ case obviously only a SU(N~)V x U(l)B symmetry remains, with

no massless fermions. However, in the ~ case, we can use the dual fermions in T, q, and ~
to solve the ‘t Hooft anomaly equations associated with U(l )R. Thus, in this case, we have
available both option 1, in which the chiral group
and all fermions remain massless, and option 2,

SU(Nj)V -x U(l)B and all fermions obtain mass.

7 NC=2

is broken ‘to S~(~j)V x ~(l)B x U(l)R
in which the chiral group is broken to

For N. = 2 there is no distinction between m~sless quarks and anti-quarks, so that the
global symmetry in the supersymmetric limit is SU(2Nj) x U(l)R instead of SU(N~) x

SU(N~) x U(l)B x U( 1)R. This changes some of the details in the discussions above, but
does not change the qualitative picture. The meson is now given by Ti~ = QiQ~, in the
anti-symmetric representation of SU(2~j), and the superpotential generally involves Pf(T)

. . instead of det (T). There are no baryon operators in this case; rather, the baryons of the
previous examples are absorbed into the extended meson multiplet. In the usual QCD theory

with 2 colors, the global symmetry breaks from SU(2Ni ) to Sp(2Nj ) (we denote by Sp(2NJ)
the S~ “group whose fundamental representation is of size 2Nj). We shall now discuss the

picture after soft SUSY breaking for each relevant value of Nj.

For Nj = 1, the behavior is similar to the other cases Nj < NC. The effective Lagrangian

h~ a superpotential of the form W = l/Pj(T). There is just one vacuum, in which T12
obtains an expectation value, breaking the flavor symmetry from SU(2) x U(l )R to Sp(2)

(which is isomorphic to SU(2)). The meson T12 is the goldstone boson for the breaking of
the U(l)~ symmetry in the R case; this particle obtains a mass when we add a gluino mass.

: A smooth transition is expected to the decoupling limit, as for N. >2.

For Nf = 2, the moduli” space of supersymmetric vacuum states is constrained by the
equation <$(T) = 1 [6]. As in section 4, the potential from the soft supersymmetry breaking
terms can be considered on the space satisfying this constraint. Then, up to global symmetry

transformations, there is just one stable vacuum, for which

T=
()

02 0
002. (66)

This breaks the SU(4) flavor symmetry to Sp(4). In the R case, the U(l )~ symmetry is left
intact. The fermionic fluctuations around the vacuum (66), which transform w 61 under

SU(4) x U(l)~, decompose under Sp(4) x U(l)R w (5+ 1)1. For small values of the SUSY
breaking parameters, the fermions in 51 remain mmsless and satisfy the ‘t Hooft anomaly
matching conditions for the unbroken symmetry group Sp(4) x U( 1)R [6]. In the R case,
there are two options for the decoupling limit, ~ in the h = O vacuum of Section 4. In
option 1, this spectrum continues smoothly to the decoupling limit. In option 2, the U( 1)~

symm~tfy is spontaneously bro-ken and the fermions in the 51 obtain mass. In the ~ case, as
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in the discussion of Section 4, the vacuum state obtained for small supersymmetry breaking
has no massless fermions and can smoothly become the standard QCD vacuum as mQ ~ m.

For Nj = 3, the effective description of the SQCD theory has a superpotential of the
form W = –Pj(T) [6]. In the supersymmetric case there is a moduli space of vacua, but
adding the squark masses leaves only the vacuum at T = O, M for NC > 2. At this vacuum -
the chiral symmetry is unbroken. All of the fermions, which are in the 15_1/3 representation
of the global symmetry, remain massless, and this multiplet satisfies the ‘t Hooft anomaly

matching constraints [6]. As in section 5, in the decoupling limit we expect a second order
ph=e transition, breaking the global symmetry from SU(6) x U(l)n to Sp(6) x U(l)R or to
Sp(6).

For Nf ~ 4, the SQCD theory has a description in terms of dual gauge variables. For
Nj <6, the theory is conjectured to be described by an infrared fixed point. As in section
6, we expect the theory near the supersymmetric point to be either at some non-trivial
infrared fixed point with the chiral symmetry unbroken, or to be in a QCD-like. phase in

which the chiral symmetry breaks to Sp(2Nj ). In these cases, the dual gauge group is always
asymptotically free, and so we do not expect a phase in which the dual gauge symmetry is
weakly coupled. Thus, the dynamically generated gauge symmetty suggested by Seiberg
should be difficult to identify in simulations with the gauge group SU(2).

8 Problems of Approximate Supersymmetry on the
Lattice

Can the phenomena we have discussed in this paper be seen in lattice gauge theory sim-
ulations? Throughout this paper, we have considered only soft supersymmetry breaking

~perturbations. However, since, in general, gauge theories on the lattice cannot be made su-
persymmetric at t%e fundamental level, we expect that lattice simulations of these theories
will also contain small dimension 4 perturbations which violate supersymmetry. Our analy-
sis has been based on the assumption that, if the phenomena discussed by Seiberg survive

perturbations which are relevant in the infrared, they should also survive small marginal

pert urbations.

However, there is a serious difficulty with this logic. Our argument does not apply unless

we can reach the cent inuum limit. But typically in lattice gauge theory simulations with
scalar fields, there is no continuum limit; instead, one finds a first order phase transition as a

function of the scalar field mass parameter [24]. This fact is understood using the mechanism
discovered by Coleman and Weinberg [25]: Renormalization effects in a gauge theory can

induce an unstable potential for a scalar field coupled to the gauge bosons, leading to a

‘fluctuation-induced first-order phase transition’. We must ask whether there is a possibility
of such first-order phase transitions in approximately supersymmetric models, and, if so,

how they can be avoided.

To afla~yze this questionr consider the renormalization group equations for an approxi-
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mately supersymmetric gauge theory. Viewed as a conventional renormalizable gauge theory,

SQCD has three coupling constants, the gauge coupling g, the quark-squark-gluino coupling
g~, and the four-scalar coupling gD. The scalar potential has the specific form

(67)

where 7A is an SU(NC ) matrix. If we relax the constraint of supersymmetry, there are four
possible invariants under the symmetries of the problem, including the continuous global

symmetries and parity Q * ~ ‘. The most general linear combination of these invariants

can be generated by the renormalization group flow.

We will view the lattice theory as providing a finite cutoff for the quantum field theory,
which does not respect supersymmetry. In this cutoff field theory we will choose the bare
couplings to obey the supersymmetry relations, at least approximately. In particular, we will
choose the bare scalar potential to be given by (67). The radiative corrections will cause a
finite renormalization of the couplings, which will violate supersymmetry and generate other
scalar potential terms. We expect the generated terms to be smaller than the original terms.

Our analysis of the renormalization group flow of the theory will, therefore, be performed
near the supersymmetric point. In particular we will restrict our analysis to the surface

given by- the three couplings g, g~, and gD. We assume that our initial conditions lie near
this surface, and we are interested in the flow of the couplings towards the infrared. Note
that since we we are not interested in scaling towards the continuum limit, we do not analyze
here the flow of the couplings towards the ultraviolet. It is not possible to ensure that all
“couplings tend smoothly to zero in the ultraviolet without fine adjustment of their initial
values.

In the surface given by g, g~ and gD, the beta functions of the three couplings are given

(to leading order in perturbation theory) by
.

b, = -~[3Nc - Nj]g3

B,, = -+[ g~g2(3Nc + 3C2(NC))- g;(3c2(Nc)+ Nj)]

p,% = –L
(4T)2 [

4g; NC + 2g:(Nc – Nj – 2C2(NC))

.

+12g~g2Cz(Nc)- 8939;C2(N.)], (68)

where C2(NC) = (NC2 – 1)/2 NC. These three functions all reduce to the standard SQCD beta

function on the supersymmetric subspace; for g2 = g; = g~, ~g = P,, = bg~12g. Note that,
for N. x Nj and the three couplings in reasonable ratio, all three couplings are infrared
unstable. In particular, g~ is renormalizes toward larger positive values.

The potential instability to a first order phme transition arises because a new structure- .-
in the potential is induced by the renormalization group flow. To lowest order, the form of
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the potential induced is

VE=$[ 1
Q+{TA,TB}Q +~{TA, TB}~+ 2,

On the surface g; = O, the beta function for g~ is

p,% = -L
(47)2 [ 14g: – 3g4 – g; .

(69) ~

(70) -

This equation implies that, if one leaves out the gluinos, gj becomes negative in the infrared,
leading to a fluctuation-induced first-order phase transition. According to (70), this effect
is removed if the lattice simulation includes gluinos, and if the gluino coupling g~ is large
enough. If we choose initial conditions in which g~ is slightly larger than g, equation (68)

guarantees that this condition will be preserved along the renormalization group flow. Equa-
tion (70) then shows that no instability is generated in the perturbative region. Hopefully,
this perturbative result remains valid as we flow towards the infrared.

With this provision to avoid possible first-order phase transitions, we expect that lattice
simulations with an approximately supersymmetric action can reach the continuum limit
and test. our predictions for softly broken supersymmetric QCD.

9 Summary and Conclusions

In this paper we investigated softly broken N = 1 supersymmetric QCD . We considered two
types of soft breaking terms, associated with squark masses mQ with or without additional
gluino masses m~. We denoted these cases by ~ and R, respectively. In the limit of

mQ, m~ + w the ~ case should go over to ordinary QCD, while in the R case, in the limit
mQ ~ m, we ‘recover QCD with an additional massless adjoint fermion. The two main
questions that we addressed are:

- To what extent do the results which were recently obtained for N = 1 SU(NC) SQCD

[6, 7], and for other N = 1 supersymmetric gauge theories as well, carry over to the

non–supersymmetric case? Is supersymmetry an essential prerequisite for those exotic

phenomena?

- How does the theory behave in the decoupling limit, in which we take the soft breaking
terms (~Q in the R case and ~Q,

dynamically generated scale A?

Our main results are the following :

(i) All the “ezotic” phenomena that

exist ~pr small values oj the SOB breaking mass parameters.
--

m9 in the ~ case) to be very large compared to the

characterize the supersymmetric theory continue to
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It seems that the appearance of the exotic behavior is not related to supersymmetry,
though it probably is related to the presence of fundamental scalar fields. Theories which

include scalar fields generally do not possess a positive definite measure for the gauge fields;

this is the case in particular for supersymmetric gauge theories as well as for the softly broken
supersymmetric theories. In these cases we cannot apply the QCD inequalities method, as
used in the appendix, to obtain information about the theory. We recall that in QCD the
inequalities imply chiral symmetry breaking.

The presence of massless composite fermions in the supersymmetric case has a natural
explanation in terms of supersymmetry. For Nj ~ NC, SQCD contains a manifold of degen-
erate vacuum states. The fluctuations along the flat directions of the potential are described
by effective scalar fields, and these scalar fields must have supersymmetric partners, which
are massless fermions. Soft supersymmetry breaking removes the vacuum degeneracy and

the flat directions of the scalar potential. Nevertheless, we saw that, in all cases except for
the baryon-number conserving vacuum of the @ case for Nj = Nc, the massless composite
fermions of the supersymmetric limit remain massless after soft supersymmetry breaking.

For the Nj = NC and Nj = Nc + 1 cases, the massless fermions are gauge-invariant com-
posite states. They are required to remain massless in order to satisfy the ‘t Hooft anomaly
matching conditions corresponding to unbroken chiral symmetries in the energetically pre-
ferred vacuum state. This requirement is strong enough to keep the composite fermions

massless even though their squark constituents obtain mass from soft supersymmetry break-
ing.

For Nj > N.+ 1, Seiberg argued that the N = 1 SQCD theory admits a dual description

in the infrared. This dual theory contains a dynamically generated gauge symmetry which
is infrared-free for Nf s ~NC and possesses a non-trivial infrared fixed point for 3NC > Nj >
~NC. The dual theory contains massless composite fermions which belong to nontrivial
representations of the dual gauge symmetry. We have argued that such a dual description
will also exist for the softly broken theories, for some values of Nj and for small enough
mQ and m~. T-he dual gauge theory is infrared-free for Nj < ~Nc in the R case and for

Nj < ~NF in the fi case. For ~NC < Nj < ~NC in the R case, and ~NC < Nj < ~NC in

the ~ case, we expect to find a situation in which the theory is controlled by a non-trivial
infrared fixed point, with weak coupling for the dual theory at the low-Nj boundary and
weak coupling for the original theory at the high-Nj boundary. As in the supersymmetric

case, the existence of this fixed point can be proved near the boundary, that is, for large Nj
and NC approximately in the boundary ratios. It is likely that a single infrared fixed point

interpolates between these two boundary situations.

The prospect of finding this kind of infrared duality for nonsupersymmetric gauge theories
is quite exciting. In the supersymmetric case we have several arguments and cross-checks
which support the presence of the duality. These include satisfaction of the ‘t- Hooft anomaly

matching conditions, identification of all the gauge invariant operators in the chiral ring,
identification of all flat directions, and verification of the behavior under mass perturbations

[7]. So far the evidence for duality in the softly broken theories relies only on the fact that- ..
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the ‘t-Hooft anomaly matching conditions are satisfied, and on their connection with the

SQCD theory. For small supersymmetry breaking parameters, the identification of those
gauge invariant operators which were identified in SQCD still goes through. However, some

operators which were not identified in SQCD (such as the mesons made from the dual quarks)

apparently should be identified after soft supersymmetry breaking. It seems that the low
energy spectrum after soft supersymmetry breaking should remain the same as in SQCD,
except for the splitting between the states in a supermultiplet. Hence, naively, we would -
expect the operator identification to work in the same way. Clearly, we would like to have

more support for the nonsupersymmetric duality conjecture. This is not easy in view of the
fact that we have few tools for analyzing the non-perturbative behavior of the theory in the
nonsupersymmetric case.

(ii) In the decoupling limit most of the “exotic” phenomena disappear.

As we move towards the decoupling limit in which we take m~ (and also m~ in the ~
case) to be large, it seems that most of our “exotic” phenomena disappear. Typically, in

these cases we encounter a second order phase transition to the chirally broken phase of

QCD. This behavior is dictated by arguments that generalize m&s inequalities of vector-like
gauge theories[20, 21]. For Nj < NC, and for the baryon-number conserving vacuum in the
~ case for Nj = NC, the decoupling limit to QCD is achieved through a smooth transition
from -a softly broken vacuum which already exhibits the QCD chiral symmetry breaking.

The corresponding R case in this last model is ambiguous, as described below. In the other
cases that we considered, the decoupling limit is reached by a second-order phase transition
at some finite value of mQ in which chiral symmetry is broken. Investigating this phase
transition is another interesting problem which we leave for future research.

In the R cases, it is possible that some exotic phenomena might survive the decoupling
limit. For these theories, we presented two options for the decoupling limit, option 2, with
a conventional chiral symmetry breaking pattern and no massless fermions, and option 1,
with the full chiyal symmetry broken to SU(Nj) x U(l )~ x U(l )~ and a multiplet of mass-

less fermions necessary to satisfy the ‘t Hooft anomaly conditions for the unbroken U( 1)R.
The required composite fermions can be constructed from massless quarks, antiquarks, and
gauginos. We have not found any argument based on QCD inequalities to rule out this

possibility. However, only in the the baryon-number conserving vacuum for Nj = NC in the

R case did this symmetry-breaking pattern arise naturally. In all other cases, this pattern
still requires a second-order phase transition from the vacuum which is preferred at small
mQ.

On top of the exotic behavior discussed above, there are further obvious differences be-

tween the infrared domain of the supersymmetric gauge theories and their decoupling limits.
Here are several examples: (1) In the supersymmetric case the order parameters associ-
ated with the chiral symmetry breaking are expectation values of squark bilinear operators,
whereas in QCD quark bilinears play this role. (2) Supersymmetric fermionic baryons are

composites of N. – 1 squarks and one quarks. (3) Only totally anti-symmetric flavor repre-

sent at ions are relevant for the SQ CD baryons. In the cases in which the vacuum at small- .-
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mQ can go continuously into a vacuum of the decoupling limit, we have found that the or-
der parameter is in fact a mixture of the condensates of both bilinears, and that it shows
level-crossing behavior. Close to the supersymmetric limit, the dominant component is the

squark-squark condensate. As we go to the QCD limit, this contribution becomes negligible
and the quark-quark condensate takes over. If option 2 for the ~ c~e, as described above,
is realized, there is a related level-crossing phenomenon, in which squark building blocks of
composite fermions in the supersymmetric limit are replaced in the decoupling limit by a -
quark-gluino combination that has identical quantum numbers.

(iii) The exotic behavior of the region close to the supersymmetric limit should be de-
tectable in lattice simulations.

Simulations of softly broken SQCD should be easier to perform than direct simulations
of SQCD, since it is difficult to maintain supersymmetry on the lattice. It may still be
non-trivial to locate the region of the lattice coupling constants which reflects softly broken
SQCD, because this theory still has specific relations among its renormalizable couplings.
However, we have argued that this region can be found without unusual fine-tuning. In
particular, we have discussed the issue of possible first order phase transitions in lattice
gauge theories with scalars and indicated how to avoid them. With this barrier removed, we

expect the lattice simulations to reach the continuum limit and reveal the rich structure of
the exotic phenomena described in this paper.

Finally, we list some additional issues which we have not resolved, and which remain
problems for future work:

The major difficulty encountered in passing from the supersymmetric gauge models to

QCD is the identification of the SUSY breaking operators. It is usually not easy to identify

the relevant SUSY breaking operators in the low energy effective potential description. As we

explained in Section 2, in softly broken supersymmetric theories we do have some control over

this problem. Following [13], we can show that our choice of the SUSY breaking operators

corresponds to those obtained from a supersymmetric theory which includes some additional

chiral superfields ‘via spent aneous supersymmetry breaking. In fact, with this approach one

can relate: the resulting squark mass term to the K~hler kinetic term in the underlying

original SUSY theory. Thus, our lack of control over the soft breaking terms is related to

our lack of control over the Kahler term. Clearly this question deserves further study. We

have also noted that other terms which may appear in the operator identifications (such as

e.g. ir[(TtT)”] for n > 1) are typically suppressed by powers of A. Hence, as long as we

are considering vacua close to the origin, we are justified in retaining only the lower terms
we worked with. In these cases we have more confidence in our results and can rely even

on their quantitative aspects. This is typically the situation for Nf > NC. However, when
expectation values at the vacuum we are considering are of order A and higher, our neglect
of the other higher terms is not justified. This is the case for Nj = NC, when the expectation
values are of order A, and for Nj < NC when the vacuum of the theory runs to infinity in

the supersymmetric limit. We believe that the qualitative features of our results still hold

in these cases, but we certainly cannot trust the quantitative aspects. This is the reason
-..

--
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that in the Nj = NC case we could not decide which of the two possible vacuum states is
preferred.

Another avenue of possible future research is the analysis of softly broken supersym-

metric gauge theories of other types, in particular, chiral models, which also admit dual

representations. Recently, a number of generalizations of Seiberg’s original proposal have
been presented [26, 22, 27, 28, 29, 30, 31, 32, 33]. We expect the behavior of these theories -

upon adding soft supersymmetry breaking terms to be similar to the behavior we found
above for the SU(NC) case. Perhaps the study of these theories will open even wider the

unusual possibilities for nonperturbative gauge dynamics.

ACKNOWLEDGEMENTS

We are grateful to Eliezer Rabinovici and the organizers of the 1995 Jerusalem Winter

School for bringing us together and to Nathan Seiberg for a stimulating set of lectures at the
.- school which ignited our interest in this problem. We thank Shmuel Nussinov and Gabrielle

Veneziano for stimulating conversations, and we are especially grateful to Tom Banks for
emphasizing the importance of QCD inequalities. MEP thanks the members of the high

energy physics group at Tel Aviv University for their hospitality during the initial phase of

this work.

A A QCD Inequality

In this appendix we demonstrate an inequality which is useful in understanding the limit of

supersymmetric QCD in which the squark mass is taken to infinity. This limit is a vectorlike

gauge theory of-quarks and the gluino, with no scalar fields. We will show that, in this limit,

a flavor nonsinglet composite hadron cannot be massless if the pion is massive. Our argument

is a straightforward generalization of arguments used to analyze QCD by Weingarten [20].

To prove our claim, we follow Weingarten’s proof that the baryon is heavier than the

pion. Though Weingarten’s original argument was given on the lattice (and therefore was

completely rigorous at the price of some complication), we will apply a continuum version

of the argument. The crucial observation is that, in vector-like gauge theories, the measure
of integration over gauge fields, which includes the determinants from the integration over
the fermions, is non-negative. This can be seem simply in the following way: For fermions

of mass m, the fermion determinant is det ( PA + m) where PA is the covariant derivative
with gauge field A. In vector-like theories this is always positive, since the eigenvalues of PA

are imaginary, and for every eigenvalues ia with eigenvector @l, T5+1 is an eigenvector with

eigenvalues —is, and the product of the contributions of both eigenvalues to the determinant
is always positive. In the limit m ~ O one could have zero modes in gauge sectors of

nontrivial Pontryagin number. However, these sectors do not contribute to any correlation- .-
function we will consider. -
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In the analysis of Section 4.4, we are most concerned with the possibility of a quark-

antiquark-gluino bound state To A: +$, so let us begin by considering this state. Its propagator
from z to y is given by

(71)

where S~, ST and S~ are the quark, anti–quark and gluino propagators in the presence of -
fixed background gauge fields (we do not write the space-time indices explicitly), and dp is
the measure of integration over the gauge fields (including the fermion determinants). Since
the integration measure is positive, this is smaller than

Next, we use the Holder inequality, which says that for any positive measure,

(72)

(73)

to bound the propagator from above by

(/dP x lsoa,a112)*(/dP( E lsA.,.J,b,b,12)(xISV.,.,12))+. (74)
a,a’ a,a’,b,bt a,a!

The next stage is to interpret each of the integrals in (74) as some correlation function.
The first integral is proportional to the propagator of the pion, @i~j. In general, a propagator

falls asymptotically M e‘~lr-~l where m is the lowest mass possible in the intermediate7
state. For the first integral m is the pion mass. The second integral can, at worst, approach

a constant asymptotically. Thus, the correlation function of ~a~j ~~ is bounded above by a

constant times “exp(–m. lx”– y I), where m. is the pion mass. Then the mass of the quark-
antiquark-gluino bound state must be greater than mm. This argument goes through in the

same way for any flavor-nonsinglet bound state, which necessarily contains at least one quark

and one antiquark or at least NC quarks.

Since the gluino-ball is a flavor singlet, there is no QCD inequality relating its mass to
that of flavor nonsinglet bound states. This leaves an ambiguity that we are not able to

resolve. It is this ambiguity that leads to the presence of option 1 (unbroken U( 1)~) in the

cmes Nj ~ NC.

-..
--
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