
SLAC-PUB-95-6937 

PRECISION TESTS OF QUANTUM CHROMODYNAMICS 

AND THE STANDARD MODEL * 

STANLEY J. BRODSKY 

Stanford Linear Accelerator Center 

Stanford University, Stanford, California 94309 

HUNG JUNG LU 

Department of Physics, University of Arizona 

Tucson, Arizona eO’i’4.Z 

We discuss three topics relevant to testing the Standard Model to high precision: 

commensurate scale relations, which relate observables to each other in pertuba- 

tion theory without renormalization scale or scheme ambiguity, the relationship 

of compositeness to anomalous moments, and new methods for measuring the 

anomalous magnetic -and quadrupole moments of the W and 2. 

1. Introduction 

One of the obstacles to testing the Standard Model to high precision is the fact that 

perturbative predictions depend on the choice of rernormalization scale and scheme. 

The situation is further complicated by the fact that computations in different sectors 

of the Standard Model are carried out using different renormalization schemes. For 

example, in quantum electrodynamics, higher order radiative corrections are comput- 

ed in the traditional “on-shell” scheme using Pauli-Villars regularization. The QED 

coupling CYQED is defined from the Coulomb scattering of heavy test charges at zero 

momentum transfer. The scale k2 in the running QED coupling cyQED(k2) is then set 

by the virtuality of the photon propagator in order to sum all vacuum polarization 

corrections. However, in the non:Abelian sectors of the Standard Model, higher order 

computations are usually carried out using the MS dimensional regularization scheme. 

The renormalization scale p that appears in perturbative expansions in the QCD cou- 

Pli% %i&p2) is usually treated as an arbitrary parameter. These ambiguities and 

disparities in choices of scales and schemes lead to uncertainties in establishing the 

accuracy and range of validity of perturbative QCD predictions and in testing the 

hypothesis of grand unification. 

In this talk, we shall discuss a set of new high precision perturbative predictions 

for-the Standard Model which have no scale or scheme ambiguities. These predictions, 

called “Commensurate Scale Relations”‘, are valid for any renormalizable quantum 

field theory, and thus may provide a uniform perturbative analysis of the electroweak 

and strong sectors of the Standard Model. Commensurate scale relations relate ob- 

servables to observables, and thus must be independent of theoretical conventions, 



- 

such as choice of intermediate renormalization scheme. The scales of the effective 

charges that appear in commensurate scale relations are fixed by the requirement 

that the couplings sum all of the effects of the non-zero p function, as in the BLM 

method 2. The coefficients in the perturbative expansions in the commensurate scale 

relations are thus identical to those of a corresponding conformally-invariant theory 

with p = 0. The scales that appear in commensurate scale relations are physical since 

they reflect the mean virtuality of the gluons in the underlying hard subprocess 3. 

As emphasized by Mueller 4 at this conference, commensurate scale relations isolate 

the effect of infrared renormalons associated with the non-zero ,8 function. The usual 

factorial growth of the coefficients in perturbation theory due to quark and gluon 

vacuum polarization insertions is eliminated since such effects are resummed into the 

running couplings. The perturbative series is thus much more convergent. In the 

next section we discuss an elegant example: a surprisingly simple connection between 

the radiative corrections to the Bjorken sum rule and the radiative corrections to 

the e+e- annihilation cross section. The coefficients that appear in the perturbative 

expansion are a simple geometric series. This relation generalizes Crewther’s relation 

to non-conformal &CD. . 

Commensurate scale relations can also be applied in grand unified theories to make 

scale and scheme invariant predictions which relate physical observables in different 

sectors of the theory. In addition, the commensurate scale relation between a~, as 

defined from the heavy quark potential, and arm provides an analytic extension of 

the IMS scheme in which flavor thresholds are taken into account the proper scale 

automatically. The heavy quark coupling LYV has been recently been determined to 

. _ high precision from lattice gauge theory 5 by using an improved perturbation theory 

closely related to the BLM method. 

In the Standard Model, it is assumed that the lepton, quark, and vector bosons 

are all elementary. In the second part of this talk, we discuss the ways in which a 

composite spin-i or spin-l system can mimic the quantum of an elementary field, 

provided its size R, defined from the slope of form factors, is small compared to its 

Compton scale l/M. In particular, we shall use a light-cone description of relativistic 

bound states to show that the anomalous moment of a composite system vanishes 

in the point-like A&R -+ 0 limit ‘. The light-cone Fock state method also provides 

an important relationship between the axial coupling and magnetic moment of a 

composite system. 

One of the remarkable consequences of the canonical couplings of the Standard 

Model is a superconvergent sum rule for polarized photoabsorption cross sections at 

the tree level 7v8. This classical sum rule in turns imply the reversal of sign of the 

polarization asymmetry at a specific energy for processes such as ye- + W-V, ‘. 

The implications of these predictions for high precision tests of the Standard Model 

and limits on compositeness are discussed in Section 4. 



2. Commensurate Scale Relations and The Generalized Crewther Relation 

in Quantum Chromodynamics 

In 1972 Crewther lo derived a remarkable consequence of the operator product 

expansion for conformally-invariant gauge theory. Crewther’s relation has the form 

3s = A-R' (1) 

where S is the value of the anomaly controlling 7r” t yy decay, I< is the value of the 

Bjorken sum rule in polarized deep inelastic scattering, and R' is the isovector part 

of the annihilation cross section ratio a(e+e- -+hadrons)/a(e+e- --+ p+p-). Since S 

is unaffected by QCD radiative corrections rl, Crewther’s relation requires that the 

QCD radiative corrections to Re+e- exactly cancel the radiative corrections to the 

Bjorken sum rule order by order in perturbation theory. 

However, Crewther’s relation is only valid in the case of conformally-invariant 

gauge theory, i.e. when the coupling Q, is scale invariant. This is apparent since 

the radiative corrections to the Bjorken sum rule and the annihilation ratio are in 

general functions of different physical scales. Thus Crewther’s relation cannot be 

tested directly in QCD unless the effects of the nonzero ,f? function for the QCD 

running coupling are accounted for, and the energy scale fi in the annihilation 

cross section is related to the momentum transfer Q in the deep inelastic sum rules. 

Recently Broadhurst and Kataev l2 have explicitly calculated the radiative corrections 

to the Crewther relation and have demonstrated explicitly that the corrections are 

proportional to the QCD /3 function. 

A helpful tool for relating physical quantitities is the effective charge. Any pertur- 

batively calculable physical quantity can be used to define an effective charge 13~14*15 

by incorporating the entire radiative correction into its definition. An important re- 

sult is that all effective charges .(YA(Q) satisfy the Gell-Mann-Low renormalization 

group equation with the same 00 and ,&; different schemes or effective charges only 

differ through the third and higher coefficients of the ,8 function. Thus, any effective 

charge can be used as a reference running coupling constant in QCD to define the 

renormalization procedure. More generally, each effective charge or renormalization 

scheme, including MS, is a special case of the universal coupling function a(&, ,&) r6. 

Peterman and Stuckelberg have shown r7 that all effective charges are related to each 

other through a set of evolution equations in the scheme parameters ,&. 

For example, consider the entire radiative corrections to the annihilation cross 

se&ion expressed as the “effective charge” QR(Q) where Q =fi: 

y]. (2) 



Similarly, we can define the entire radiative correction to the Bjorken sum rule as the 

effective charge (ugI (Q) w h ere Q is the lepton momentum transfer: 

(3) 

We now use the known expressions to three loops 18~1gy20 in MS scheme and choose 

the leading-order and next-to-leading scales Q* and Q** to re-sum all quark and gluon 

vacuum polarization corrections into the running couplings. The values of these scales 

are the physical values of the energies or momentum transfers which ensure that the 

radiative corrections to each observable passes through the heavy quark thresholds at 

their respective commensurate physical scales. The final result is remarkably simple: 

s(Q) OR@*) _ 
7T 7r 

_ (W$?,**i)'+ (dz***))"+.... (4) 

The coefficients in the series (aside for a factor of CF, which can be absorbed in 

the definition of (us) are actually independent of color and are the same in Abelian, 

non-Abelian, and conformal gauge theory. The non-Abelian structure of the theo- 

ry is reflected in the scales Q* and Q**. Note that the MS renormalization scheme 

is used here for calculational convenience; it serves simply as an intermediary be- 

tween observables. This is equivalent to the group property defined by Peterman and 

Stiickelberg r7 which ensures that predictions in PQCD are independent of the choice 

of an intermediate renormalization scheme. (The renormalization group method was 

. _ developed by Gell-Mann and Low 21 and by Bogoliubov and Shirkov 22.) 

The connection between the effective charges of observables such as Eq. (4) is re- 

ferred to as a “commensurate scale relation” (CSR). A fundamental test of QCD will 

be to verify empirically that the observables track in both normalization and shape as 

given by the CSR. The commensurate scale relations thus provide fundamental tests 

of QCD which can be made increasingly precise and independent of the choice of 

renormalization scheme or other theoretical convention. More generally, the CSR be- 

tween sets of physical observables automatically satisfy the transitivity and symmetry 

properties 23 of the scale transformations of the renormalization “group” as originally 

defined by Peterman and Stiickelberg l7 The predicted relation between observables . 

must be independent of the order one makes substitutions; i.e. the algebraic path 

one takes to relate the observables. 

The relation between scales in the CSR is consistent with the BLM scale-fixing 

procedure2 in which the scale is chosen such that all terms arising from the QCD 

,8-.function are resummed into the coupling. Note that this also implies that the 

coefficients in the perturbation CSR expansions are independent of the number of 

quark flavors f renormalizing the gluon propagators. This prescription ensures that, 

as in quantum electrodynamics, vacuum polarization contributions due to fermion 

pairs- are all incorporated into the coupling o(p) rather than the coefficients. The 
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coefficients in the perturbative expansion using BLM scale fixing are the same as 

those of the corresponding conformally invariant theory with p = 0. In practice, the 

conformal limit is defined by PO, pi -+ 0, and can be reached, for instance, by adding 

enough spin-half and scalar quarks as in N = 4 supersymmetric &CD. Since all the 

running coupling effects have been absorbed into the renormalization scales, the BLM 

scale-setting method correctly reproduces the perturbation theory coefficients of the 

conformally invariant theory in the 0 -+ 0 limit. 

Let us now discuss in more detail the derivation of eqn. (4). The perturbative 

series of ogl (Q)/ r using dimensional regularization and the MS scheme with the 

renormalization scale fixed at p = Q has been computed r8 through three loops in 

perturbation theory. The effective charge for the annihilation cross section has also 

been computed “v2’ to the same order in the MS scheme with the renormalization 

scale fixed at p = Q = &. The two effective charges can be related to each other 

by eliminating LYE. The scales Q* and Q** are set by resumming all dependence on 

/? = 0 and ,& into the effective charge. The application of the NLO BLM formulas 

then leads to 

(5) 

Q’ = Q exp -4 - 2&, + 
[i ( 

$ + $3 - 2[: - g) (;CA - if> *] , (6) 

Q** = Qexp [g + y~3 - 3 + (-E + 33) $1. (7) 

In practice, the scale Q*** in the above expression can be chosen to be Q**. Notice 

that aside from the light-by-light contributions, all the 53,55 and r2 dependencies 

have been absorbed into the renormalization scales Q* and Q**. Understandably, 

the 7r2 term should be absorbed into renormalization scale since it comes from the 

analytical continuation of R(Q) to the Euclidean region. 

For the three flavor case, where we can neglect the light-by-light contribution, 

the series remarkably simplifies to the CSR of Eq. (4). The form suggests that for 

the general SU(N) group th e natural expansion parameter is G = (3C~/47r) o. The 

use of G also makes it explicit that the same formula is valid for QCD and QED. 

That is, in the limit NC + 0 the perturbative coefficients in QCD coincide with the 

pertur-bative coefficients of an Abelian analog of &CD. 

In Fig. 1 we plot the scales Q*, and Q** as function of Q for in the range 0 < Q 5 6. 

We can see that the scales Q* and Q** are of the same order as Q but roughly a factor 

l/2 to l/3 smaller. 
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Figure 1: The commensurate scales Q* and Q** for the case of Bjorken sum rule 

expressed in terms of oR( Q). 

In Fig. 2 we plot the prediction for the value of the Bjorken sum rule using as input 

the values of CYR(Q) as g iven by Mattingly and Stevenson 24. We use Q*** = Q** here. 

Notice that the prediction has a very smooth and flat behavior, even at Q” - 2 GeV2 

since the effective charge CXR( Q) as obtained by Mattingly and Stevenson incorporates 

the “freezing” of the strong coupling constant. 

. _ Broadhurst and Kataev have recently observed a number of interesting relations 

between C.YR( Q) and crgl (Q) (the “Seven Wonders”) r2 In particular, they have shown . 

the factorization of the beta function in the correction to Crewther’s relation thus 

establishing a non-trivial connection between the total e+e- annihilation cross section 

and the polarized Bjorken sum rule. The simple form of Eq. (4) also points to the 

existence of a “secret symmetry” between CYR( Q) and ogl (Q) which is revealed after 

the application of the NLO BLM scale setting procedure. In fact, as pointed out by 

Kataev and Broadhurst 12, in the conformally invariant limit, i.e., for vanishing beta 

functions, Crewther’s relation becomes 

(1 + @)(l - cy;:, = 1. (8) 

Thus Eq. (4) can be regarded as the extension of the Crewther relation to non- 

conformally invariant gauge theory. 

-The commensurate scale relation between ogl and &R given by Eq. (4) implies 

that the radiative corrections to the annihilation cross section and the Bjorken (or 

Gross-Llewellyn Smith) sum rule cancel at their commensurate scales. The relations 
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Figure 2: Prediction of the Bjorken sum rule from R,t,- according to the commen- 

surate scale relation and using Mattingly and Stevenson’s result for OR(&). 

between the physical cross sections can be written in the forms: 

and 

(9) 

provided that the annihilation energy in Rete--(s) and the momentum transfer Q 

appearing in the deep inelastic structure functions are commensurate at NLO: & = 

Q* = Q exp[ $ - 2c3 + (5 + ?&s - 2532 - g)&,i;( Q)]. The light-by-light correction to the 

CSR for the Bjorken sum rule vanishes for three flavors. The term A,&;i3 with A = 

i?n (Q**/Q*) is the th’ d- d rr or er correction arising from the difference between Q** and 

Q*; in practice this correction is negligible: for a typical value Z = oR(Q)/n = 0.14, 

A/!&Z3 = 0.007. Thus at the magic energy fi = Q*, th e radiative corrections to the 

Bjorken and GLLS sum rules almost precisely cancel the radiative corrections to the 

annihilation cross section. This allows a practical test and extension of the Crewther 

relation to non-conformal QCD. 

As an initial test of Eq. (lo), we can compare the CCFR measurement 25 of 

the Gross-Llewellyn Smith sum rule 1 - 6~~ = f Jt d~:[F,“‘(z,&~) + @‘(z, Q”)] = 

i(2.5 f 0.13) at Q” = 3 GeV2 and the parameterization of the annihilation data 24 

1 + &R = R,t,-(s)/3C e,’ = 1.20. at the commensurate scale 6 = Q’ = 0.38 Q = 

0.66 GeV. The product is (1 + GR)( l- 6~~) = 1.00 f 0.04, which is a highly nontrivial 

check of the theory at very low physical scales. More recently, the El43 26 experiment 

at SLAC has reported a new value for the Bjorken sum rule at Q” = 3GeV2: I’;--I’;l = 



0.163 f O.OlO(stat) -f O.OlG(syst). The C rewther product in this case is also consistent 

with QCD: (1 + G.R)(~ - G$,) = 0.93 f 0.11. 

Commensurate scale relations such as the generalized Crewther relation discussed 

here open up additional possibilities for testing &CD. One can compare two observ- 

ables by checking that their effective charges agree both in normalization and in their 

scale dependence. The ratio of commensurate scales XA,B is fixed uniquely: it ensures 

that both observables A and B pass through heavy quark thresholds at precisely the 

same physical point. The same procedure can be applied to multi-scale problems; 

in general, the commensurate scales Q*, Q**, etc. will depend on all of the available 

scales. 

An important computational advantage is that one only needs to compute the 

flavor dependence of the higher order terms in order to specify the lower order scales in 

the commensurate scale relations. We have shown r that in many cases the application 

of the NLO BLM formulas to relate known physical observables in QCD leads to 

results with surprising elegance and simplicity. The commensurate scale relations 

for some of the observables ( QR, CX,, cyg, and CXF~) are universal in the sense that the 

coefficients of G$ are independent of color; in fact, they are the same as those for 

Abelian gauge theory. Thus much information on the structure of the non-Abelian 

commensurate scale relations can be obtained from much simpler Abelian analogs. In 

fact, in the examples we have discussed here, the non-Abelian nature of gauge theory 

is reflected in the /?-function coefficients and the choice of second-order scale Q**. 

The commensurate scale relations between observables can apparently be tested at 

quite low momentum transfers, even where PQCD relationships would be expected to 

. break down. It is possible that some of the higher twist contributions common to the 

two observables are also correctly represented by the commensurate scale relations. In 

contrast, expansions of any observable in CY~ (Q) must break down at low momentum 

transfer since CY~ (Q) becomes singular at Q = Am (For example, in the ‘t Hooft 

scheme where the higher order Pn = 0 for n = 2,3, . . . , am(Q) has a simple pole at 

Q = Am) The commensurate scale relations allow tests of QCD in terms of finite 

effective charges without explicit reference to singular schemes such as MS. 

The coefficients in a CSR are identical to the coefficients in a conformal theory 

where renormalons do not appear 4. It is thus reasonable to expect that the series 

expansions appearing in the CSR are convergent when one relates finite observables 

to each other. Thus commensurate scale relations between observables allow tests 

of perturbative QCD with higher and higher precision as the perturbative expansion 

grows. 

3. Zkctromagnetic and Axial Moments of Relativistic Bound States ’ 

The magnetic moments of non-relativistic bound state systems such as atoms are 

normally computed by summing the moments of its constituents. The situation is 



much more interesting and complex for composite systems in QCD where relativis- 

tic recoil effects must be taken into account. For example, at infinitely small radius 

RM t 0 and infinitely high excitation energy, the magnetic moment of any spin-i 

system will become equal to the Dirac moment e/2A4, as can be shown directly from 

the Drell-Hearn-Gerasimov (DHG) sum rule 27t28. More remarkably, one can use a 

generalization 2g of the DHG sum rule to show 3o that the magnetic and quadrupole 

moments of any composite spin-one system take on the canonical values ,Y = e/A4 

and Q = -e/M2 in the limit of zero bound-state radius or infinite excitation energy. 

Thus in the strong binding limit, the moments of composite particles coincide with 

the moments of the gauge particles in the tree-graph approximation to the Standard 

Model. Although the physical structure of spin-one nuclei, spin-one mesons, and the 

gauge bosons of the Standard Model are highly disparate, there are other underly- 

ing universal features. For example, the ratios of their form factors Gc(Q2)/GM(Q2), 

and GdQ2)/GdQ2) t 1 g a ar e momentum transfer have similar scaling behavior 3o re- 

flecting the underlying gauge and chiral symmetry of the Standard Model at short 

distances. In this section we shall investigate the quantitative behavior of axial and 

electromagnetic moments for both strong and weak binding limit, as well as demon- 

strate the transition between them. 

Although the magnetic and quadrupole moments of composite systems are usually 

regarded as “static” quantities, they actually require the evaluation of the current 

matrix elements < plj,lp + q > which are, respectively, linear and quadratic in the 

momentum- transfer q. The contribution to the current matrix elements which are 

generated by the Wigner boost of the state from its rest frame gives a non-additive 

spin structure for the current interactions of bound systems, and by itself yields . 
the Dirac contribution p = es/J4 for systems of spin S and the Standard Model 

quadrupole moment Q = -e/M2 for spin-one states. 

The deuteron and triton are non-relativistic bound state systems; nevertheless, 

one obtains small but nontrivial finite binding corrections to the standard treatment 

of their magnetic and quadrupole moments . l8 The Wigner boost also leads to the 

remarkable result that one obtains a non-zero contribution to the quadrupole mo- 

ment even if the deuteron has no D-wave contribution. The same non-additive spin 

structure is required to reproduce the low energy theorem for Compton scattering on 

a composite system as well as the DHG sum rule 27 for polarized photoabsorption 

cross sections 31. The kinematical boost contribution can be neglected compared to 

the dynamical contributions from light constituents p = O(e/m) or internal structure 

p = O(eR) and Q = O(eR2) if iV/m >> 1 and MR > 1. Thus the usual formulas 

for computing moments from the sum of constituent moments is only strictly valid 

in the-cases of systems such as atoms where the electron mass is small compared to 

the atomic mass and the Bohr size R is large compared to the Compton scale l/A4 

of the atom. 

The light-cone (“front-form”) formalism 32 provides a convenient covariant frame- 



work for evaluating current matrix elements of composite systems 28. The formalism 

is independent of the choice of momentum pp, and form factors can be calculated 

from diagonal matrix elements; i.e, the convolution of light-cone wavefunctions with 

the same particle number n. In contrast, in equal-time theory, one needs to con- 

sider frame-dependent non-diagonal pair creation matrix elements as well as vacuum 

creation contributions to the current which are unconstrained by the Fock wave- 

functions. The Bethe-Salpeter formalism is covariant, but one needs to evaluate the 

matrix elements of an infinite number of irreducible kernels, even in the case when 

one constituent is infinitely heavy. 
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Figure 3: The anomalous magnetic moment a = F2(0) of the proton as a function of 

M,Rr: broken line, pole type wavefunction; continuous line, gaussian wavefunction. 

The experimental value is given-by the dotted lines. The prediction of the model is 

independent of the wavefunction for Q” = 0. 

A three-quark light-cone model can be used to illustrate the functional relationship 

between the anomalous moment of a proton up and its Dirac radius 6. The value 

of R;2 = -6~G’r(Q~)/dQ~[~z=~ is varied by changing the size parameters. Figure 3 

shows that when one plots the dimensionless observable up against the dimensionless 

observable MRr, the prediction is essentially independent of the assumed power-law 

or Gaussian form of the three-quark light-cone wavefunction. The only parameter 

controlling the relation between the dimensionless observables in the light-cone three- 

quark model is m/M, which is set to 0.28. For the physical proton radius M&r = 

3.63, one obtains the empirical value for ap = 1.79 (indicated by the dotted lines in 

Fig. 3). The same three-quark model also gives g,J = 1.25 for the non-singlet axial 

- 



coupling in agreement with experiment. The singlet helicity sum AX for the three 

quark model is predicted to be E 0.75. This will be substantially reduced when gluon 

and sea quark Fock state contributions are included. The relativistic effects also 

reduce the anomalous magnetic moment and axial coupling by a factor of N 0.75 6j33. 

The fact that both the axial coupling and lowest moment of the gl structure function 

of a composite system are modified by the Melosh transformation was first pointed out 

by Bucella, et al. 34, Le Youanc, et al. 35, and Close 33. An important consistency 

check of any bound state formalism is the demonstration that the electromagnetic 

moments of a composite system reproduces the canonical Standard Model values in 

the point-like limit MR + 0. The light-cone analysis correctly reproduces the correct 

ultra-relativistic limit for the electromagnetic moments. Thus in the pointlike limit 

where the threshold for particle excitation z+h + 00, even a system as complex as the 

deuteron acquires the same electromagnetic moments (Qz -+ 0, ad -+ 0) as that of 

the W in the Standard Model. 

The light-cone model also predicts that the quark helicity sum AX = Au + Ad 

and gA = Au - Ad vanishes as a function of the proton radius RI in a similar way as 

the anomalous moment vanishes. Since the helicity sum AX depends on the proton 

size, it clearly cannot be identified as the vector sum of the rest-frame constituent 

spins. Actually, Aq refers to the difference of helicities at fixed light-cone time or at 

infinite momentum; it cannot be identified with q(s, = +i) - q(s, = -i), the spin 

carried by each quark flavor in the proton rest frame in the equal time formalism 36r6. 

In fact, Aq vanishes as RI -+ 0. Similar results are obtained for spin-one systems: At 

small deuteron radius the light-cone model predicts not only a vanishing anomalous 

. moment but also limR,ogA(A4dR) = 0. As shown by Ma and Zhang 36 the Melosh 

rotation generated by the internal transverse momentum spoils the usual identification 

of the y+ys quark current matrix element with the total rest-frame spin projection 

s,, thus resulting in a reduction of gA. One can understand this physically: in the 

zero radius limit the internal transverse momenta become infinite and the nucleon 

helicities become completely disoriented. 

These results have important implications for theories in which leptons, quarks, 

or gauge particles are composite at short distances. If the internal scale of such a 

theory is sufficiently high, then the DHG sum rule 27 guarantees that the magnetic 

and quadrupole couplings of the composite states are indistinguishable from those 

of the Standard Model. In addition, one finds in the light-cone models that the 

axial couplings of composite spin-one systems vanish in the point-like limit. In the 

Standard Model the parity-violating Gamow-Teller axial couplings of the W and 2 

vanish at tree level. Thus, even though composite spin-one systems are not gauge 

fields,-their couplings can simulate the canonical axial and electromagnetic moments 

of the Standard Model provided they are sufficiently compact. This is interesting from 

the phenomenological point of view, since it keeps open the possibility that the 2 and 

W vector bosons .of the Standard Model could be composite provided their internal 



scale is sufficiently small and their excitation energies are sufficiently high 37. On the 

other hand, the light-cone Fock state description predicts gA --+ 0 for composite spin-i 

systems in the point-like limit, whereas the canonical axial coupling in the Standard 

Model is gA = 1 for elementary spin-i fields. It thus remains an open question 

whether a consistent dynamical model of composite leptons and quarks 38 can be 

formulated which can simultaneously simulate their observed magnetic moment and 

axial couplings. 

4. Precision limits on Anomalous Couplings of the W and 2’ 

The Dirac value g = 2 for the magnetic moment p = geS/2M of a particle of 

charge e, mass A4, and spin S, plays a special role in quantum field theory. As 

shown by Weinberg 3g and Ferrara et. al 40, the canonical value g = 2 gives an 

effective Lagrangian which has maximally convergent high energy behavior for fields 

of any spin. In the case of the Standard Model, the anomalous magnetic moments 

p, = (g - 2)eS/2M and anomalous quadrupole moments Qa = Q + e/lM2 of the 

fundamental fields vanish’at tree level, ensuring a quantum field theory which is 

perturbatively renormalizable. However, as discussed in the previous section, one can 

use the DHG sum rule 27 to show that the magnetic and quadrupole moments of spin- 

f or spin-l bound states approach the canonical values p = es/nil and Q = -e/M2 in 

the zero radius limit MR + 0 28~6y30, independent of the internal dynamics. Deviations 

from the predicted values will thus reflect new physics and interactions such as virtual 

corrections from supersymmetry or an underlying composite structure. 

. The canonical values g = 2 and Q = -e/M2 lead to a number of important 

phenomenological consequences: (1) Th e magnetic moment of a particle with g = 2 

processes with the same frequency as the Larmor frequency in a constant magnetic 

field. This synchronicity is a consequence of the fact that the electromagnetic spin 

currents can be formally generated by an infinitesimal Lorentz transformation 41y42. 

(2) The forward helicity-flip Compton amplitude for a target with g = 2 vanishes at 

zero energy 43. (3) The Born amplitude for a photon radiated in the scattering of 

any number of incoming and outgoing particles with charge e; and four-momentum 

p’ vanishes at the kinematic angle where all the ratios e;/p; . Ic are simultaneously 

equal 42. For example, the Born cross section da/ cos 19,,( ua + W+y) vanishes iden- 

tically at an angle determined from the ratio of charges: cos 0,, = ed/eW+ = -l/3 44. 

Such “radiative amplitude zeroes” or “null zones” occur at lowest order in the Stan- 

dard Model because the electromagnetic spin currents of the quarks and the vector 

gauge bosons are all canonical. 

-The vanishing of the forward helicity-flip Compton amplitude at zero energy for 

the canonical couplings, together with the optical theorem and dispersion theory, 

leads to a superconvergent sum rule; i.e., a zero value for the DHG sum rule. This 

remarkable observation was first made for quantum electrodynamics and the elec- 



I :. - 

troweak theory by Altarelli, Cabibbo and Maiani 7. More generally, one can use a 

quantum loop ’ expansion to show that the logarithmic integral of the spin-dependent 

part of the photoabsorption cross section 

J 00 dv 
-AgBo,&) = 0 

“th v 
(11) 

for any 2 -+ 2 Standard Model process ya -+ bc in the classical, tree graph approxima- 

tion. The particles a, b, c and d can be leptons, photons, gluons, quarks, elementary 

Higgs particles, supersymmetric particles, etc. We also can extend the sum rule to 

certain virtual photon processes. Here v = p. q/M is the laboratory energy and 

Aa = gp(v) - aA is th e 1 d’ff erence between the photoabsorption cross section 

for parallel and antiparallel photon and target helicities. The sum rule receives nonze- 

ro contributions in higher order perturbation theory in the Standard Model from both 

quantum loop corrections and higher particle number final states. Similar arguments 

also imply that the DHG integral vanishes for virtual photoabsorption processes such 

as ey -+ !QQ and lg + !QG, th e 1 owest order sea-quark contribution to polarized 

deep inelastic photon and hadron structure functions. Note that the integral extends 

to v = vth, which is generally beyond the usual leading twist domain. 
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Figure 4: The Born cross section difference Ag for the Standard Model process 

ye + WV for parallel minus antiparallel electron/photon helicities as a function of 

logGq/Mw The logarithmic integral of Aa vanishes in the classical limit. 

We can use Eq. (11) as a new, way to test the canonical couplings of the Standard 

Model and to isolate the higher order radiative corrections. The sum rule also pro- 

vides a non-trivial consistency check on calculations of the polarized cross sections. 



Probably the most interesting application and test of the Standard Model is to the 

reactions yy -+ qq, ye + WY and ye t Ze which can be studied in high energy 

polarized electron-positron colliders with back-scattered laser beams. In contrast to 

the timelike process e+e- + W+W-, the yy and ye reactions are sensitive to the 

anomalous moments of the gauge bosons at q2 = 0. The cancellation of the positive 

and negative contributions 45 of Aa(ye --+ WY) to the DHG integral is evident in 

Fig. 4. 

We can also exploit the fact that the vanishing of the logarithmic integral of A0 

in the Born approximation also implies that there must be a center-of-mass energy, 

Go, where the polarization asymmetry A = As/a possesses a zero, i.e., where 

Aa(ye + WY) reverses sign ‘. We find strong sensitivity of the position of this zero 

or “crossing point” (which occurs at fiYr = 3.1583.. . Mw N 254 GeV in the SM) to 

modifications of the SM trilinear yWW coupling. Given reasonable assumptions for 

the luminosity and energy range for the Next Linear Collider(NLC), the zero point, 

Jso, of the polarization asymmetry may be determined with sufficient precision to 

constrain the anomalous couplings of the W to better than the 1% level at 95% 

CL. Since the zero occurs at rather modest energies where the unpolarized cross 

section is near its maximum, an electron-positron collider with JIF = 320 - 400 GeV 

is sufficient, whereas other techniques aimed at probing the anomalous couplings 

through the ye t WV process require significantly larger energies. In addition to 

the fact that only a limited range of energy is required, the polarization asymmetry 

measurements have the advantage that many of the systematic errors cancel in taking 

cross section ratios. This technique can clearly be generalized to other higher order 

. _ tree-graph processes in the Standard Model and supersymmetric gauge theory. The 

position of the zero in the photoabsorption asymmetry thus provides an additional 

weapon in the arsenal used to probe anomalous trilinear gauge couplings. 
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