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INVESTIGATION OF THE BEAM IMPEDANCE

OF A SLOWLY VARYING WAVEGUIDE*

R. M. Jones and S. A. Heifek
Stanford Linear Accelerator Center, Stanford

A perturbation method is U* to obtain analytic expressions
for the multipole longitudinal and transverse h
impedanm for an arbitrary waveguide whose r~lus is slowly
varying and for the speeific case of a symmetric small-angle
taper. This method is dso applicable for a particle in a
wiggler undergoing periodic motion.

I. ~TRODUCTION AND BASIS
OF THE METHOD

In linear colliders, the particle beam traversing the structure
will tend to possess a corona of stiay particles with large
transve& amplitudes. In order to minimize the deleterious
effects of these particles on the luminosity of the beam a
scraper is often u~ to disassociate them from the main
beam. HoweveF, the scraper may lead to an enhaneed
transverse wake-field and henm lead to a diminishing of the
beam ernmittance.

The method delineated below to calculate the beam
impedance, relies on the angle of the taper being small, as is
dso required in practice to minimize beam degradation. In
order that the expansion remain vrdid it is required that
ko~<<l and kbb’e<l (where V= db / dz). The lod change
in @Iz), is required to be small, however the ovendl change
may k large].

II. APPLICATION OF METHOD TO THE
MONOPOLE LONGITUDINAL IMPEDAN~

In the frequencydomain the electic and magnetic field is
expressedin terms of A, the vector potential:

E = -jZO(kO + k~’VV.)A

I

(2.1)
H=VXA

where h, is the free space wavenumber, a is the imxee
of free spaw and the vector potential, for monopole a mode,
lies along the axis of the structure, A = zA,. The wave
quation, up-on applying the Lorentz condition, for a charge
Q traveling with a veloeity v. (= c /~.) offset from the axis by
rO,becomes:

(la aa a a2

)

6(r - ro)
–—r —_2jko —+— =–-

rti ~ az az2 y r-
(2.2)

Here terms of order Y*have been neglected, and the enhanced
wavenumber and axial potential are given by:
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(2.3)-

The wave equation, (2.2), is solved iteratively using the
perturbation procedure outlined in the previous section.
Performing iterations about the zero or&r equation allows the
foUowing quations to be obtaind for the n-th order
iterations:

(2.4)

where &~= 1-8: and 6: is the fionecker delta function.

The Green’s function for the left hand side of the zero or&r
part of (2.4), viz, G(r, f ) = r’ ln(r / r’ ), allows the general
solution to the above quation to be developed as:

I

1{ a ._,
Y‘n) = dt 2jko xy –E: ~yn-2

F
(r,i )+ a,(z) (2.5)

o

where A(Z) is a constant of integration and the quantity in
parentheses is evaluated at -r’. Thus the zero order, and
first or&r solution are obtained as:

Y(o)= so(z)-l~r / ro)e(r – ro)

}
(2.6)

Y(1)= a1(z)+jkor2ao(z)

where 6 is the unit step function. The ~(z) functions are
obtained upon consideration of the boundary condition that
the electric field along the taper is zero along the plane of the
transition:

EZ+ti (z)E, = O (2.7)

The above boundary condition is applid su~ssively at each
iteration:

(2.8)

In the above, the totrd derivatives are evduati taking into
account b(z) variation. This allows the wave quation to be
solved in powers of h. The longitudinal impedan~ is given
by the inverse Fourier transform of the wake field and this is
readily rewritten in terms of the electric field as:

Z~ = –~~*dzEZ(ko)exp(jkoz)
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(2.9)



Curves of the impedance function, given by (2.13) up to third
This is transformed into: order in free space wavenumber, for bO= lcm, d = .3cm, and

Z.=j~J~$O+k;]~~Z
g = &m, are illustrated in figure 1 (where atiltiond terms up

(2.10) to ~ven~ or&r in ~ we ~~ in~lu~). The line~

functioned &pen&nm on fiquency is indeed sufficient at
large wavelengths. However, increasing the frequency

and integrating by parts enables the imxce to be obtainti
as:

rapidy gives rise to significant non-linearity in the
&pen&nm of the impedanm on k. Inti, for ~uencies

Z~ =~~y(i). (2.11) in the neighborhood of 30 GHz the perturbation sche~ is no-
n i=, longer valid as is revedti upon inspecting higher order

perturbations.
me impedanw resulting from the application of this method
up to Wlrd order in kOis given by: III. EV~UATION OF T~

TRANSVERSE IWEDAN~~ - Jkozo ~d{~2+~H4+b2b’2 (i-%)]
L

4X
(2.12)

The transverse impedance is evrduated by solving the wave

Comparing the above with the impedance obtained by ‘Uat!on ‘or a vector ‘kntid’
which in the @uency

Yokoyaz it is evident that the first term in parentheses doman, has components:

corresponds to hls result and all additional terms are higher
order corrections.

Applying this method to the impedanm of a symmetric
cosinusoidrd ta~r, b(z) = bO- d COS2(~) gives3:----

where the three parameters, 2,, 23 and a u given by:

(2.13)

Thus, it is evident that for koboccl the first term of (2.14) is
sufficient for the calculation of the impedance. However, in
the opposite limit ti-gher order terms must be retained.

Imaginary Impedance of Tapered
Structure vs Frequency (GHz)
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A=~ejmA- .,r+A+$+AZ~ 1 (3.1)

i=-

The wave equation for a harmonic m, is transformed into:

[()]
2

r
‘z=-’(r~ro)+k’’o~}z}z ,32,I;:(LY}*=[~

where the h~onics of the vector potential are given by:
A, = ~ yze-jiOz

}

(3.3)
A, *A, = ~y*e-k@ = %(Y, +y,~-ioz

Using the Gr&n’s function for the left hand side of (3.2) viz,

GZ(r,r’)= *I($Y-(:Y11
(3.4)

the wave quation is solved for the m-th order harmonic of
the vector potential, expanding about the zero order solution
enabling the n-order equation to be obtained in the form:

J ~i GZ(r, i XZ+ a~(z)(r/ r’ ~m’Y;=.

}

(3.5)

Y: = ~~d~Gi(r!~ Xi + a;(z)(r / r’ )lm*ll

where the functions within the integrals are evaluated at -r’
and are given by:-.

Figure 1
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6(r-rO)+e0 z.~ ~y;-
fz = -6; . Joaz

r

[

- a ._,,a2
f* =&: 2jko~y* -Em~y:-2

, a2
–EmpY:-2 I1(3.6)

This enables the xro order solution to be obtaind as:

Further, iterations pr-d using (3.5) and the remtining
constits of integration, a:(z) and al(z) are evaluated by

applying the condition that both the tangential electric field
fid the azimuthal electric field are zero along the boundary:

by. =-~(y+ +y_)-~(yz +jk;’~). .

1

(3.8)
J by+y, = –r ~(Y+-Y_)o
... ---

Here 6 operating on y is defined by:

{
by= ~$r(y++y-) +~(y+–y_)+~YZ

}
(3.9)

This completes the calculation of the totrd field excited by the
m-th harmonic of the charge traversing the structure.

Th6 longitudinal impedance is given by:. . *
~~ =Z,(rro)m = -~ ~dzEZ(w)eJiOz (3.10)

and in termsof thevectorpotentird:
*

J[‘Zodz koyZ +e2L=—
~oz--1 a -

)1
k. ~(Dy - jkoy, e-JiOz

“2n
(3.11)

where (2. 1) has been used and an integration by parts
been performed. Further, in cylindrical coordinates
Panofsky-Wenzel theorem4 may be applied, enabling
transverse impedance to be obtaind as:

z mZL. T=–— k.

This facilitates the transverse impe@ce
zero order in k as:

J[lz = jZom ‘“”dz B 2
T

n(l + m) ~

has
the
the

(3.12)

LOk obtained up to

(3.13)

Here the transverse impedance has been doubled to convert
from an exponential variation to a cosinusoiti harmonic.
Additiond higher order corrections, up to second or&r in b
are readily includti for the dipole mode (m=l):

~{[1Jzo ~ ! 2+=k~b4zT=—
b 8640 }

(3.14)
R

IV. DISCUSSION

The perturbation technique is an accurate metiti to evaluate
the impedance of slowly varying accelerator structures
consisting of waveguide with a sufficiently slowly varying
radius and for for a restrictti @uency range. For the
specific taper under consideration a fwst order perturbation is
augmentd with additional higher order terms with
increasingly large hquencies up to the point at which the
perturbation scheme is no longer valid.

Additiond work is in progress on extending the @uency
range in which the technique is valid and this is achievd by
enhancing the method with a higher order perturbational
technique. In this case (2.2) becomes:

(l-ara

)

&(r-ro) a2
—–2jiO~ y=– r -— (4.1)

;X ar
azz Y

The zero order part of (4.1) corresponds to setting the right “
hand side to zero. Utilizing this method enables the back-
scattered wave to be tien into acccount and this enables the
rerd component of the impedance to be evduatti. Further
work is dso in progress on applying this, technique to
investigate the beam impedance of a ~L wiggler.
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V. RE~REN~S

For a harmonic oscillator, driven at a @uency
substantially below its natural frequency a perturbation
about the zero order (obtaind by setting rdl time
derivatives to zero), gives an accurate solution for the
arnpitude of the oscillation. The method described
herein is the spatial andogue of the time~pendent
perturbation of a simple harmonic oscillator.

K. Yokoya, CE~ SU90-88, AP, (1990)

This result, up to third order in wg, has exactiy the
same coefficients as obtained by R.L. Warnock, SLAC-
PUB-6038, 1993

W.K.H. Panofsky & W.A. Wenzel, Rev. Sci. Instrum.,
27, 967 (1956)
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