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ABSTRACT

We show from general principles that there must be a center of mass energy,
p
s0, where the

polarization asymmetry A = ��(e! W�)=�(e! W�) for circularly-polarized photon
and electron beams vanishes. In the case of the Standard Model, the crossing point where
the asymmetry changes sign occurs in Born approximation at

p
se = 3:1583 : : : MW ' 254

GeV. We demonstrate the sensitivity of the position of the polarization asymmetry zero to
modi�cations of the SM trilinear WW coupling. Given reasonable assumptions for the
luminosity and energy range for the Next Linear Collider(NLC) with a backscattered laser
beam, we show that the zero point,

p
s0, of the polarization asymmetry may be determined

with su�cient precision to constrain the anomalous couplings of the W to better than the
1% level at 95% CL. In addition to the fact that only a limited range of energy is required,
the polarization asymmetry measurements have the important advantage that many of
the systematic errors cancel in taking cross section ratios. The position of the zero thus
provides an additional weapon in the arsenal used to probe anomalous trilinear gauge
couplings.
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I. INTRODUCTION

Precision measurements of Z-pole observables at LEP and SLC [1] combined with

the new W mass determinations [2] and the discovery of the top quark at the Tevatron

[3, 4] have demonstrated that the Standard Model (SM) provides an excellent description of

physics below the electroweak scale. There are many reasons to believe, however, that new

physics beyond the SM must exist, but it remains unclear just how or where it will �rst be

directly observed. The scale of such new physics may not be far away, perhaps ' 1 TeV, in

which case it will surely manifest itself at existing or planned colliders.

One of the most sensitive measures of new physics beyond the SM are the values of

the electroweak moments of the various leptons, quarks, and gauge bosons. In the SM, the

anomalous magnetic moments �� = (g � 2)eS=2M of spin S = 1

2
and S = 1 fundamental

�elds (with mass M)and the anomalous electric quadrupole moments �Q = Q + e=M2 of

the vector bosons vanish at the tree level due to the requirements of gauge invariance and

renormalizability, thus ensuring a quantum �eld theory which has maximally convergent high

energy behavior. Deviations from these canonical values of the magnetic dipole and electric

quadrupole moments beyond the usual SM radiative corrections [5] may reect new physics

or new interactions at high energies such as supersymmetry [5], technicolor, or compositeness

[6].

Precision measurements at the Z-pole and elsewhere have already placed rather strin-

gent restrictions on anomalous (V = ; Z)f �f couplings [7]. However, direct experimental

probes of the trilinear gauge boson couplings, VW+W�, are still at a rather early stage

[8, 9, 10]. If the energy scale of the new physics is indeed of order 1 TeV, it is anticipated

on rather general grounds that these anomalous trilinear couplings can be no larger than

O(10�2) [11]. Experiments have yet to achieve sensitivity at this level. However, it is ex-
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pected that the vector boson couplings will eventually be probed at the precision of 1% or

better at high energy hadron and e+e� colliders through processes such asW -pair production

from fermion pair annihilation, e+e� ! W+W�, q�q! W+W�, and associated production,

q�q0! WZ0; .

The advent of backscattered laser beams at e+e� colliders will allow tests of the

anomalous couplings of the gauge bosons through measurements of the high energy photon

collision processes  ! W+W�;  ! Z0Z0; e ! Z0; and e ! W�: A distinctive

feature of the e ! W� process is that it isolates the on-shell photon WW vertex in a

model-independent manner. In this paper we shall show that measurements of the e! W�

cross section with polarized photon and polarized electron beams can be used to test novel

features of the canonical couplings of the W and provide high precision measurements of its

magnetic and quadrupole moments at a precision below 1%.

A remarkable consequence of the canonical couplings of fermions and gauge bosons

in the SM is that the integral that appears in the Drell-Hearn Gerasimov sum rule(DHG)

[12, 13] vanishes. This interesting observation was �rst made for quantum electrodynamics

and also for the more general case of the SM by Altarelli, Cabibbo and Maiani [14]. Even

more generally, one can use a quantum loop expansion to show [15] that the logarithmic

integral of the spin-dependent part of the photoabsorption cross section, i.e.,

Z
1

�
th

d�

�
��Born(�) = 0 (1)

for any 2 ! 2 SM process a! bc at the Born level. The particles a; b and c are arbitrary

(so long as a carries non-zero spin!) and can be identi�ed as leptons, photons, gluons,

quarks, elementary Higgs, vector bosons, supersymmetric particles, etc. Here � is the photon

laboratory energy and ��(�) = �P (�)��A(�) is the di�erence between the photoabsorption

cross section for parallel and antiparallel photon and target helicities. Similar arguments also
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imply that the DHG integral vanishes at tree level for virtual photoabsorption processes such

as ` ! `Q �Q (with Q being a heavy fermion) and `g ! `Q �Q; the lowest order sea-quark

contribution to polarized deep inelastic photon and hadron structure functions. Of course the

sum rule does receives individual nonzero contributions in higher order perturbation theory

in the SM from quantum loop corrections and the production of higher particle number �nal

states. However, The DHG sum rule predicts that the �nal result is very small, of order �

times the square of the target's anomalous magnetic moment. The DHG sum rule thus also

provides a highly non-trivial consistency check on calculations of the polarized cross sections.

In principle, one could use measurements of the logarithmic integral of the polarized

photoabsorption cross section in Eq. (1) as a way to isolate the higher order radiative

corrections and bound the deviations from the canonical SM couplings. Some of the most

interesting applications and tests of the DHG sum rule in the SM would be to apply Eq.

(1) to the reactions  ! W+W�,  ! Z0Z0; e ! Ze, and e ! W�: The delicate

cancellation of the positive and negative contributions [16] of ��(e ! W�) to the DHG

integral calculated in Born approximation is evident in Fig. 1. On the other hand, if

the W were to have non-zero anomalous magnetic and electric quadrupole moments, i.e.,

��W ;�QW 6= 0, then the DHG integral for e! W� is not zero since the cancellations no

longer take place [13]. In fact if the W had a point-like anomalous magnetic moment, then

the DHG integral for the 2 ! 2 process diverges logarithmically at high energies.

In this paper we shall exploit the fact that the vanishing of the logarithmic integral of

�� in the Born approximation also implies that there must be a center of mass energy,
p
s
0
,

where the polarization asymmetry A = ��=� possesses a zero, i.e., where ��(e! W�)

reverses sign. We shall demonstrate the sensitivity of the position of this zero or `crossing

point' (which occurs at
p
se = 3:1583 : : : MW ' 254 GeV in the SM) to modi�cations of the
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Figure 1: The Born cross section di�erence �� for the Standard Model process e ! W�
for parallel minus antiparallel electron/photon helicities as a function of y. The logarithmic
integral of �� vanishes in the classical limit.

SM trilinear WW coupling. As we will see, given reasonable assumptions for the luminosity

and energy range for the Next Linear Collider(NLC), the zero point,
p
s0, of the polarization

asymmetrymay be determinedwith su�cient precision to constrain the anomalous couplings

of the W to better than the 1% level at 95% CL. Since the zero occurs at rather modest

energies where the unpolarized cross section is near its maximum, we will also see that an

electron-positron collider with
p
s = 320 � 400 GeV is su�cient for our analysis, whereas

other techniques [17, 18] aimed at probing the anomalous couplings through the e! W�

process require signi�cantly larger energies. In addition to the fact that only a limited range

of energy is required, the polarization asymmetry measurements have the obvious advantage

that many of the systematic errors cancel in taking cross section ratios. The position of the

zero thus provides an additional weapon in the arsenal used to probe anomalous trilinear

gauge couplings.
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II. CALCULATION OF THE POLARIZATION ASYMMETRY

The total polarization-dependent cross section for e! W�, in the case where only

the C- and P -conserving anomalous WW couplings are non-zero, can be written in the

form

� = (1� P )(�un + ��pol) : (2)

Here, �1 � P � 1 denotes the initial e� beam polarization, �pol = ��, and the Stoke's

parameter,�1 � � � 1, describes the circular polarization of the back-scattered laser photon.

p
se is the center of mass energy of the e�  collisions. We shall consider deviations from

the SM where the W has point-like (momentum-independent) anomalous magnetic and

quadrupole couplings. The polarization-dependent part of the cross section, �pol, is then

given by

�pol =
e�

32x3

h
T1 + (��+ �)2T2 ���T3 � �T4

i
; (3)

where x = y2 = se=M
2
W , e� =

p
2GF� ' 49:8 pb, and

T1 = �24� 80x+ 104x2 � 32x(3 + x) log(x) ;

T2 = x+ 2x2 � 3x3 + 4x2 log(x) ;

T3 = 48x(1� x) + 16x(2 + x) log(x) ; (4)

T4 = 64x(1� x) + 32x(1 + x) log(x) :

We have used the standard notation of Hagiwara et al.[19] for the anomalous static moments

of the W : ��W = e

2M
W

(��+�) and �QW = �e

M2

W

(����). The corresponding polarization-

independent term, �un, is given by

�un = e� hT5 +��T6 � �(� +��)T7 + �2T8 + (��+ �)2T9
i
; (5)
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where

T5 = (1 � 1

x
)(1 +

5

4x
+

7

4x2
)� (2 +

1

x
+

1

x2
)
log(x)

x
;

T6 =
�1 + x+ 2x2

2x2
� 2 + 3 log(x)

2x
;

T7 =
1

2

�
�1 + 1

x
+ log(x)

�
; (6)

T8 =
(�1 + x)2

8x
;

T9 =
1 + 2x+ x2

32x2
� 1 + (1� x) log(x)

8x
:

These results were obtained through the use of MATHEMATICA and REDUCE and di�er

somewhat in their non-SM terms from other explicit results in the literature. However, the

integration over angles of the helicity amplitudes obtained by Raidal [18] nicely reproduces

the above expressions. Note that the e�ective values of �� and � that are probed in the

e! W� reaction are for on-shell photons and may in principle di�er from those probed in

e+e� ! W+W� where the photon is time-like with q2 > 4M2
W .

In its e! W� manifestation, the DHG sum rule implies that

Z
1

1

�pol(x)

x
dx = 0 ; (7)

for the tree graph SM cross section where the couplings of all the particles involved in the

process are canonical. (The electron mass is also neglected here.) In Ref. [15] it was pointed

out that the vanishing of the above integral is due to a rather delicate cancellation between

the regions where �pol is positive (y =
p
se=MW < y0) and regions where it is negative

(y > y0). Here we denote the cross-over point where the integrand vanishes (i.e., the zero

position) by y0 ' 3:1583. in the SM case. When anomalous WW couplings are present,
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several things happen. First, since the couplings are no longer canonical the DHG sum rule

will be violated. Indeed, since the e!W� cross section is not well-behaved in the y !1
limit when these point-like anomalous couplings are non-zero, we might also expect that the

DHG integral does not even converge! This expectation is indeed realized by performing

an explicit calculation employing a cut-o� parameter, xm � 1; to leading order in x�1m we

obtain (i.e., dropping all terms of order x�2m or higher)

Z xm

1

�pol(x)

x
dx =

e�
64

"
(��+ �)2

 
13 � 6 log(xm)� 8

log(xm)

xm

!

�16� + 64
log(xm)

xm

�
1 + � +

1

2
��

�#
; (8)

where we then take xm ! 1. Here we see that non-zero values of the sum �� + � result

in the DHG integral becoming logarithmically divergent. (Of course, as x gets large new

physics e�ects, such as form factors and new particle production, arise to prevent the integral

from truly diverging. This apparent divergence is simply the result of the break down of the

point-like approximation for the anomalous couplings.) If ��W = e

2M
W

(�� + �) = 0 then

the integral converges and yields a �nite result proportional to �. Note that the well-known

radiation amplitude zero [20] (which takes place at cos � = 1 in both the d�pol and d�un

angular distributions) also occurs for this process whenever ��+ � = 0. Thus, if we could

determine the value of the DHG integral directly from experimental data it would provide

us a unique handle on possible non-zero values of �� and �.

In practice, the collider energy as well as the maximum energy fraction carried by the

backscattered laser light are restricted. For a 500 GeV (1 TeV) e+e� collider, only the range

1 � y � 5:4(10:4) is kinematically accessible. This range is far too small to allow a direct

confrontation with the sum rule since we are still very far from the asymptotic region. Thus
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Figure 2: Separate �� and � dependence of the value of y0.
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we must turn to more subtle methods.

Since the null result of the DHG sum rule arises from a delicate cancellation not

present when anomalous couplings exist it is clear that these coupling must modify both the

shape of �pol(x) as well as the location of the place where the integrand vanishes, y = y0.

Past analyses [17] have focussed on the overall shape of the polarization asymmetry, whereas

here we will focus mainly on the zero's position. Figures 2a{b show the separate �� and �

dependence of the value of y0. Several features are immediately apparent from these plots:

(i) If � = 0; then the deviation of �� from zero perturbs the value of y0 to smaller values; (ii)

if �� = 0, the variation of � from zero can push y0 in either direction depending on the sign

of �; (iii) the value of y0 shows a signi�cantly greater sensitivity to non-zero values of � than

��. Thus if measurements determine that the energy where the polarization asymmetry

changes sign is higher than that predicted by the SM, then � must be non-zero. It is also

apparent that probing the location of the asymmetry zero will lead to a stronger bound on

� than on ��.
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Figure 3: ADHG in the region near the SM value of y0. The solid curve is the SM prediction
while the others, from top to bottom on the left, are for � = �0:1; �� = �0:2; �� =
0:2; � = 0:1, respectively.
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In order to ascertain how much quantitative information we can obtain on the values

of �� and � from measuring the crossing point y0, we must perform a Monte Carlo study.

Speci�cally, we will �rst want to know the constraints we can place on these anomalous

coupling parameters if the SM situation is realized. We take the y region surrounding the

SM value of y0 and divide it into 11 bins each of width �y = 0:2. Note we have not yet tried

to optimize either bin size or the distribution of integrated luminosity. Instead of considering

�pol, we form an asymmetry using the ratio of both cross sections

ADHG(y) =
�pol(y)

�un(y)
; (9)

thus removing a number of systematic errors from the analysis. Figure 3 shows that not

only does the value of y0 change when anomalous couplings are present, but so too does

the shape of ADHG in the region near the zero. We assume as input into our Monte Carlo

study that each �y bin receives an equal integrated luminosity of 5fb�1 and that the e�

beam is 90% left-handed polarized, i.e., P = �0:90. Next we generate Monte Carlo \data"

(assuming the SM is correct) and try to �t the resulting distribution to the ��- and �-

dependent functional form of ADHG. If �(��) is zero, this procedure yields the �t shown in

the �rst line of Table 1(with 95% CL errors). If we assume that both �� and � non-zero, we

obtain the 95% CL allowed region shown in Fig. 4. As we have anticipated, we obtain a far

more restricted range of � than we do ��: We expect that somewhat better limits may be

obtainable by optimization of our parameters. Notice that we have only performed our �t

by covering the y region 2.0{4.2, which could just as well have been done by an e+e� collider

with
p
s ' 420 GeV with the same integrated luminosity.

Do the constraints improve if we �t ADHG over the entire y range accessible at a 500

GeV collider with the same total integrated luminosity? To address this question, we now

take 22 bins of width �y = 0:2 covering the range 1 � y � 5:4 with an integrated luminosity
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Figure 4: 95% CL in the ��-� plane for the 11 bin �t described in the text. `s' labels the
SM prediction.

of 2:5fb�1 per bin and re-do our �t. (We again note that we have not tried to optimize either

the bin size or the distribution of integrated luminosity; we are simply seeing the sensitivity

of our results to di�erent �t assumptions.) In the case that either �� or � is zero we �nd

the �t values displayed in Table 1. The result in the case where both anomalous coupling

parameters are non-zero is shown as the solid curve in Fig. 5. In either case we see no

substantial improvement in the bounds we can obtain on � but �tting the entire accessible

y range signi�cantly reduces the allowed range of �� at 95% CL.

If we keep the collider energy �xed and double the integrated luminosity per bin, how

do our results change for the SM example because of the improved statistics? In the case

where either �� or � is non-zero we �nd the values shown in Table 1. If both parameters are

non-zero, we obtain the allowed region shown as the dashed curve in Fig. 5. The doubling

of the statistics results in a signi�cantly smaller allowed range for both of the anomalous

coupling parameters.

How does the size of the bin a�ect these results? If we double the number of bins
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Figure 5: The solid(dashed, dash-dotted, dotted) curve corresponds to the second(third,
fourth, �fth) case described in Table 1. `s' labels the SM prediction.

(i.e., change to �y = 0:1) and keep the total integrated luminosity and center of mass energy

�xed for the same total y range, do we improve our sensitivity? In the case where either

�� or � is zero we �nd the values shown in Table 1. The result in the case where both

anomalous coupling parameters are non-zero is shown as the dash-dotted curve in Fig. 5.

In this case we see a very slight degradation of the limits obtained previously but no truly

signi�cant changes.

What happens at a 1 TeV collider with higher integrated luminosity? Since �tting

the entire distribution gave the best results in the 500 GeV case, we will consider only

this situation. We keep the bin size and integrated luminosity per bin �xed, but extend

the y range up to 10.4, and repeat the above procedure. In the case that either �� or

� vanishes we obtain (with 95% CL errors) the values in Table 1. When both anomalous

couplings are present, we obtain the 95% CL allowed region inside the dotted curve in Fig.

5. The size of the allowed region in this case is somewhat smaller than the corresponding

one obtained for the 500 GeV collider but not as signi�cantly improved as that obtained

by doubling the luminosity in the 500 GeV case. A short analysis shows that essentially all
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of the improvement in the � determination comes from increasing the integrated luminosity

whereas the improved �� determination derives both from better statistics as well as the

expanded energy range covered by the �t.

Thus given �xed integrated luminosity, the value of � is well constrained from �ts to

the data in the region near y0 whereas, the optimal limits on �� requires data �t over a

large energy range.
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Figure 6: 95% CL regions in the ��-� plane for the SM case as well as for the �� and �
values marked by an `x'. Note that these cases do not have overlapping allowed regions.

Let us now suppose that one or both �� or �, are non-zero at the percent level; can

such anomalies be distinguished from the SM? For purposes of comparison, we again consider

a 500 GeV machine with L = 55fb�1 equally distributed over 22 bins with �y = 0:2 which

covers the range 1 � y � 5:4. Figure 6 shows two simple cases with their corresponding 95%

CL ellipses: (i) �� = �0:02 with � = �0:01, and (ii) �� = 0:02 with � = 0:01. In either

case we see that the SM is excluded at 95% CL, i.e., the ellipses do not overlap the SM

result. The non-SM and SM cases are thus seen to be cleanly separated. The polarization

asymmetry zero can be used to constrain �� and � if the SM is realized, but it can also
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discover anomalous couplings if they are indeed present.
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Figure 7: Angular distribution of the polarization-dependent part of the e ! W� cross
section in the SM for y = y0. Note the radiation zero at cos � = 1 and that the integral over
cos � vanishes.

Thus far we have only considered an equal distribution of integrated luminosity in

a fairly wide region surrounding y0. What happens in the reverse scenario, i.e., when we

concentrate all of our luminosity in a single bin surrounding the SM value of y0 ' 3:158? In

this case an e+e� collider with an energy of only
p
s ' 320 GeV is needed. From the previous

discussion we expect to obtain a relatively very poor constraint on �� since the energy range

is so limited. As a benchmark, let us again take L = 55fb�1 and consider bin widths of

�y = 0:1; 0:2, and 0.3. If �� = 0, we �nd in all three cases that � = �0:0009 � 0:0086,

whereas if � = 0 we obtain instead �� = �0:028+0:107
�0:095. As anticipated, �� is relatively

poorly determined, but � is as well-constrained as in the case of the wide range 11 or 22

bin �ts. Thus an excellent bound on � can be achieved even with an e+e� collider of rather

modest center of mass energy (' 320 GeV); achieving strong limits on �� will requires a

higher energy machine.

As a last case, we take the same integrated luminosity as above and reintroduce 11,
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�y = 0:2 bins. However, instead of giving all 11 the same luminosity, we preferentially

weight the bins closest to the central bin where the SM value predicts the change in sign of

the polarized asymmetry. As an example, we take 1/2 of the total luminosity in the y = 3.05{

3.25 central bin, 1/8 in the two adjacent bins, 1/16 in the next pair and so on until the y range

2.05{4.25 is covered. (The central bin thus receives a luminosity of L = 55 � 1
2
� 64
63

fb�1.)

In this case we �nd that �� = 0:0165+0:0657
�0:1313 when � = 0 (a very poor determination, as

expected) and � = �0:0018+0:0080
�0:0085, when �� = 0. Note that this � range is quite comparable

to that found in all the other cases above with the same total luminosity. If we changed the

initial weighting fraction of 1=2 for the central bin to 1/f , with f > 1, then we obtain the

results displayed in Table 2. In all cases the �� determination is quite poor while � is well

determined.

At the crossing point of the polarization asymmetry, the integral over angles of the of

the polarization-dependent part of the e! W� cross section vanishes. By the mean value

theorem there must be an angle �0cm where the polarization-dependent part of the di�erential

cross section vanishes. This is illustrated in Fig. 7 for the case of the SM. In principle, mea-

surements of this angular zero can also be used to limit possible new physics and anomalous

couplings of the W; but the limited angular acceptance will cause a corresponding detriment

to the statistical signi�cance.

III. DISCUSSION AND CONCLUSIONS

There has been a remarkable progression of improvement in the absolute precision of

the measurements for the lepton magnetic moments { to parts in 10�8 for the electron and

parts per 10�6 for the muon [21]. The lepton g � 2 measurements exploit the fact that the

canonical Dirac coupling implies the equality of the Larmor and spin-precession frequencies

of charged particles of any non-zero spin in a constant magnetic �eld. Unfortunately, it is
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unlikely that this precise technique could be directly exploited to determine the moments of

particles as short lived as the vector bosons of the standard model.

In this paper we have exploited two other unique features implied by canonical mag-

netic and electric quadrupole couplings: (1) the fact that the logarithmic integral of the

polarized photoabsorption cross section vanishes identically, and the corollary (2) that there

exists a speci�c energy where the polarization asymmetry must reverse sign.

In particular, we have shown that measurements of the DHG integral for the pro-

cess e� ! W�� can bound the anomalous magnetic moment of the W: The polarization

asymmetry for this process is particularly sensitive to the anomalous coupling �� at high

energies. The SM also predicts that polarization asymmetry for e� ! W�� vanishes at a

precise energy
p
se = 3:1583 : : :MW ' 254 GeV in Born approximation. We have shown

that measurements of any deviation from this value can provide 95% con�dence level limits

on the W coupling � at a precision signi�cantly below 1%, assuming the projected NLC

luminosity. The precision of this polarization asymmetry measurement will bene�t from

the relatively low linear collider energy and the smaller systematic errors associated with

asymmetries.

IV. ACKNOWLEDGMENTS

We would like to thank J.L. Hewett for discussions related to this work. One of us

(TGR) also thanks the members of both the Phenomenology Institute at the University of

Wisconsin-Madison and the Argonne National Laboratory High Energy Theory Group for

the use of their computing facilities as well as their hospitality.

17



References

[1] See the talk given by M. Calvi at the XXXth Recontres de Moriond, Electroweak Inter-

actions and Uni�ed Theories, Meribel, France, March 1995.

[2] F. Abe et al., CDF Collaboration, Fermilab reports PUB-95/033-E and PUB-95/035-E,

1995.

[3] F. Abe et al., CDF Collaboration, Fermilab report PUB-95/022-E, 1995.

[4] S. Abachi et al., D0 Collaboration, Fermilab report PUB-95/028-E, 1995.

[5] G. Couture and J. Ng, Z. Phys. C35, 65 (1987); G. Couture, J. Ng, J. L. Hewett and

T. G. Rizzo, Phys. Rev. D36, 895 (1987) and Phys. Rev. D38, 860 (1988).

[6] An analysis of the relationship of anomalous couplings to internal structure for spin-1

bound states is discussed in F. Schlumpf and S. J. Brodsky, SLAC-PUB-95-6860.

[7] T. G. Rizzo, Phys. Rev.D51, 3811 (1995); A. Grifols and A. Mendez, Phys. Lett. B255,

611 (1991) and erratum Phys. Lett. B259, 512 (1991); B. Ananthanarayan and S.

D. Rindani Phys. Rev. Lett. 73, 1215 (1994); G. K�opp et al., Z. Phys. C65, 545 (1995);

F. del Aguila and M. Sher, Phys. Lett. B252, 116 (1990); R. Escribano and E. Masso,

Phys. Lett.B301, 419 (1993)and Nucl. Phys. 429, 19 (1994); W. Bernreuther, O. Nacht-

mann and P. Overmann, Phys. Rev. D48, 78 (1993); G. Couture, Phys. Lett. B305,

306 (1993)and Phys. Lett. B272, 404 (1991); G. Domokos et al., Phys. Rev. D32,

247 (1985); J. Reid, M. Samuel, K. A. Milton and T. G. Rizzo, Phys. Rev. D30, 245

(1984.)See also, P.D. Acton et al., OPAL Collaboration, Phys. Lett. B281, 305 (1992);

D. Buskulic et al., ALEPH Collaboration, Phys. Lett. B297, 459 (1992).

[8] M. S. Alam et al., CLEO Collaboration, Phys. Rev. Lett. 74, 2885 (1995).

18



[9] F. Abe et al., CDF Collaboration, Phys. Rev. Lett. 74, 1936 (1995) and CDF report

CDF-ANAL-ELECTROWEAK-CDFR-2951, 1995.

[10] S. Abachi et al., D0 Collaboration, Fermilab report PUB-95-044-E, 1995.

[11] H. Aihara et al., Report of the Subgroup on Anomalous Gauge Boson Interactions of

the DPF Long-Range Planning Study, Fermilab report PUB-95/031, 1995. For a recent

review of gauge boson self-interactions, see I. Hinchli�e, talk presented at the Interna-

tional Symposium on Vector Boson Self-Interactions, UCLA, February 1-3, 1995 and F.

Boudjema, talk given at Beyond the Standard Model IV, Lake Tahoe, CA, December

12-16, 1994.

[12] S. D. Drell and A. C. Hearn, Phys. Rev. Lett. 16, 908 (1966); S. Gerasimov, Yad.

Fiz. 2, 598 (1965) [Sov. J. Nucl. Phys. 2, 430 (1966)]; L. I. Lapidus and Chou Kuang-

Chao, J. Exptl. Theoretical Physics 41, 1545 (1961) [Sov. Phys. JETP 14, 1102 (1962)];

M. Hosada and K. Yamamoto, Prog. Theor. Phys. 36, 426 (1966). For a recent review

of the empirical tests of the DHG sum rule see B. L. Io�e, preprint ITEP-61 (1994);

D. Drechsel, University of Mainz preprint, 1994.

[13] In principle, if all elastic and inelastic contributions to the DHG integral from the new

physics were included,then the evaluation of DHG sum rule for ��(e ! X) would

yield the corresponding new physics correction to the electron anomalous moment.

[14] G. Altarelli, N. Cabibbo and L. Maiani, Phys. Lett. 40, 415 (1972).

[15] S. J. Brodsky and I. Schmidt, SLAC-PUB 95-6761 (1995).

[16] I. F. Ginzburg, G. L. Kotkin, S. L. Pan�l and V. G. Serbo, Nucl. Phys. 228, 285 (1983).

See also S. Y. Choi and F. Schrempp, Phys. Lett. 272, 149 (1991).

19



[17] The possibility of using the e ! W� process to probe for the anomalous couplings

of the W has been investigated by a number of authors. See, for example, E. Yehudai,

Phys. Rev. D41, 33 (1990); S. Y. Choi and F. Schrempp, Phys. Lett. B272, 149 (1991);

G. Couture, S. Godfrey and P. Kalyniak, Phys. Rev. D42, 1841 (1990); K. A. Peter-

son and S. Godfrey, in The Fermilab Meeting DPF92, Batavia, IL, 10-14 November

1992, (World Scienti�c, Singapore), C. H. Albright et al.eds., pp.370; K. Cheung et al.,

Phys. Rev. D51, 4 (1995).

[18] M. Raidal, Helsinki preprint HU-SEFT-R-1994-16, 1994.

[19] K. Hagiwara et al., Nucl. Phys. B282, 253 (1987).

[20] See, for example, R.W. Brown et al., Phys. Rev. D20, 1164 (1979); K.O. Mikaelian et

al., Phys. Rev. Lett. 43, 746 (1979).

[21] See the articles by T. Kinoshita and D. R. Yennie and by F.J.M. Farley and E. Picasso

in Quantum Electrodynamics, edited by T. Kinoshita, T., World Scienti�c Press (1990).

20



p
s(GeV ) L=bin fb�1 Nbins �� �

500 5 11 �0:008+0:046
�0:054 0:0004+0:0085

�0:0086

500 2.5 22 0:002+0:011
�0:012 0:0029 � 0:0086

500 5 22 0:0014+0:0087
�0:0086 0:0022+0:0062

�0:0063

500 1.25 44 0:0037+0:0139
�0:0140 0:0005 � 0:0092

1000 2.5 47 0:002 � 0:011 0:0012+0:0078
�0:0080

Table 1: 95% CL constraints on �� and � for the di�erent scenarios described in the text.

f �

1.1 �0:0008+0:0087
�0:0085

1.5 �0:0018+0:0087
�0:0085

2.0 �0:0018+0:0080
�0:0085

3.0 �0:0015+0:0087
�0:0085

4.0 �0:0012+0:0086
�0:0086

Table 2: 95% CL constraints on � for the di�erent values of the parameter f described in
the text.
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