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for calculating and comparing the tune shift and resonance
strength of di�erent orders, we introduce a scaling trans-
formation such that hT = �xĥT , hR = �xĥR, Jx = �xĴx,
and Jy = �xĴy to obtain the dimensionless one-turn map
which, after dropping the symbol ,̂ is again given by Eq. 5
except with modi�ed coe�cient values. Note that �x is the
horizontal emittance, which in PEP-II is 48 nm-rad for the
High-Energy Ring (HER) and 64 nm-rad for the the Low-
Energy Ring (LER).

In our numerical studies for PEP-II lattices, we set
�y = 1

2
�x to obtain the required vertical aperture that is

su�cient for injection and for vertical blow-up from the
beam-beam interaction. Most often we calculate the reso-
nance strength and tune shift along the 10� (10 times the
nominal beam size) ellipse r2x+

�x
�y
r2y = N2 with �x

�y
= 2 and

N = 10, where rx =
p
2Jx, and ry =

p
2Jy are radii in the

two-dimensional phase-space planes.

A. TUNE SHIFT

Using Hamilton's equations and the e�ective Hamilto-
nian hT in Eq. 5, one can obtain both horizontal (x) and
vertical (y) tune shifts as explicit polynomials in the geo-
metric invariants Jx and Jy and the chromatic amplitude
�, given by

��x(Jx; Jy; �) =
1

2�

@hT (Jx; Jy; �)

@Jx
;

and

��y(Jx; Jy; �) =
1

2�

@hT (Jx; Jy; �)

@Jy
:

To make comparison of tune shift terms of di�erent order,
we usually calculate the maximum of each term along the
10� ellipse.

B. RESONANCES

Since resonance terms (in hR) of higher orders have
larger derivatives, thereby causing larger step-sizes in phase
space, we prefer to measure the strength of a resonance
term by taking its Poisson bracket (PB) with respect to
phase space coordinates Jx; Jy; �x, and �y . From these PBs
we compute the phase-space step [2]

j�~zj =
r
[(rx��x)2 + (�rx)2] +

�x

�y
[(ry��y)2 + (�ry)2]:

We then compute the maximum value of j�~zj for all
possible values of �x; �y; Jx, and Jy with the constraint
r2x +

�x
�y
r2y = N2. This maximum is what we call the nor-

malized resonance basis coe�cient. j�~zj = 1 means that
the corresponding resonance can at most cause a phase-
space motion of 1� in one turn for a particle on the 10�
boundary.

C. A SAMPLE PLOT

Each of the tune shift and resonance terms is uniquely

represented by a set of indices (~n; ~m; p). For a map of 10th-
order, there would be thousands of terms. Although most

of the terms are essential to the lattice nonlinear behavior,
in search for improvement of the lattice, one only needs
to pay attention to a limited number of larger terms. As
an example, Figure 1 shows the normalized tune shift and
resonance coe�cients that are larger than 0.01 for a PEP-
II LER bare lattice.

0.001 10Normalized Coefficients
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Figure. 1. Normalized tune shift and resonance coe�cients
plotted in log scale horizontally. The vertical axis shows
corresponding indices (mx;my; nx; ny) for resonances and
orders. The corresponding chromatic indices, p's, are not
explicitly shown in the axis but are indicated with line
patterns (p = 0: solid, 1: dashes, 2: dots, 3: dotdashes,
etc.

IV. nPB TRACKING AND ITS RELIABILITY

The normalized tune shift and resonance coe�cients
described in the last section can help us indentify a limited
number of terms that would degrade the dynamic aper-
ture. To understand deeper and con�rm more precisely
their individual impacts on the dynamic aperture, we can
freely change the corresponding coe�cients and then eval-
uate the updated resonance basis map to see the change of
the dynamic aperture.

To evaluate a resonance basis map, we directly take
Poisson bracket expansion of the resonance basis Lie gener-
ators to a suitable (n) order and so the name of nPB track-



ing. The procedure of nPB tracking is basically to perform
turn-by-turn tracking of the particle phase-space coordi-
nates. This is done by evaluating the one-turn map given
by Eq. 2 followed by an update of the particle momentum
deviation (�) through an accurate but concise time-of-
ight
map. Note that in evaluating the Lie transformation, the
Lie generator, f = �hT � hR, is kept in the action-angle
variable space while the particle phase-space coordinates
are always kept in Cartesian coordinates which are consid-
ered as functions of the action-angle variables for the Pois-
son bracket calculation | this is the key to the fast com-
putational speed of the nPB tracking since all the Sines
and Cosines can be calculated only once and stored for re-
peated turn-by-turn tracking [3].

As to the reliability of the nPB tracking, one may
be concerned with the fact that the nPB tracking is not
100% accurate since the map is truncated at a moderate
order and not 100% symplectic since one does not carry
the Poisson bracket expansion to the in�nite order. How-
ever, it is well understood that the required accuracy and
symplecticity depend on circumstances [4]. For the PEP-II
lattice dynamic aperture studies (only 1024 turns needed
because of synchrotron radiation damping), from numer-

ous tests we have concluded that a 10th-order map with
3-Poisson-bracket expansion of the Lie transformation is
accurate and symplectic enough. It takes about 1 minute

with such a 10th-order map, 3PB tracking on a RISC work-
station to obtain a dynamic aperture plot at a given work-
ing point, which would otherwise have taken a few hours
with element-by-element tracking.

V. SWAMP PLOTS FROM nPB TRACKING

The fast computational speed of nPB tracking allows
fast calculation of dynamic aperture and so one can obtain
a swamp plot for a given lattice in a reasonable time. To ob-
tain a swamp plot with the nPB tracking, one would follow
exactly the nPB tracking procedures described in Section
IV, except that one would increment the working tunes �x
and �y, while keeping all other terms in the resonance ba-
sis map �xed, to obtain dynamic apertures throughout the
tune plane. This is equivalent to using element-by-element
tracking and inserting an exactly matched linear trom-
bone to switch the working tunes without further chang-
ing the lattice. In our practice, we have generally found
such swamp plots very informative. They have helped us
in evaluating and improving the PEP-II lattices. Occasion-
ally we would check a few spots of a swamp plot against
corresponding element-by-element trackings to ensure that
there are no surprises.

Some typical PEP-II lattice swamp plots can be found
in Ref. [5].

VI. BEAM-BEAM WITH nPB TRACKINGS

The fast speed of the nPB tracking allows one to in-
clude the arc lattice as a nonlinear resonance-basis map for
beam-beam simulations. To further enhance the tracking
speed, one can even drop irrelevant resonance terms. As an

example, shown in Figure 2 are the beam tail distributions
of the PEP-II HER ��y = 2:0cm lattice with and without
nonlinear terms in the one-turn map.

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

0 2 4 6 8 10

A
y

Ax

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

0 2 4 6 8 10
Ax

(a) (b)

Figure. 2. The beam tail distribution of PEP-II HER:
(a) with linear lattice, and (b) additionally including tune-
shift-with-amplitude terms.

VII. SUMMARY

The one-turn mapping procedures described above
have been important for PEP-II lattice development. Dur-
ing the course of numerous PEP-II lattice updates, we
were able to identify important tune shift and resonance
terms that would degrade the dynamic aperture. We then
con�rmed and understood their individual impacts on the
dynamic aperture with nPB tracking and swamp plots,
thereby improving the lattice.
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