Work supported by Department of Energy contract DE-AC03-76SF00515.


|  | se pəssəıIdxə әq Uеэ <br>  |
| :---: | :---: |
|  |  |
|  |  |





deJ stseg əәueuosəy uanL-əu( əчL •II

 vidual impact on the dynamic aperture.

 formations, one not only can achieve a very fast tracking


 onance terms of different orders. These terms can be suit-
ably normalized for comparisons among themselves or with Contained in the Lie generators are tune-shift and res-
onance terms of different orders. These terms can be suit-



 advertent errors in the lattice and control files can remain point and one set of lattice parameters. Furthermore, inthe fact that information is obtained at only one working кq pəұ!u! $\ddagger$ qnq [ [ृ!
 Fast beam-beam simulations can be performed with the in-
clusion of nonlinear lattice effects. Examples from studies
of the PEP-II lattices are given. energy, and resonance strengths may be freely changed to
probe their individual impact on the dynamic aperture.



 Floquet transformation such that
$\qquad$ Courant-Snyder parameters, $\alpha, \beta$, and $\gamma$ are all included in ate the Floquet transformation. The dispersion, $\eta$, and the and its inverse $\mathcal{A}^{-1}(\vec{z}, \delta)$ are the 4 -by- 5 matrices that gener where $\mathcal{R}(\vec{z})$ is one-turn pure rotational map in the 4
dimensional transverse canonical phase-space, and $\mathcal{A}(\vec{z}, \delta)$ phase-space coordinate vector after one turn. phase-space coordinate vector and $\vec{Z}=\left(X, P_{x}, Y, P_{y}\right)$ is the where $\emptyset(N+1)$ indicates that the Taylor map is truncated
convenience, one obtains a one-turn map

sions. For convenience in directly using these coefficients cients in the polynomials $h_{T}$ and $h_{R}$ have different dimen

 SLNGIDIA AGOD GDNV NOSAX
III. NORMALIZATION OF TUNE SHIFT AND

also grouped and represented by $h_{R}\left(J_{x}, J_{y}, \theta_{x}, \theta_{y}, \delta\right)$. Thus
the one-turn map given by Eq. 3 can be written as remaining terms, all with angular variable dependence, are grouped together and represented by $h_{T}\left(J_{x}, J_{y}, \delta\right)$. The where the terms with $m_{x}=m_{y}=0$ are the tune shift
terms [1]. For convenience, all these tune shift terms are -

## $\sum_{\vec{n} p} a_{\vec{n} \vec{m} p}\left(2 J_{x}\right)^{\frac{n_{x}}{2}}\left(2 J_{y}\right)^{\frac{x_{y}}{2}} \delta^{p} \cos \left(m_{x} \theta_{x}+m_{y} \theta_{y}+\phi_{\vec{n} \vec{m} p}\right)$

 $f(\vec{z}, \delta)=$ and $\theta_{y}$ are action-angle variables. One then obtains ng of the rotational eigen-modes, $\hat{x}_{ \pm}=x \mp i p_{x}=$ The polynomial $f(\vec{z}, \delta)$ of the Lie transformation inEq. 3 can be decomposed in a complete basis consist- $\stackrel{N}{*}$

Abstract

Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309 USA Storage Ring Lattices Using One-Turn Maps
Y.T. Yan, J. Irwin, and T. Chen $\vec{Z}=\vec{U}(\vec{z}, \delta)+\emptyset(N+1)$, , (1)
for calculating and comparing the tune shift and resonance strength of different orders, we introduce a scaling transformation such that $h_{T}=\epsilon_{x} \hat{h}_{T}, h_{R}=\epsilon_{x} \hat{h}_{R}, J_{x}=\epsilon_{x} \hat{J}_{x}$, and $J_{y}=\epsilon_{x} \hat{J}_{y}$ to obtain the dimensionless one-turn map which, after dropping the symbol $\hat{\text {, }}$, is again given by Eq. 5 except with modified coefficient values. Note that $\epsilon_{x}$ is the horizontal emittance, which in PEP-II is $48 \mathrm{~nm}-\mathrm{rad}$ for the High-Energy Ring (HER) and 64 nm -rad for the the LowEnergy Ring (LER).

In our numerical studies for PEP-II lattices, we set $\epsilon_{y}=\frac{1}{2} \epsilon_{x}$ to obtain the required vertical aperture that is sufficient for injection and for vertical blow-up from the beam-beam interaction. Most often we calculate the resonance strength and tune shift along the $10 \sigma$ (10 times the nominal beam size) ellipse $r_{x}^{2}+\frac{\epsilon_{x}}{\epsilon_{y}} r_{y}^{2}=N^{2}$ with $\frac{\epsilon_{x}}{\epsilon_{y}}=2$ and $N=10$, where $r_{x}=\sqrt{2 J_{x}}$, and $r_{y}=\sqrt{2 J_{y}}$ are radii in the two-dimensional phase-space planes.

## A. TUNE SHIFT

Using Hamilton's equations and the effective Hamiltonian $h_{T}$ in Eq. 5, one can obtain both horizontal (x) and vertical (y) tune shifts as explicit polynomials in the geometric invariants $J_{x}$ and $J_{y}$ and the chromatic amplitude $\delta$, given by

$$
\Delta \nu_{x}\left(J_{x}, J_{y}, \delta\right)=\frac{1}{2 \pi} \frac{\partial h_{T}\left(J_{x}, J_{y}, \delta\right)}{\partial J_{x}}
$$

and

$$
\Delta \nu_{y}\left(J_{x}, J_{y}, \delta\right)=\frac{1}{2 \pi} \frac{\partial h_{T}\left(J_{x}, J_{y}, \delta\right)}{\partial J_{y}}
$$

To make comparison of tune shift terms of different order, we usually calculate the maximum of each term along the $10 \sigma$ ellipse.

## B. RESONANCES

Since resonance terms (in $h_{R}$ ) of higher orders have larger derivatives, thereby causing larger step-sizes in phase space, we prefer to measure the strength of a resonance term by taking its Poisson bracket ( PB ) with respect to phase space coordinates $J_{x}, J_{y}, \theta_{x}$, and $\theta_{y}$. From these PBs we compute the phase-space step [2]

$$
|\Delta \vec{z}|=\sqrt{\left[\left(r_{x} \Delta \theta_{x}\right)^{2}+\left(\Delta r_{x}\right)^{2}\right]+\frac{\epsilon_{x}}{\epsilon_{y}}\left[\left(r_{y} \Delta \theta_{y}\right)^{2}+\left(\Delta r_{y}\right)^{2}\right]} .
$$

We then compute the maximum value of $|\Delta \vec{z}|$ for all possible values of $\theta_{x}, \theta_{y}, J_{x}$, and $J_{y}$ with the constraint $r_{x}^{2}+\frac{\epsilon_{x}}{\epsilon_{y}} r_{y}^{2}=N^{2}$. This maximum is what we call the normalized resonance basis coefficient. $|\Delta \vec{z}|=1$ means that the corresponding resonance can at most cause a phasespace motion of $1 \sigma$ in one turn for a particle on the $10 \sigma$ boundary.

## C. A SAMPLE PLOT

Each of the tune shift and resonance terms is uniquely represented by a set of indices $(\vec{n}, \vec{m}, p)$. For a map of $10^{\text {th }}$ order, there would be thousands of terms. Although most
of the terms are essential to the lattice nonlinear behavior, in search for improvement of the lattice, one only needs to pay attention to a limited number of larger terms. As an example, Figure 1 shows the normalized tune shift and resonance coefficients that are larger than 0.01 for a PEPII LER bare lattice.


Figure. 1. Normalized tune shift and resonance coefficients plotted in $\log$ scale horizontally. The vertical axis shows corresponding indices ( $m_{x}, m_{y}, n_{x}, n_{y}$ ) for resonances and orders. The corresponding chromatic indices, p's, are not explicitly shown in the axis but are indicated with line patterns ( $\mathrm{p}=0$ : solid, 1: dashes, 2: dots, 3: dotdashes, etc.

## IV. nPB TRACKING AND ITS RELIABILITY

The normalized tune shift and resonance coefficients described in the last section can help us indentify a limited number of terms that would degrade the dynamic aperture. To understand deeper and confirm more precisely their individual impacts on the dynamic aperture, we can freely change the corresponding coefficients and then evaluate the updated resonance basis map to see the change of the dynamic aperture.

To evaluate a resonance basis map, we directly take Poisson bracket expansion of the resonance basis Lie generators to a suitable ( $n$ ) order and so the name of nPB track-
ing. The procedure of nPB tracking is basically to perform turn-by-turn tracking of the particle phase-space coordinates. This is done by evaluating the one-turn map given by Eq. 2 followed by an update of the particle momentum deviation ( $\delta$ ) through an accurate but concise time-of-flight map. Note that in evaluating the Lie transformation, the Lie generator, $f=-h_{T}-h_{R}$, is kept in the action-angle variable space while the particle phase-space coordinates are always kept in Cartesian coordinates which are considered as functions of the action-angle variables for the Poisson bracket calculation - this is the key to the fast computational speed of the $n P B$ tracking since all the Sines and Cosines can be calculated only once and stored for repeated turn-by-turn tracking [3].

As to the reliability of the $n \mathrm{nB}$ tracking, one may be concerned with the fact that the nPB tracking is not $100 \%$ accurate since the map is truncated at a moderate order and not $100 \%$ symplectic since one does not carry the Poisson bracket expansion to the infinite order. However, it is well understood that the required accuracy and symplecticity depend on circumstances [4]. For the PEP-II lattice dynamic aperture studies (only 1024 turns needed because of synchrotron radiation damping), from numerous tests we have concluded that a $10^{\text {th }}$-order map with 3-Poisson-bracket expansion of the Lie transformation is accurate and symplectic enough. It takes about 1 minute with such a $10^{\text {th }}$-order map, 3 PB tracking on a RISC workstation to obtain a dynamic aperture plot at a given working point, which would otherwise have taken a few hours with element-by-element tracking.

## V. SWAMP PLOTS FROM nPB TRACKING

The fast computational speed of nPB tracking allows fast calculation of dynamic aperture and so one can obtain a swamp plot for a given lattice in a reasonable time. To obtain a swamp plot with the nPB tracking, one would follow exactly the nPB tracking procedures described in Section IV, except that one would increment the working tunes $\mu_{x}$ and $\mu_{y}$, while keeping all other terms in the resonance basis map fixed, to obtain dynamic apertures throughout the tune plane. This is equivalent to using element-by-element tracking and inserting an exactly matched linear trombone to switch the working tunes without further changing the lattice. In our practice, we have generally found such swamp plots very informative. They have helped us in evaluating and improving the PEP-II lattices. Occasionally we would check a few spots of a swamp plot against corresponding element-by-element trackings to ensure that there are no surprises.

Some typical PEP-II lattice swamp plots can be found in Ref. [5].

## VI. BEAM-BEAM WITH nPB TRACKINGS

The fast speed of the nPB tracking allows one to include the arc lattice as a nonlinear resonance-basis map for beam-beam simulations. To further enhance the tracking speed, one can even drop irrelevant resonance terms. As an
example, shown in Figure 2 are the beam tail distributions of the PEP-II HER $\beta_{y}^{*}=2.0 \mathrm{~cm}$ lattice with and without nonlinear terms in the one-turn map.


Figure. 2. The beam tail distribution of PEP-II HER: (a) with linear lattice, and (b) additionally including tune-shift-with-amplitude terms.

## VII. SUMMARY

The one-turn mapping procedures described above have been important for PEP-II lattice development. During the course of numerous PEP-II lattice updates, we were able to identify important tune shift and resonance terms that would degrade the dynamic aperture. We then confirmed and understood their individual impacts on the dynamic aperture with nPB tracking and swamp plots, thereby improving the lattice.

## VIII. ACKNOWLEDGEMENT

One of the authors (YTY) thanks John Seeman for his patience in waiting for the development of these non-linear analysis tools for PEP-II lattice studies.

## References

[1] For more accurate tune shift calculation, one should use nonlinear normal form.
[2] J. Irwin, N. Walker, and Y. Yan, "The Application of Lie Algebra Methods to the PEP-II Design," SLAC-PUB-95-6779, in Proc. of the 4th EPAC, p. 899 (1994).
[3] J. Irwin, T. Chen, and Y. Yan, "A fast tracking method using resonance basis Hamiltonians," SLAC-PBU-956727.
[4] Y.T. Yan, "Application of differential algebra to singleparticle dynamics in storage rings", in Physics of Particle Accelerators, AIP Conf. Proc. No. 249, edited by M. Month, and M. Diene (AIP, New York, 1992), p. 378.
[5] Y.T. Yan, at al., "Swamp Plots for Dynamic Aperture Studies of PEP-II Lattices," SLAC-PUB-95-6876, also in these proceedings.

