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Abstract

The PEP-II experimental detector includes a strong
1.5 T solenoid field in the interaction region (IR). With
the fringe fields, the solenoid extends over a range of 6 m.
Additional complications are that 1) it is displaced longi-
tudinally from the interaction point (IP) by about 40 cm,
2) neither beam is parallel to the solenoid axis, and 3) the
solenoid overlaps a dipole and a quadrupole on either side
of the IP. In each half IR the correction system includes
a set of skew quadrupoles, dipole correctors and normal
quadrupoles to independently compensate the coupling, or-
bit perturbation, dispersion and focusing effect produced
by the solenoid. The correction schemes for the Low En-
ergy Ring (LER) and for the High Energy Ring (HER) are
described, and the impact on the dynamic aperture is eval-
uated.

[. INTRODUCTION

The current design of the PEP-II experimental detec-
tor calls for a 1.5 T solenoid field. The solenoid length, in-
cluding fringe fields, is about 6 m, and the total integrated
field is 5.7 Tm. The different beam energies, 3.1 GeV for
positrons and 9 GeV for electrons, mean that displacing
the solenoid center about 40 ¢cm in the direction of the high
energy beam (HEB) improves the detector acceptance of
the particles produced in the beam collision. The solenoid
overlaps a horizontal dipole B1 and the first final doublet
(FD) quadrupole QD1 on each side of the TP. Therefore a
superposition of magnetic fields exists in these magnets.

The beams are horizontally separated in Bl and in
QD1 making the trajectories of the two beams neither iden-
tical nor parallel to the solenoid field. The resulting angle
between the beams and the solenoid axis leads to a pertur-
bation of the vertical orbit. The low energy beam (LEB),
generally, experiences a larger orbit perturbation. With an
antisymmetric beam trajectory about the IP, the effect on
the LEB can be reduced by adjusting the horizontal tilt
angle between the solenoid direction and the beam at the
IP. This will bring the LEB closer to the solenoid axis and
will provide partial cancellation of the orbit perturbation.
The optimum tilt angle for the PEP-II solenoid is about
20 mrad which provides a compromise for the orbits of both
beams. The top view of the solenoid with respect to the
beam trajectories is shown in Figure 1.
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Figure 1. Top view of the beam orbits in the solenoid.

II. SOLENOID FIELD MODEL

In our calculations we used a simplified solenoidal field
model which assumes a constant 1.5 T field over the effec-
tive length of 3.8 m. Figure 2 shows the shape of the model
(solid line) and of the realistic field (dash). The main dif-
ference is that the realistic field has an extended soft fringe
field while the model solenoid has hard edges.

We used the MAD code [2] for numerical analysis.
Currently, there 1s no provision in MAD for a quadrupole
or a dipole superimposed with a solenoid, so we used an
approximation to model the lattice. Within the solenoid,
the B1 and QD1 magnets were replaced by the same length
solenoid magnets sliced in 5 cm pieces, and a thin lens
dipole or a quadrupole magnet was placed in the middle of
each piece to produce the effect of B1 or QD1. The solenoid
pieces in the model are aligned along the beam and will not
generate orbit perturbations. To simulate the orbit effect,
additional thin lens orbit kickers were uniformly distributed
through out the solenoid. The kicker strength was calcu-
lated according to the beam orientation in the solenoid.

At the end of the solenoid the beams are not centered
on the solenoid axis and, thus, receive a vertical orbit kick
from the fringe field. In the model we simulated an off-
centered fringe field by using a coordinate transformation
in MAD.

The orbit effect was verified independently with the
code MAGBENDS [3] which uses the superimposed mag-
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Figure 2. The model and the realistic solenoid field.



netic field from all elements, and a realistic solenoid fringe
field. There is reasonable agreement between the two mod-
els, and the difference can be accounted for by different
fringe models.

IIT. CORRECTION STRATEGY

The following solenoid effects need to be corrected:
1) the coupling between x and y betatron oscillations,
2) vertical and horizontal orbit perturbations, 3) vertical
dispersion distortion, and 4) solenoid focusing. Our goal
was to cancel these effects at the IP and everywhere outside
the IR. The asymmetry of the solenoid requires an indepen-
dent local correction system on each side of the IP. Gen-
erally, for each half TR we need: 1) six skew quadrupoles
to compensate the coupling and vertical dispersion, 2) two
vertical and two horizontal orbit correctors, and 3) eight
variable normal quadrupoles to match the Twiss functions
and the horizontal dispersion.

Due to the simplecticity of a transfer matrix there are
four independent coupling coefficients. In matrix formalism
the betatron coupling is described by the off-diagonal 2x2
matrix in the 4x4 transfer matrix. Therefore, for local
coupling correction we need to cancel the (1,3), (1,4), (2,3)
and (2,4) terms in the transfer matrix between the TP and
the end of the IR. Similarly, the vertical dispersion can be
described by (3,6) and (4,6) terms in a 6x6 matrix.

For analysis of the optimum skew quadrupole positions
we used the projection method developed in Reference [1].
In this approach, an original lattice with distributed cou-
pling elements is replaced by an equivalent lattice with the
same transfer matrix; but with all coupling elements placed
at one point, usually the IP. The matrices of the coupling
elements have to be modified after this transformation. For
instance, an original matrix @ of a thin skew quadrupole
will be replaced by a new matrix R = M~ QM , where M
is an uncoupled matrix from the IP to the original posi-
tion of the quadrupole. With all coupling elements placed
at one point, the rest of the lattice is decoupled, and the
coupling terms will add at the IP. It is, therefore, easy to
analyze the effect from different coupling elements.

Consider one half of the IR starting from the IP.
Suppose the Twiss functions at the original position of
a thin skew quadrupole are 3, o and u. The equivalent
quadrupole at the IP will have a new transfer matrix with
the following terms:
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where f = g—‘;% is a quadrupole strength, ¢ = f+/3z 5y,

g% 1s a f-function at the IP, C' = cosu, S = sinu and
D, is the horizontal dispersion at the original position of a
skew quadrupole. The optimum positions for four coupling

correctors will be at (po, py) = (7/2,0), (x/2, 7/2), (0, 0)
and (0, 7/2) (mod =), in which case each skew quadrupole
generates only one non-zero coupling term at the IP, thus
providing an orthogonal correction. The other two skew
quadrupoles will provide an orthogonal vertical dispersion
correction if placed at y, = 0 and 7/2 (mod 7) where D,
is large.

In a similar way, the solenoid can be moved to the IP.
The projected solenoid transfer matrix, which can be calcu-
lated numerically using MAD, is equal to S = M, “M,,,
where M is a matrix from the IP to the end of a solenoid,
for the solenoid turned off and on, respectively. For a non-
overlapped solenoid only two major coupling terms would
exist, (1,3) and (2,4), which is just the rotation angle of the
betatron planes. The interaction between the solenoid and
the quadrupole gives rise to the other two coupling terms.
Figure 3 shows how these terms depend on the overlap with
the B1 and QD1 magnets. The results correspond to the
longer side of the solenoid in the LER, where the effect on
the beam is the largest. In Figure 3 the solenoid starts at
the IP and its length L is varied from 0.5 m to the nominal
value of 2.3 m, while the integrated field stays constant at
3.45 Tm. For a non-overlapping solenoid (dashed line) the
coupling terms are almost constant with L. If the B1 and
QD1 magnets are present, then the terms start changing
after the solenoid expands into QD1 located at 0.9 m from
the TP (solid line).

Figure 4 shows the skew quadrupole terms projected
to the IP as a function of position in the IR. The terms
vary according to formulas (1), and the skew quadrupole
strength was fixed at 10% of the main arc quadrupole
strength. The corresponding solenoid term at the IP is
shown by a dashed line. Note, that the hardest solenoid
term to correct in this case is the (1,4) term. Tt is gen-
erated from the overlapped QD1 and grows quadratically
with the overlapped length. This term is much smaller for
the shorter side of the solenoid since QD1 is not fully over-
lapped on this side. In a real lattice it is usually not pos-
sible to find the ideal phase positions for the quadrupoles.
Therefore, all six quadrupoles may generate all six terms,
and a combined set of equations has to be solved.

To locally compensate the orbit at the IP, the general
strategy is to use two dipole correctors for each half IR and
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Figure 3. Projected solenoid coupling terms at the IP.
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Figure 4. Projected skew quadrupole terms at the IP.

for each betatron plane, and to locate them at orthogonal
phase positions of 0 and #/2 (mod 7) from the IP.

Finally, the focusing perturbation has to be corrected
with a minimum of eight variable normal quadrupoles in
each half IR. The solenoid focuses in both planes. For the
LEB it generates a quadrupole component that is about
1% of the QD1 strength. The skew quadrupoles affect the
optics as well. More normal quadrupoles can be varied if
additional constraints are imposed. For instance, in order
to minimize perturbation of the chromaticity correction, we
kept the g-functions and phases unchanged at the local sex-
tupole positions with the solenoid on. In all, in each half IR
we adjusted the two FD quadrupoles by 1-2% in strength,
11 normal quadrupoles in the LER, and 9 quadrupoles in
the HER.

IV. RESULTS

We tried a variety of possible skew quadrupole posi-
tions in order to minimize their maximum strength. Skew
quadrupole positions next to the local sextupoles are effec-
tive because of the large § function and because the —71
transformation between the two skew quadrupoles makes
it possible to independently control the coupling and the
vertical dispersion. On the longer side of the solenoid the
important skew quadrupole position is near the final dou-
blet, where the [ values are large and the phase provides
the best correction of the (1,4) term. Because of the large
orbit perturbation, the first vertical orbit corrector was
placed near the FD. We did not place any elements for the
solenoid correction between the paired local sextupoles in
order to preserve the —I transformation. The positions of
the skew quadrupoles and of the orbit correctors on two
sides of the IR are symmetric about the IP.

All correction strengths were calculated numerically
using MAD. Table 1 shows the skew quadrupole strengths
for the two rings that independently compensate the long
and the short side of the solenoid. The strongest skew

Corrector LER HER
name Long | Short Long | Short
SQ1 -0.07210 | 0.01479 | -0.00389 | 0.00076
SQ2 0.02405 | -0.00502 | 0.00369 | -0.00110
SQ3 -0.00434 | -0.00052 | -0.00039 | -0.00003
SQ4 0.00271 | -0.00110 | 0.00054 | 0.00012
SQ5b 0.02638 | -0.02020 | 0.00861 | -0.00455
SQ6 0.00866 | -0.01176 | 0.00202 | -0.00360
Ly dB,

(m™1).

Table 1: Skew quadrupole strength Ty dr

quadrupole occurs in the LER near the final doublet, on
the longer side of the solenoid, to correct the (1,4) term.

Orbit perturbations caused by the solenoid in the LER
are shown in Figure 5. If a soft fringe field is included in-
stead of the hard solenoid edges, then the maximum verti-
cal orbit would be slightly larger than 6 mm.
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Figure 5. Orbit due to solenoid in the LER.

Finally, the effect of the solenoid on dynamic aperture
was evaluated. Typical reduction of the aperture due to
the solenoid is about 2-4¢, and the final aperture including
machine errors is close to 100. An example of the LER
short term dynamic aperture with the solenoid is shown in
Figure 6.
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Figure 6. LER dynamic aperture for 5 seeds (dash).
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