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We give a closed-form expression for the thick beam-
beam interaction for a small disruption parameter, as
typical in electron-positron storage rings.  The dependence
on transverse angle and position of the particle trajectory as
well as the longitudinal position of collision and the waist-
modified shape of the beam distribution are included.
Large incident angles, as are present for beam-halo
particles or for large crossing-angle geometry, are
accurately represented.  The closed-form expression is well
approximated by polynomials times the complex error
function.  Comparisons with multi-slice representations
show even the first order terms are more accurate than a
five slice representation, saving a factor of 5 in
computation time.

I. INTRODUCTION

S. Krishnagopal and R. Siemann[1] have established
that it is essential to retain the finite longitudinal thickness
of the beam when simulating the beam-beam interaction.
Present beam-beam simulation codes[2] represent the thick
interaction as a set of thin beam-beam kicks.   Since the
thin beam-beam kick for a bi-Gaussian distribution is
usually represented by the Erskine-Bassetti[3] formula
involving the evaluation of two complex error functions,
the calculation is computer intensive and the representation
of the thick beam-beam interaction as a set of slices slows
down the simulation by a factor roughly equal to the
number of slices.   To find a thick beam-beam generator,
we represent the thin beam-beam kick by an exponential
Lie map, and the thick beam-beam interaction by an
infinite product of thin beam-beam kicks.  We then use the
Cambell-Baker-Hausdorff formula to compose this product
to a single exponential map.

II. THE THIN BEAM-BEAM KICK

S. Kheifets[4] has shown that the potential for the
Erskine-Bassetti thin beam-beam kick is given by

dV(x, y,σ x
2 ,σ y

2 ) = dN
2re

γ
I(x, y,σ x

2 ,σ y
2 ) (1)

where dN is the number of electrons in the thin sheet, re is
the classical electron radius, γ is the Lorentz factor of the
particle, and I(x,y,σx2, σy2) is the (dimensionless) integral

I(x, y,σ x
2 ,σ y

2 ) = dλ ⋅ g(x,
0

∞

∫ σ x
2 ,λ ) ⋅ g(y,σ y

2 ,λ ) (2)

The function

g(x,σ x
2 ,λ ) = 1

π
⋅ e

−
x 2

(2σ x
2 +λ )

2σ x
2 + λ

(3)

is a normalized Gaussian distribution of rms width
(σx2+λ/2)1/2 and a solution of the diffusion equation,
1
2

∂ 2

∂x2 g(x,σ x
2 ,λ ) = ∂

∂σ x
2 g(x,σ x

2 ,λ ) . (4)

The vertical and horizontal kicks from the potential dV
are given by the Erskine-Basseti formula[3] as

∆ ′y + i∆ ′x = dN
4re

γ
π

σ
w(z1) − e

−(
x 2

2σ x
2

+ y2

2σ y
2

)

w(z2 )












(5)
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∫
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is the complex error function. The map for this kick may be
represented as an exponential Lie map by[5]  M = e−:dV :.  (7)

III. THE THICK BEAM-BEAM MAP

We assume the longitudinal particle density is also
Gaussian and given by

ρ(s − s0 ,σ s ) = 1

2πσ s
2

e
−

(s−s0 )2

2σ s
2 . (8)

The potential for a small slice of thickness ds at
position s will be given by

dV = ρ(s − so ,
σ s

2
)ds

2Nre

γ
I(x(s), y(s),σ x

2 (s),σ y
2 (s)) (9)

since the beam distribution as seen by the counter-moving
particle is fore-shortened by a factor of 2.  The coordinate
s0 = c τ /2  is the location of the center of the bunch as
experienced by a counter-moving particle whose time of
arrival at the interaction point (IP) is delayed by τ. The map
through a set of n slices is given by

M = e
− :ρ (s j −so ,

σ s

2
) ds j

2 Nre

γ
I ( x (s j ),y(s j ),σ x

2 (s j ),σ y
2 (s j )):











j =1

n

∏ (10)

where s j is the longitudinal position of the center of the
slice of width dsj.

The first-order Cambell-Baker-Hausdorff (CBH)
formula can be invoked to obtain, in the limit of very
small slices,

M ≈ e−:G1 : = e
−

2 Nre

γ
⋅ ds⋅∫ ρ (s−so ,

σ s

2
)⋅ds⋅I ( x (s),y(s),σ x

2 (s),σ y
2 (s)):











j =1

n

∏ (11)



The transverse position of the particle may be written x(s)
= x0 + (s-s0) x’0   and y(s) = y0 + (s-s0) y’0, where x0 ,
x’0 , y0 and y’0 are the particle’s position and slope at
s=s0.  Also σ x(s)2=σx2 + s2σx’2 and σy(s)2=σy2 +
s2σy’2 describe the longitudinal shape of the waist with
σx, σx’, σy, and σy’ being the rms values of the position
and slope of the beam distribution at the interaction point
(IP).

The first-order CBH formula implicitly assumes that
the trajectory of the particle is not changed by the
interaction, and hence it represents an integrated impulse
approximation.  The accuracy of this impulse
approximation may be estimated by noting that for electron
storage rings we have
 ∆ ′ymax

σ ′y

= ∆θ y,max = 4πξ y ≤ 0.4

where we have taken the beam-beam tune-shifts  ξy = 0.03.
The second-order correction can be estimated through a
two-slice approximation as:

∆ ′y2 = ∆y ⋅ ∂
∂y

1
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∆ ′y1






≅ σ s

1
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∆ ′y1






⋅ ∂
∂y

1
2

∆ ′y1






≤ 1
4

σ s∆ ′y1 ⋅ ∆ ′ymax

σ y

from which we deduce that
∆ ′y2

∆ ′y1

≤ 1
4

∆ ′ymax

σ ′y

≤ 0.1       implying       
∆ ′y2

σ ′y

≤ 0.04 

To achieve better than 4% accuracy it will be necessary to
include second-order effects.

1. The first-order CBH integral

To find the generator for the thick beam-beam
interaction we must perform the integral in equation (11).
If we begin by assuming x′ 0 = σx′ = σy′ = 0  the integral to
be performed, after changing the order of the s and λ
integration, is

Q1 = ds ⋅ρ(s − s0 ,
σ s

2∫ ) ⋅ g(y0 + (s − s0 ) ′y0 ,σ y
2 ,λ ) (12)

For simplicity we introduce the variables

 ŝ = (s − s0 )

(
σ s

2
)

  and ˆ′y0 = ′y0 ⋅ (σ s

2
).

We evaluate this integral, in a way that will later allow
us to manage the full s dependence, by introducing a
translation operator to represent

g(y0 + ŝ ⋅ ˆ′y ,σ y
2 ,λ ) = e

ŝ ⋅ ˆ ′y
∂

∂y0 g(y0 ,σ y
2 ,λ ). (13)

We combine the ŝ  dependence of the translation operator

e
ŝ ⋅ ˆ ′y

∂
∂y0  with the ŝ  dependence of  ρ(ŝ,1) and then

complete the square, to obtain

ρ(ŝ,1) ⋅ e
ŝ ˆ ′y

∂
∂y0 = ρ(ŝ − ˆ′y

∂
∂y0

,1) ⋅ e
1

2
ˆ ′y 2 ∂ 2

∂y0
2

(16)
The integral over dŝ  can now be performed by

translating ρ:

dŝ ⋅ρ(ŝ − ˆ′y
∂

∂y0
∫ ,1) = dŝ ⋅ e

− ˆ ′y
∂

∂y0

∂
∂s∫ ρ(ŝ,1)

= dŝ ⋅ 1
n!∑∫ (− ˆ′y

∂
∂y0

)n ∂ n

∂ŝ n ρ(ŝ,1) = 1
(17)

Hence we have

Q1 = e
1

2
ˆ ′y 2 ∂ 2

∂y0
2

⋅ g(y0 ,σ y
2 ,λ ) (18)

Since g is a solution of the diffusion equation

Q1 = e
ˆ ′y 2 ∂ 2

∂σ y
2

⋅ g(y0 ,σ y
2 ,λ ) = g(y0 .σ y

2 + ˆ′y 2 ,λ ) (19)
This result for Q1 implies that the thick beam-beam

potential for the case x’0 = σx’ = σy’ = 0 is just the original
potential with σ y

2 . replaced by σ y
2 + ˆ′y 2 .

Next we perform the integral with only σx’ = σy’ = 0 .

Q2 = dŝ ⋅ρ(ŝ,1) ⋅∫ g(x0 + ŝ ˆ′x ,σ x
2 ,λ ) ⋅ g(y0 + ŝ ′ŷ ,σ y

2 ,λ )

= e
ˆ ′x ˆ ′y

∂
∂x0

∂
∂y0 g(x0 ,σ x

2 + ˆ′x 2 ,λ ) ⋅ g(y0 ,σ y
2 + ˆ′y 2 ,λ )

(20)

The integral with only σx’ = 0  is:

Q3 = ds ⋅ρ(s − s0 ,
σ s

2∫ ) ⋅ g(x0 + (s − s0 ) ′x0 ,σ x
2 ,λ )

        ⋅ g(y0 + (s − s0 ) ′y0 ,σ y
2 + s2σ ′y

2 ,λ )

. (21)

In changing s  to ŝ   it is convenient to introduce

ŝ0 = s0

(
σ s

2
)

, σ ˆ ′y = σ s

2
σ ′y and σ y0

2 = σ y
2 + s0

2σ ′y
2 .

Using these definitions
g(y0 + ŝ ˆ′y ,σ y0

2 + σ ′ŷ
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σ ′ŷ
2

2
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∂
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∂
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∂ ˆ ′y 2
)

e
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∂
∂y0 g(y0 ,σ y0

2 ,λ )

(22)

The first factor has no ŝ  dependence and can be taken
out of the integral.  The remaining integral, after translating
x0, is just Q2.  We can now write down an expression for
the double integral in the generator of eq. 11 with no
assumptions on  x’0, y’0, σx’, and σy’:

G1 = 2Nre

γ
e

σ ′x̂
2

2
(2 ŝ0

∂
∂ ′x̂

∂
∂x0

+ ∂ 2

∂ ′x̂ 2
)

e

σ ′ŷ
2

2
(2 ŝ0

∂
∂ ′ŷ

∂
∂y0

+ ∂ 2

∂ ˆ ′y 2
)

e
′x̂ ′ŷ

∂
∂x0

∂
∂y0

        I(x0 , y0 ,σ x0

2 + ′x̂ 2 ,σ y0

2 + ′ŷ 2 )

(23)

2. First-order symplectification

To obtain a symplectic evaluation of G1  one can
introduce a mixed-variable generator
F1(x, y, ′X , ′Y ) = x ′X + y ′Y + G1(x, y, ′X , ′Y ).  (24)

The implicit equations can be solved approximately  by
expanding F1 in a Taylor series about the point (x,x ′,y,y′ ).

3. Evaluation of the derivatives of the generator

The calculation can be arranged so that the derivatives
of G1 required to compute coordinate changes can be
found from derivatives of the complex error function.
Derivatives of  I(x0 , y0 ,σ x0

2 + ′x̂ 2 ,σ y0

2 + ′ŷ 2 ) , with



respect to ′x̂   or  ′ŷ   may be replaced by derivatives with
respect to σx02 and σy02 which may in turn be replaced by
derivatives with respect to x0 and y0 .  Thus the
computation reduces to derivatives of the Erskine-Bassetti
formula with respect to x0 and y0.  These derivatives
become polynomials times the complex error function by
using the relationship
∂w(z)

∂z
= −2 z w(z) + 2i

π (25)
The order of this polynomial depends on the accuracy

with which  the waist effects are represented.  The largest
corrections to the thin beam-beam kick, arising from the
slope y’, are accounted for by replacing σy2 by  σ y

2 + ˆ′y 2 .

4. The second-order CBH integral

The second order CBH may also be computed.  The
result is

G2 = 1
2

2Nre

γ






2
1
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where  I = I(x, y,σ x
2 ,σ y

2 + ′ŷ 2

2
). (26)

G2 can be inserted into equation
F12 (x, y, ′X , ′Y ) = x ′X + y ′Y + G1(x, y, ′X , ′Y )

+ 1
2

∂G1(x, y, ′X , ′Y )
∂x

∂G1(x, y, ′X , ′Y )
∂ ′X

       + 1
2

∂G1(x, y, ′X , ′Y )
∂y

∂G1(x, y, ′X , ′Y )
∂ ′Y

(27)

to obtain a second order implicit generator.

IV. NUMERICAL RESULTS

We compare the results calculated by the thick beam-
beam interaction with the multiple slice approach for the
vertical plane, since the horizontal plane has little thick
beam-beam effect.  We scanned the range of y=0 to 10 σ,
y'=-10 to 10 σ, in 1/4 σ steps.  In Table 1, the maximum
and r.m.s. differences from a 21-slice results are listed.

The thick beam-beam integral may be calculated for
various orders.  The 1st order includes the lowest order of
correction of G1—up to the 1st order derivatives of single
beam-beam kick, and the 5th order includes up to 5th order
derivatives.  Then, 2nd order CBH correction, G2, is
included respectively.  Finally, both 2nd order Poisson
Bracket of G1 and CBH corrections are included.

One can see that even the 1st order thick beam-beam
calculation gives better result than 5 slices.  Notice that in
this approximation, the y' kick requires essentially the same
computation time as a single slice, implying a factor of 5
can be saved in beam-beam simulation.  In addition, the
maximum errors occur at about 1σ in thick beam-beam,

unlike the multi-slices methods which have larger error at
large y'.

Table 1.  Comparison of beam-beam kick with s0=0
location of
maximum
error (σ)

Errors: *
(∆z-∆z21)/max(∆z21)

z=y or y'

y y' max (%) r.m.s.(%)
1 slice y 0 9.25 100 .032

y' 1.75 -10 60 .233
3 slices y 4.5 -10 34 .009

y' 4.75 -10 14 .05
5 slices y 5.75 -10 20 .005

y' 5.75 -10 7.4 .024
thick BB y 1.5 -1.5 4.9 .001
 1st order y' 1 -1 5.1 .017
thick BB y .75 5.5 5.5 .002
5th order y' 1 1.25 3.5 .015
thick BB y 2 4.75 4.9 .002

w/ 2nd CBH† y' 1.25 1.75 3.0 .015

thick BB y 7.75 10 4.8 .001

w/2ndPB& CBH† y' 1.25 1.75 3.0 .014

* z21 indicates the ∆z calculated with a 21-slice method.
† These results should be considered as preliminary.

V. CONCLUSION

We represent the thick beam-beam interaction as the
infinite product of thin kicks. When the disruption
parameter is small it is valid to compose this product to a
single map defined by a generator given by the CBH
formula.  The largest effect by far in typical beam-beam
situations is the dependence on the vertical slope.  The first
order computation for this case results in the replacement
of σy2 by σy2 + (σs/2 y’)2 in the Erskine-Bassetti formula.
The numerical comparison shows the thick beam-beam
method, especially the 1st order approach, can replace the
multi-slice method which has been used in most of beam-
beam simulations, and save substantial CPU time.
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