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Abstract 
With a newly developed algorithm using resonance ba- 

sis Lie generators and their evaluation with action-angle 
Poisson bracket maps (nPB tracking) we have been able 
to perform fast tracking for dynamic aperture studiesof 
PEP-II lattices as well as incorporate lattice nonlinearities 
in beam-beam studies[I]. We have been able to better un- 
derstand the relationship between dynamic apertures and 
the tune shift and resonance coefficients in the generators 
of the one-turn maps[2]. To obtain swamp plots (dynamic 
aperture vs. working point) of the PEP-II lattices, we first 
compute a one-turn resonance basis map for a nominal 
working point and then perform nPB tracking by switch- 
ing the working point while holding fixed all other terms 
in the map. Results have been spot-checked by comparing 
with element-by-element tracking. 

I. INTRODUCTION 
An adequate dynamic aperture is a basic requirement 

for an acceptable accelerator lattice. Conventionally, to 
check the dynamic aperture of a lattice one would take 
the following numerical steps: (1) choose a working point 
(horizontal and vertical betatron tunes) and make the best 
effort to optimize the bare lattice; (2) assign systematic and 
random multipole errors and random misalignment of the 
magnets; (3) make suitable corrections to the orbit, tunes, 
and chromaticities; (4) track particles (with synchrotron 
oscillations) to determine the dynamic aperture. 

For the dynamic aperture studies of the PEP-II B- 
factory[3] High-Energy Ring HER[4] and Low-Energy Ring 
(LER)[5] lattices, we usually select a working point at 
vZ = 0.57 and vY = 0.64 and track enough particles (elec- 
trons for the HER or positrons for the LER), element-by- 
element for 1024 turns to determine the dynamic aperture 
(if a particle survives for 1024 turns after injection, it would 
survive for longer due to synchrotron radiation damping). 
Typical dynamic aperture plots can be found in these pro 
ceedings[4], [5]. E ac o such element-by-element dynamic h f 
aperture calculations takes a few hours of CPU time in a 
RISC Workstation using a tracking program called Despot. 

Although a dynamic aperture plot at one working 
point can help in making an appraisal of lattice nonlin- 
ear performance, it offers limited information. For ex- 
ample, during the course of updating and improving the 
PEP-II lattices, we found, in some cases, that the dynamic 
apertures were not adequate at the nominal working point 
(0.57, 0.64- h’l w 1 e we would find that they were very good 
at other working points such as (.78, .82) or (.715, .735). In 
some occasions, particularly for the HER lattices, we even 
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found that some dynamic apertures were extremely small 
at (.57, .64) due to synchro-betatron resonances, but were 
adequate at a working point slightly different from (.57, 
.64). Thus, it is preferable and even necessary to under- 
stand lattice behaviol for a-broad range of working tunes. 
Dynamic apert& displayed on a reasonable mesh in the 
tune plane have been called swamp plots. 

However, it is virtually impossible to obtain swamp 
plots for the PEP-II lattices with element-element track- 
ings since it would require months of computer time. 
Aimed at not only fast tracking but also understanding in 
detail the lattice nonlinearities, we developed a fast track- 
ing method using resonance basis Hamiltonians, which we 
call nPB tracking[l]. The nPB tracking provides a fac- 
tor of 100 in tracking speed and also offers insight into 
the underlying physics. Map tracking for proton accelera- 
tors[6][7][8] is a different problem since there is no signifi- 
cant synchrotron radiation damping. 

II. THE nPB TRACKING 
To perform nPB tracking, we first write out a res- 

onance basis map file by taking the following steps: (1) 
obtain a one-turn transverse Taylor map and a one-turn 
time-of-flight map at a preset suitable order with respect 
to the closed orbit, treating the off-momentum 6 as a pa- 
rameter; (2) select terms in the time-of-flight map (neglect 
insignificant terms) and write them (the coefficients) in a 
file; (3) calculate the linear normalization transformation 
matrices and write the two 4 X 5 similarity transforma- 
tion matrices in the file; (4) perform similarity transfor- 
mation of the nonlinear one-turn Taylor map and then 
make a Deprit-type Lie transformation such that in the 
linearly normalized space, the map’can be represented by 
Re-‘H(Z+‘=JJ’~~6)‘, where R is a rotation that depends on 
the transverse and vertical tunes only, and H is a discrete 
&type Hamiltonian for the nonlinear perturbation; write 
the working tunes in the file; (5) transform the discrete 
Hamiltonian H(z,p=, y, py, 6) from the Cartesian coordi- 
nate space to the action-angle variable space such that H = 

H(&,Jz,@y,Jy,6) = HT(J,,J,,~) + HR(&,J~,~~,J~,~) 

and write out all terms (coefficients) in the file, where HT, 
in which every term depends on the actions (.7=, Jy) and 
the parameter (a) only, i.e. not depend on the angles, con- 
tains tune shift information[9] while HR, in which every 
term depends on the angles and actions, contains the res- 
onance strength information. 

Once the resonance basis map is written in a file, we 
are ready to perform the nPB tracking by first read in the 
resonance basis map from the file. After initializing the 
particle phase-space Cartesian coordinates, we then per- 
form turn-by-turn nPB tracking following the steps: (a) 
transform the phase-space coordinates into the linearly nor- 
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malized space (always kept in Cartesian coordinate space); 
(b) advance the phase of the particles through rotation 
R that only depends on the working tunes; (c) perform 
the Lie transformation e-:H(er~Jr~e~~J~~6)‘X for nonlinear 
perturbation of the coordinates by directly making Pois- 
son bracket expansions up to a preset nth Poisson bracket 
(thereby the name of nPB tracking), where X represents 
each of the phase-space Cartesian coordinates z,pz, u,py 
which are considered as functions of action-angle variables 
in Poisson bracket calculations; (d) transform the phase- 
space coordinates in the linearly normalized space back to 
the original space; (e) update the off-momentum 6 with the 

.~ time-of-fIight map and.then go on to the next turn. 

III. RELIABILITY OF THE nPB TRACKING 
In performing nPB tracking, one has to be careful in 

two regards. First, it is not 100% accurate since the map 
is truncated at a moderate order. Second, it is not 100% 
symplectic since one does not carry the Poisson bracket 
expansion to the infinite order. Such inaccuracy and non- 
symplecticity have been controversial in the use of one-turn 
maps for long-term tracking. However, it is well under- 
stood that the required accuracy and symplecticity depend 
on circumstances[7]. For the PEP-II lattice dynamic aper- 
ture studies (only 1024 turns), through numerous testing 
we have concluded that a map of 10th order in Hamiltonian 
(gth order in Taylor expansion) is accurate enough and 3 
Poisson bracket expansion of the Lie transformation is ac- 
curate and symplectic enough. It takes about 1 minute - with such 10th-order, 3PB tracking in a RISC Workstation 
to obtain a dynamic aperture plot at a given working point. 

IV. PEP-II SWAMP PLOTS 
To obtain swamp plots for the PEP-II lattices, we have 

followed exactly the nPB tracking procedures described in 
Section II except that we would increment the working 
tunes in Step (b) to obtain dynamic apertures throughout 
the tune plane. It should be noted that except for work- 
ing tunes, all other linear and nonlinear terms in the reso- 
nance basis map are held fixed. This is equivalent to that 
of the element-by-element tracking by inserting an exactly 
matched linear trombone to switch the working tunes with- 
out further changing the lattice. 

Two typical swamp plots of the HER 60’ lattices are 
shown in Figures 1 & 2. Figure 1 shows the dynamic aper- 
tures for a & = 2cm HER lattice with interlaced sex- 
tupoles while Figure 2 shows the dynamic apertures for a 
&, = 1.5cm HER lattice with ,&beat semi-local correction. 
Before we performed the swamp plots, we had wondered 
which lattice was better. Now, it is clear as shown in the 
figures that & = 1.5cm lattice has better dynamic aper- 
tures throughout the tune plane. The predominant dy- 
namic apertures for the interlaced lattice (/3; = 2cm) are 
between lOa and 140 while they are between 15~ and 190 
for the /?-beat semi-local correction lattice (/?i = 1.5cm). 
Note that the dynamic aperture is below 10a on where no 
symbol is shown. 
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Figure. 1. Swamp plot for the HER lattice with interlaced 
sextupoles, pi = 2 cm 
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Figure. 2. Swamp plot for the HER lattice with beta-bump 
correction, & = 1.5 cm 

Another type of swamp plots we have used frequently 
is shown in Figure 3 for LER lattices. Dynamic apertures 
along the diagonal or slightly off-diagonal lines on the tune 
plane were obtained. As shown in the figure, we can eas- 
ily conclude that the 90’ noninterlaced-sextupole lattice 
(dynamic apertures plotted on the left column) is a better 
choice than the 90” interlaced-sextupole lattice (shown on 
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the right column). This type of swamp plots is particularly 
useful during the course of lattice updating and improving 
since it takes less computer time than that of the full-tune- 
plane swamp plot while still offers adequate information for 
comparison of lattice nonlinear performance. 
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Figure. 3. Comparison of dynamic apertures between two 
lattices. Each column represents a lattice that is identified 
by the computer working directory shown on the top of the 
column. 

Thro.ugh use of swamp plots, one can also probe lat- 
tice nonlinearities. In particular, betatron and synchro- 
betatron resonances can be easily observed in a swamp 
plot with a fine mesh along the diagonal line on the tune 
plane as shown in Figure 4 for a 72O semi-local correction 
LER lattice with interlaced sextupoles. In Figure 4, one 
clearly sees the strong integer, half-integer and one-third- 
integer resonances. The one-fourth-integer resonance is not 
as strong as the one-third-integer resonance. The plot also 
shows clearly the side-band resonances due to synchrotron 
oscillations (the synchrobetatron resonances). The inte- 
ger and half-integer resonances have strong side-band res- 
onances &he dynamic apertures are 0 or very small for a 
big range of tunes near the integer and half-integer tunes. 
The strong one-third-integer resonance and related side- 
band resonances are a very nice clue for lattice improve- 
ment as a 72” lattice can possibly have a weak geometric 
nonlinearity up to 5th order. 
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Figure. 4. Dynamic apertures along the diagonal line of the 
tune plane with a fine mesh for a 72“ interlaced-sextupole 
LER lattice 

V. SUMMARY 
We have shown some typical swamp plots for the PEP- 

II lattice studies. These swamp plots have helped us in 
comparing lattices and often led us to the improvement of 
the lattices. 
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