Work supported by Department of Energy contract DE-AC03-76SF00515.

wakefield at a fixed time delay is minimized by an optimum
rather that minimum Q value.
 amplitude coefficient of the persistent term relative to that
of the exponentially damped term. This expression is proity with waveguide damping to obtain an expression for the We use an equivalent circuit model of a single mode cavponential damping rate. Kroll and $\operatorname{Lin}[1]$ have pointed out
another type of wakefield (persistent wakefield) associated
with waveguide damping, which decays as $t^{-3 / 2}$. ically been assessed by evaluating the resultant $Q_{\text {ext }}$ of
higher order cavity modes, thereby determining their ex-

 ио!ฺэпродұи I The results agree very well with computer simulation on a
real cavity-waveguide system. the resonant frequency approaches the waveguide cutoff. the source particle. The minimum wakefield increases when
 the external Q value of the damped mode. The competition persistent wakefield amplitude is inversely proportional to
the external Q value of the damped mode. The competition nant frequency a fixed interval above waveguide cutoff, the
 cavity. Both exponentially damped and persistent[1] (de-
 Abstract
and University of California, San Diego, La Jolla, CA 92093 Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309
Minimum Wakefield Achievable by Waveguide Damped Cavity*
where symbolizes the Fourier transform. We also used the result from the previous section in writing \tilde{I} as $\frac{\tilde{V}_{1}}{Z}$ on the second line of Eq. 7. Solving for \tilde{V}_{1}, we find

$$
\begin{equation*}
\tilde{V}_{1}=\frac{i \frac{\omega}{\omega_{0}^{2}} v_{0}}{\left(\frac{\omega}{\omega_{0}}\right)^{2}+i \frac{R}{Z} \frac{\omega}{\omega_{0}}-1} \tag{8}
\end{equation*}
$$

where $\omega_{0}=\frac{1}{\sqrt{L_{1} C_{1}}}$, is the natural resonant frequency of the cavity and $R=\sqrt{\frac{L_{1}}{C_{1}}}$, is the characteristic impedance of the cavity resonant mode.

The Fourier transform of the transverse wakefield (\tilde{V}_{\perp}) is given by

$$
\begin{equation*}
\tilde{V}_{\perp}=\frac{i \zeta}{\omega L} \tilde{V}_{1}=\frac{-\frac{\zeta}{\omega_{0}^{2} L} v_{0}}{\left(\frac{\omega}{\omega_{0}}\right)^{2}+i \frac{R}{Z} \frac{\omega}{\omega_{0}}-1} \tag{9}
\end{equation*}
$$

where ζ is a real geometric factor (with dimension of impedance) related to the shape of the structure and not given by our model.

C. Transverse Wakefield

The transverse wakefield in the time domain

$$
\begin{equation*}
V_{\perp}(t)=\frac{1}{2 \pi} \int \tilde{V}_{\perp} e^{-i \omega t} d \omega \tag{10}
\end{equation*}
$$

is obtained from the inverse Fourier transform. The integrand has two branch points from the definition of Z (Eq. 4). We choose the branch and integration contour shown in Fig. 2 [2]. The integration is naturally divided

Figure. 2. Contour for Calculating V_{\perp}
into two terms: one from the pole contribution, the other from the branch cut integral.

When $\frac{R}{Z\left(\omega_{0}\right)} \ll$ 1, i.e. the damping term is small, the pole of the expression \tilde{V}_{\perp} is very close to ω_{0}. For the purpose of calculating the pole and evaluating the residue, $Z(\omega)$ can be taken as $Z\left(\omega_{0}\right)$. Then the poles satisfy

$$
\begin{equation*}
\left.\left(\frac{\omega}{\omega_{0}}\right)\right|_{p o l e}= \pm \sqrt{1-\frac{1}{4 Q^{2}}}-\frac{i}{2 Q}, \tag{11}
\end{equation*}
$$

where $Q=\frac{Z\left(\omega_{0}\right)}{R}$.
The branch cut integral (persistent wakefield) is evaluated with Eq. 2 and 4 in [1]. When $t^{\prime} \gg 1$. The total wakefield is

$$
\begin{align*}
& V_{\perp}(t) \approx v_{0} \frac{\zeta}{\omega_{0} L}\left[\frac{-1}{\sqrt{1-\frac{1}{4 Q^{2}}}} \sin \left(\sqrt{1-\frac{1}{4 Q^{2}}} t^{\prime}\right) e^{-\frac{t^{\prime}}{2 Q}}\right. \\
+ & \left.\sqrt{\frac{2}{\pi}} \frac{\left(\frac{\omega_{c}}{\omega_{0}}\right)^{1 / 2}}{\left(1-\left(\frac{\omega_{c}}{\omega_{0}}\right)^{2}\right)^{5 / 2}} \frac{1}{Q} \cos \left(\frac{\omega_{c}}{\omega_{0}} t^{\prime}+\frac{1}{4} \pi\right) \frac{1}{t^{\prime 3 / 2}}\right] \tag{12}
\end{align*}
$$

where $t^{\prime}=\omega_{0} t$.
It is clear from the above expression that the persistent wake amplitude is proportional to $\frac{1}{Q}$, which means that a stronger damping produces a larger persistent wake. It also points out that as the resonant frequency gets closer to the waveguide cut-off, the persistent wake is enhanced.

Eq. 12 also tells us the best waveguide damping can do at a certain distance t^{\prime} behind the source particle. A typical value for NLC is $t^{\prime}=40 * \pi$, i.e. 20 wave lengths away.

If we ignore the oscillating factor sin, cos, the sign and take $\frac{1}{\sqrt{1-\frac{1}{4 Q^{2}}}} \approx 1 \mathrm{in}$ Eq. 12, it is a good approximation to regard the sum as the maxima of the oscillating amplitude of V_{\perp}. Thus the wakefield can be written as

$$
\begin{align*}
W_{\perp} & =W_{0}\left(e^{-\frac{t^{\prime}}{2 Q}}+\frac{b}{Q} \frac{1}{t^{\prime 3 / 2}}\right) \quad \text { with } \tag{13}\\
b & =\sqrt{\frac{2}{\pi}} \frac{\left(\frac{\omega_{c}}{\omega_{0}}\right)^{1 / 2}}{\left(1-\left(\frac{\omega_{c}}{\omega_{0}}\right)^{2}\right)^{5 / 2}}
\end{align*}
$$

We plot b as a function of $\frac{\omega_{c}}{\omega_{0}}$ in Fig. 3.

Figure. 3. The horizontal axis is $\frac{\omega_{c}}{\omega_{0}}$, the vertical axis represents b.

At a given t^{\prime}, the minimum wakefield occurs if

$$
\begin{equation*}
\frac{1}{2 Q}=\frac{\frac{5}{2} \log t^{\prime}-\log b}{t^{\prime}} \tag{14}
\end{equation*}
$$

i.e. decreasing Q beyond this value increases the wakefield at t^{\prime}. The optimum Q as a function of t^{\prime} is plotted in Fig. 4.

Substituting Eq. 14 into Eq. 13, The value of the minimum wakefield at t^{\prime}

$$
\begin{equation*}
W_{\perp}^{\min }=W_{0} t^{\prime-2.5}\left(5 b \log t^{\prime}+b-2 b \log b\right) \tag{15}
\end{equation*}
$$

is obtained. Fig. 5 displays the minimum wakefield as a function of t^{\prime} for a few values of b.

III. Numerical Comparison

We have made a few MAFIA simulations on the geometry shown in Fig. 6. It is a 2-D structure with the beam

Figure. 4. The horizontal axis is $t^{\prime}=\omega_{c} t$, and the vertical is the optimum Q value

Figure. 5. The horizontal axis is $t^{\prime}=\omega_{c} t$. The vertical axis is the minimum wakefield achieved as a ratio to the wakefield at $t^{\prime}=0$
passing in the Z direction. Taking the symmetry into account, only a quarter of the structure with the electric boundary condition on the Y axis and the magnetic boundary on the X axis has been shown. We have calculated the persistent wake amplitude and the damped wake amplitude from the time domain beam excitation. The ratio of the persistent wake amplitude to the damped wake amplitude from the actual cavity waveguide system is compared with the prediction of Eq. 12 in Table I.

Four cases were run, one with $w=0.25, t=0.05$. The second case has $w=0.25$ and $t=0.25$. The third is the same as the second except that the waveguide is 1.1 times larger (other dimensions do not scale with the waveguide width.). The fourth one has the same parameters as the second except $w=0.35$.

The circuit model and the MAFIA results agree very well considering how simple the circuit model is. The circuit model can be expected to hold only when a single decaying mode dominates the spectrum near the waveguide cutoff.

Figure. 6. Waveguide damped cavity. The big dot represents the beam passing in Z direction.

	MAFIA result	Theory	Case
$Q=3.94, \frac{\omega_{c}}{\omega_{0}}=0.776$	2.17	2.19	1
$Q=6.72, \frac{\omega_{c}}{\omega_{0}}=0.776$	1.17	1.28	2
$Q=7.34, \frac{\omega_{c}}{\omega_{0}}=0.705$	0.587	0.659	3
$Q=12.0, \frac{\omega_{c}}{\omega_{0}}=0.731$	0.351	0.503	4

Table I
The ratio of the persistent wake amplitude to the damped wake amplitude is compared between MAFIA simulation and the circuit model.

The discrepancy at high Q value is attributed to inadequate satisfaction of this condition.

IV. Cavity and Waveguide Detuning

For a single damped cavity, Eq. 15 presents the limit of the transverse wakefield. In the case of a multi-cell structure, the wakefield can be further reduced by detuning in analogy with dipole mode detuning.

In an optimally damped system, the dipole frequency $\left(\omega_{0}\right)$ and the waveguide cut-off are detuned in proportion in each cell in a Gaussian profile to produce the fastest and the most persistent fall off. In a N cell structure, detuning usually results in a wakefield which is $\frac{1}{N}$ of that of a single cell.

Taking a 100 -cell structure for example, with $t^{\prime}=40 \pi$ and $\frac{\omega_{c}}{\omega_{0}}=\frac{13}{15}$, the minimum wakefield of a single cell is $6.0 \times$ 10^{-4} times that of an undamped cavity. With detuning, the final wakefield is down to a few parts in a million.

References

[1] Norman M. Kroll and Xintian E. Lin, Persistent Wakefield associated with Waveguide Damping of Higher Order Modes, Proceedings of the 1993 IEEE Particle Accelerator Conference, Washington DC, P.3453-3455.
[2] [1], section 2.

