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Abstract 

. We calculate the-electromagnetic and axial nuclear moments of the deuteron and 

triton as a function of their radius using a relativistic two-nucleon and three-nucleon 

model formulated on the light-cone. The results also provide an estimate of the nuclear 

binding corrections to helicity-dependent deep inelastic scattering sum rules. At large 

nucleon radius, the moments are given by the usual non-relativistic formulae modified 

by finite binding effects. At small radius, the moments take the canonical values given 

by the generalization of the Drell-Hearn-Gerasimov sum rule. In addition, as R --+ 0, 

the constituent helicities become completely disoriented, and the Gamow-Teller matrix 

element vanishes. Thus, in the pointlike limit MR + 0, the moments of a spin-one 

bound states coincide with the canonical couplings of elementary spin-one bosons of 

the Standard Model, p = e/M, Q = -e/lM2, and gA = 0. 
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Although the physical structure of spin-one nuclei, spin-one mesons, and the gauge 

bosons of the Standard Model are highly disparate, certain features of their electromag- 

netic interactions are universal, such as the ratios of their form factors Go(Q2)/G~(Q2), 

and .Go (Q”) /GQ (Q”) at large momentum transfer [ 11. Th is universality of the spin-one form 

factors reflects the underlying gauge and chiral symmetry of QCD at short distances. More 

remarkably, one can use a generalization [2] of the Drell-Hearn-Gerasimov sum rule [3] to 

show [l] that the magnetic and quadrupole moments of any composite spin-one system take 

on the canonical values p = e/iV and Q = -e/M2 in the limit of zero bound-state radius 

or infinite excitation energy. Thus in the strong binding limit, the moments of composite 

particles coincide with the moments of the gauge particles in the tree-graph approximation 

to the Standard model. In this paper, we shall investigate the quantitative behavior of nu- 

clear axial and electromagnetic moments for both strong and weak binding limit as well as 

demonstrate the transition between them. 

An important feature of the relativistic treatment of the moments of composite systems 

-. is the non-additive spin structure induced by the Wigner boost. This leads to the remark- 

able result that one obtains a non-zero contribution to the quadrupole moment even if the 

f - deuteron has no D-wave contribution. The same non-additive spin structure is required to 

reproduce the low energy theorem for Compton scattering on a composite system as well as 

the Drell-Hearn-Gerasimov sum rule [3] for polarized photoabsorption cross sections [4]. 

The light-cone (“frontiform”) f ormalism [5] provides a convenient covariant framework for 

evaluating current matrix elements of composite systems [6]. The formalism is independent 

of the choice of momentum pp and form factors can be calculated from diagonal matrix 

elements; i.e, the convolution of light-cone wavefunctions with the same particle number n. 

In contrast, in equal-time theory, one needs to consider frame-dependent non-diagonal pair 

creation matrix elements as well as vacuum creation contributions to the current which are 

unconstrained by the Fock wavefunctions. The Bethe Salpeter formalism is covariant, but 

one needs to evaluate the matrix elements of an infinite number of irreducible kernels, even 

-in the case when one constituent is infinitely heavy. 

Our light-cone analysis is similar to the one given in Ref. [7] for the moments of the 

proton. Since the light-cone approach incorporates the correct relativistic properties of the 

interactions of composite systems, it provides a reliable method to evaluate nuclear binding 

corrections to nuclear moments and deep inelastic structure functions. 
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The light-cone model given in Ref. [8] p rovides a simple framework for representing 

the general structure of a two-body relativistic wavefunction [9, 10, 111. In the model, the 

bound-state wavefunction is constructed as a product of a momentum wavefunction and 

a spin-isospin wavefunction, which is uniquely determined by symmetry requirements. A 

Wigner (Melosh) [ 121 rotation is applied to the spinors, so that the wavefunction of the 

nucleus is an eigenfunction of J and J, in its rest frame [13, 141. Since we only consider the 

S-wave component of the wavefunction, we choose for the momentum dependence 

$(M2) = Nexp $ , 
( ) 

where /3 sets the scale of the nuclear size. As we have shown in Ref. [7], the predictions 

for the electromagnetic and axial moments are essentially independent of the exact shape of 

tj(M2) once the physical radius, as defined from the slope of the form factor, is fixed. The 

invariant mass M can be written as 

where we used the longitudinal light-cone momentum fractions xi = pr/P+ (P and pi are the 

deuteron and nucleon momenta, respectively, with P+ = P” + P”). The internal momentum 

variables /Cl; are given by il; = 131; - xc;31 with the constraints C z,, = 0 and XX; = 1. 

The Melosh rotation has the matrix representation [15] 

fiA4(xi, Jcli, mrv) = 
mN + z;M - iz. (< X iF,) 

j/(mN + xiM)2 + Eli ’ 
(3) 

with ii = (O,O, l), and it becomes the unit matrix if the quarks are collinear RM(xi, 0, m) = 1. 

Thus the internal transverse momentum dependence of the light-cone wavefunctions also 

affects its helicity structure. 

The parameter ,B for the deuteron has been chosen to give approximately the same S- 

state wavefunction as the one given in Ref. [16]; namely ,& = 0.12 GeV. Since the binding 

energy for the triton is larger then the one for deuterium, we also use a larger ,B; namely 

& = 0.28 GeV. 

We can evaluate the three form factors of a spin-one system in terms of the light-cone 

spin matrix elements of the plus component of the current [6, 1, 131 from the relations 

l WQ2> = 2cl + rl) [(+1l~+(0)l + 1) + (ol~+(o)lo)] 
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FdQ2) = 1+17 -lI/%+ll~+(o)lo), 

F2(Q2> = 1 +'I -I(+llr+(o)] - l), 

where q = Q2/4M,2. The relation of these form factors to the conventional form factors 

Go, GM and GQ is given in Eq. (3.33) of Ref. [14]. The light cone relations given in Eqs. 

(4) are equivalent with those given in Ref. [l]. 

The values of the form factors Go, GM and Go for Q” = 0, are the charge, the magnetic 

moment ,u, and the quadrupole moments Q, respectively. In terms of the forms factors F;, 

they are given as 

p = &p+F,(0)1, 

Q - = lim 4F2(Q2) 
e Q2+0 Q" 

- & [l + Fl(O)l- 

The anomalous magnetic moment is a = F,(O). W e will plot the nuclear moments of the 

deuteron as a function of the radius R2 = -6dF(Q2)/d&21~~=0, where F(Q2) is chosen to 

be F(Q2) = (+111+(O)I + 1). 

The predictions for the moments can be written analytically as expectation values: t 

Fr(0) = (7;) = SCd21c]y;111,12/S[d2k]111,12 and limQz,o F2(Q2)/Q2 = (72) where the 7; are given 

as 

71 = 2Md(A - B) + $4 (6) 

72 = AR+& &NBC, (7) 
N 

with FIN = up + a,. The factors A, B and C in the above equations are given by 

1 
A(%, hi,mN) = - 

222M[mN + (1 - z2)M] - ii2 

2M [mN + (1 - zc2)M12 + ii2 ’ 

B(x;, hi, mN> = 
1 2(1 - z2)z2M(mN -I- x2M) - x2ii2 

a(1 - 52)M (mN + XZM)~ + iT2 ’ 

c(xi, hi, mN> = 
[mN + (1 - 3Q412 

[mN -t (1 - x2)M12 + ii2. 

t[d2k] = d&&&6(& + &). The third component of z is defined as lcsi = $(xiM - -i,‘iL). This 

measure differs from the usual one used in Ref. [17] by the Jacobian n * which can be absorbed into the , 

wavefunction. 
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We now take a closer look at the limits R --+ co and R -+ 0. In the nonrelativistic limit 

we let p -+ 0 and keep the nucleon mass mN and deuteron mass iL& fixed. In this limit the 

deuteron radius R + 00 and 

Md 
--FzN 
mN 

/6N = -0.24p~, (8) . 

with PN being the nuclear magneton. This result agrees with Ref. [14] and differs from 

the standard nonrelativistic result by the small last term. The nonrelativistic limit for the 

quadrupole moment is 

Qd -----I= 
e 

2idiy (1 $ Fmr) = -0.0006 GeV2. (9) 

To obtain the ultra-relativistic limit we let ,B + 00, while keeping mN fixed. In this limit 

the deuteron becomes pointlike (R + 0) and the internal transverse momenta < Icl >+ 00. 

The anomalous magnetic moment of the deuteron vanishes in this limit as can be seen in 

Fig. 1. The quadrupole moment takes on the canonical value Qd = -e/M: as can be seen 

in Fig. 2. 

. - The values for the moments in the ultra-relativistic limit can also be understood from 

general principles [l]. A s s h own in [a], the anomalous moments of a spin-one system satisfy 

a sum rule (Qz = Q,j + e/K:) 

Here fP(A)(yy t> is the non-forward Compton amplitude for incident parallel (anti-parallel) 

photon-deuteron helicities. This result can be understood as a generalization of the Drell- 

Hearn-Gerasimov sum rule to non-forward momentum transfers. Thus, in the pointlike 

limit where the threshold for particle excitation vth --+ co, the deuteron acquires the same 

electromagnetic moments Qz + 0,ad + 0 as that of the W in the standard model. The 

approach to zero anomalous magnetic and anomalous quadrupole moments for M& + 0 

is shown in Figs. 1 and 2. Thus, even if the deuteron has no D-wave component, a non-zero 

-quadrupole moment arises from the relativistic recoil correction. 

A similar analysis can be performed for the axial-vector coupling. The coupling gA is 

given by the spin-conserving axial current 1: matrix element 

- 

gA(O) = (+111,+(0)1 + 1). (11) 
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Figure 1: The anomalous magnetic moment of the deuteron as a function of its radius R in 

Compton units. The experimental value is given by the dashed lines. The discrepancy is 

due to the neglect of the D-wave in the deuteron wavefunction. 
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Figure 2: The quadrupole moment of the deuteron as function of M&. The quadrupole 

moment Qd + -e/M: for R -+ 0. 
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The value for gA can be written as gA = (rA)gzR with gzR being the non-relativistic value 

of .(?A and with YA as 

(12) 

The fact that both the axial coupling and lowest moment of the gr structure function of 

a composite system are modified by the Melosh transformation was first pointed out by 

:Bucella, et al. [18], Le Youanc, et al. [19], and Close [20]. In Fig. 3 the axial-vector coupling 

is plotted against the deuteron radius MdR. At the physical deuteron radius f&R = 20.6, 

one predicts the value (7~) = 0.999. W e emphasize that at small deuteron radius the light- 

cone model predicts not only a vanishing anomalous moment but also 

lim gA(MdR) = 0. 
R-+0 

(13) 

As shown by Ma and Zhang [al] the Melosh rotation generated by the internal transverse 

momentum spoils the usual identification of the y+ys quark current matrix element with the 

total rest-frame spin projection s,, thus resulting in a reduction of gA. One can understand 

this physically: in the zero radius limit the internal transverse momenta become infinite and 

. - the nucleon helicities become completely disoriented. 

-A related quantity, the lowest moment I’: = Jdzg,d(s) of the deuteron spin structure 

function receives the same non-additive correction (7~) as the axial-vector coupling [20]. We 

have to write 

rf = f (r; + r:) (1 - ;%) (+/A), (14) - 

where I’; and I’? are the moments of the nucleon structure functions, and PO is the proba- 

bility for the D-wave in the deuteron, which varies in the range 3-6% [22]. The relativistic 

binding effect in Eq. (14) can be neglected since (7~) = 0.999. 

In the case of the triton, the value of the Gamow-Teller matrix element is reduced by the 

-same factor (7~) given in Eq. (12). Th e expectation value (7~) is for the three body case 

_ evaluated as 

(15) 

The correction to the nonrelativistic limit for the S-wave contribution is gA = (rA)giR. For 

the physical quantities of the triton we get (7~) = 0.99. Th is means that even at the physical 
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Figure 3: The axial-vector coupling of the deuteron as a function of k?&. 
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Figure 4: The axial-vector coupling (reduced Gamow-Teller matrix element) for the triton 

decay as a function of M,R. 
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radius MtR = 17.8, we find a nontrivial nonzero correction of order -1% for the Gamow- 

Teller matrix element. This correction also characterizes the magnitude of the correction to 

the assumption of nucleon additivity when testing the Bjorken and Ellis-Jaffe sum rules for 

the helicity-dependent deep inelastic scattering structure function on Hes and Hs targets. 

Figure 4 shows that the Gamow-Teller matrix element of the triton approaches zero in the 

limit of small nuclear radius, just as in the case of the nucleon as a bound state of three 

quarks [ 71. 

Although the magnetic and quadrupole moments of a composite systems are usually 

regarded as “static” quantities, they actually require the evaluation of the current matrix 

elements < p]jP]p + q > which are, respectively, linear and quadratic in the momentum 

transfer q. The contribution to the current matrix elements which are generated by the 

Wigner boost of the state from its rest frame by itself gives the Dirac contribution p = es/M 

for systems of spin S and the Standard Model quadrupole moment Q = -e/M2 for spin-one 

states. The kinematical boost ‘contribution can be neglected compared to the dynamical 

contributions from light constituents p = 0(e/ m or internal structure p = O(eR) and ) 

Q = O(eR2) if M/m > 1 and MR >> 1. Thus the usual formulas for computing moments 

. - from the sum of constituent moments is only strictly valid in the cases of systems such as 

atoms where the -electron mass is small compared to the atomic mass and the Bohr size R is 

large compared to the Compton scale l/M of the atom. In the case of a nucleon considered as 
. 

a bound state of three quarks, the relativistic effects reduce the anomalous magnetic moment 

and axial coupling by a factor of N 0.75 [7, 201. The deuteron and triton are non-relativistic 

bound state systems; nevertheless, we have found nontrivial finite binding corrections to the 

standard treatment of their magnetic and quadrupole moments. 

An important consistency check of any bound state formalism is the demonstration that 

the magnetic and quadrupole moments of a spin-one composite system reproduces the canon- 

ical Standard Model values in the point-like limit MR + 0. We have shown that the light- 

cone analysis correctly reproduces the correct ultra-relativistic limit for the electromagnetic 

-moments. In addition we have shown that the axial couplings of composite spin-one systems 

.vanish in the point-like limit. In the Standard model the parity-violating Gamow-Teller axial 

couplings of the W and 2 vanish at tree level. Thus, even though composite spin-one systems 
.- 

- 

are not gauge fields, their couplings can simulate the canonical axial and electromagnetic 

moments of the Standard Model provided they are sufficiently compact. This is interesting 
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from the phenomenological point of view, since it keeps open the possibility that the 2 and 

W vector bosons of the Standard Model could be composite provided their internal scale 

is sufficiently small and their excitation energies sufficiently high [23]. On the other hand, 

the light-cone Fock state description predicts gA + 0 for composite spin-3 systems in the 

point-like limit, whereas the canonical axial coupling in the Standard Model is gA = 1 for 

elementary spin-3 fields. It thus remains an open question whether a consistent dynamical 

lmodel of composite leptons and quarks [24] can be formulated which can simultaneously 

simulate their observed magnetic moment and axial couplings. 
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