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I. INTRODUCTION

In attempts to minimize the impedance of an accelerator
by smoothing out its vacuum chamber, improvements are
typically first made by reducing the inductive part of the
impedance. As the inductance is reduced, however, the
impedance becomes increasingly relatively resistive, and
as a consequence, the nature of potential well distortion
changes qualitatively. An inductive impedance lengthens
the bunch (above transition) while maintaining more or
less a head-tail symmetry of the bunch longitudinal distri-
bution. A resistive impedance does not change the bunch
length as much, but tends to cause a large head-tail asym-
metry.

The details of how potential well is distorted, partic-
ularly the head-tail asymmetry, affects the mechanism of
the longitudinal microwave instability. Without a head-tail
asymmetry, the microwave instability mechanism relies on
the coupling among the “azimuthal” modes. The coupling
is strong but the mode frequencies have to shift by large
amounts (comparable to the synchrotron frequency ωs) be-
fore the instability threshold is reached. With a head-tail
asymmetry, the instability can be triggered by coupling of
the “radial” modes. The coupling is weak, but the mode
frequency shifts involved are small (¿ ωs).We then may
have the following situation: as we try to minimize the
impedance, the impedance becomes resistive; the longitu-
dinal bunch shape acquires a large head-tail asymmetry;
the nature of microwave instability changes from a strong
one (that involves azimuthal mode coupling) to a weak one
(that involves head-tail asymmetry and radial mode cou-
pling), but the threshold of the instability is not raised or
is even lowered [1,2]. The gain of reducing the impedance
is reflected only in the fact that the instability growth rate
above threshold is slower.

The instability effect due to potential-well distortion and
radial mode coupling has been analyzed before[3-7]. Our
analysis is based on a technique[7,8] developed for the treat-
ment of the longitudinal head-tail instability effect. To
treat the coupling among radial modes, we introduce a
“double water-bag” model for the simplicity of analysis.

The analysis is applied to the SLC Damping Ring. The
wake function, as shown in Fig. 1, is the present model
used [9] taking into account the recent changes made on
the vacuum chamber.[10] The calculated bunch shape dis-
tortion (particularly the head-tail asymmetry), as well as
the calculated instability threshold, seem to agree with the
observations [10,11].

We explored two ways which might in principle alleviate
this instability mechanism. (i) add a higher harmonic cav-
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Figure. 1. Wake function (in volts/pC) versus |z| (in me-
ters) used in the analysis for the SLC Damping Ring.

ity: A higher harmonic rf voltage with appropriate phase
and amplitude may compensate for the head-tail asymme-
try and thus raise the instability threshold. (ii) operate the
accelerator with a negative momentum compaction factor
η:[12] With η > 0, the distorted beam distribution leans
toward the head of the bunch; the bunch tail sees large
wakefields. Operating with η < 0 could conceivably help
because the beam distribution now leans toward the tail of
the bunch. Both (i) and (ii) were explored in this paper.
We found that a higher harmonic cavity of a modest voltage
can indeed eliminate this instability, while the advantage
of operating with η < 0 is less obvious.

II. SUMMARY OF ANALYSIS

Details of the analysis has been given in [2]. A brief
summary is given below. We need to first compute the po-
tential well distortion effects. Let ψ0(z, δ) be the potential-
well distorted beam distribution in the longitudinal phase
space (z, δ). The corresponding wake potential is

V0(z) = e

∫ ∞
−∞

dz′W ′0(z − z′)
∫ ∞
−∞

dδ ψ0(z
′, δ) . (1)

We have assumed that the wake function W ′0(z) is short;
i.e., we consider single-bunch, single-pass instabilities.
Later when we add a higher harmonic rf voltage to coun-
teract the potential-well distortion, we will add it to V0.
The Hamiltonian for the potential-well distorted beam is

H(z, δ) =
η

2
δ2 +

ω2
s

2ηc2
z2 − e

T0Ec

∫ z

0

dz′V0(z
′) , (2)

where ωs is the unperturbed synchrotron frequency, T0 is
the revolution period, E is the beam energy, and c is the
speed of light.
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We now apply the technique developed in [7,8] and
change variables from (z, δ) to (Φ, H) by a canonical trans-
formation, where H is given by Eq. (2), and Φ is the canon-
ical variable conjugate to H:

Φ =
∂F (δ,H)

∂H
= −

∫ δ

0

dδ′
∂z(δ′, H)

∂H
, (3)

where z(δ,H) is obtained by inverting Eq (2). The motion
of a particle is periodic in Φ with period

Φ0(H) =

∮
dδ′

∂z(δ′, H)

∂H
. (4)

Notice that this period depends on the value of H of the
particle under consideration.

In the double water bag model, ψ0 has the form

ψ0(H) = 2N [(1− Γ)Θ(Ĥ1 −H) + ΓΘ(Ĥ2 −H)] , (5)

where Θ(x) is the step function, Γ is a parameter between
0 and 1 that specifies the relative amount of particles in
each of the waterbags, and

N =
N/2

(1− Γ)
∫ Ĥ1

0
dHΦ0(H) + Γ

∫ Ĥ2

0
dHΦ0(H)

, (6)

with N the number of particles in the beam bunch. We
choose Γ = 0.45, and Ĥ1 and Ĥ2 to correspond to one- and
two-sigma particles, such that the weak-beam limit of ψ0

approximates a Gaussian distribution.
Consider the `-th azimuthal mode (` = 1, 2, 3 means

dipole, quadrupole, sextupole modes) in the longitudinal
phase space. There are two radial modes allowed in the
double water bag model, one at H = Ĥ1, another at
H = Ĥ2. The two radial mode frequencies are determined
by the solutions of

det

[
Ω(`) − 2π`c

Φ0(Ĥ1)
+M11 M12

M21 Ω(`) − 2π`c
Φ0(Ĥ2)

+M22

]
= 0 ,

(7)
where we have defined the matrix elements

Mij = − 4r0ηN
T0γΦ0(Ĥi)

∫ Φ0(Ĥi)

2

0

dΦδ(Φ, Ĥi) sin

[
2π`

Φ

Φ0(Ĥi)

]
∫ Φ0(Ĥj)

2

0

dΦ′W ′0(z(Φ, Ĥi)− z(Φ′, Ĥj)) cos

[
2π`

Φ′

Φ0(Ĥj)

]
.(8)

It can be shown that all elements Mij are real. The beam
is stable if both solutions for Ω(`) are real. The instability
growth rate is given by the imaginary part of Ω(`).

In writing down Eq. (7), we have assumed that azimuthal
mode coupling (coupling among different `’s) can be ig-
nored. This assumption is valid if the mode frequencies do
not shift much away from the unperturbed value `ωs (i.e.,
the mode frequency shifts ¿ ωs).

The potential-well distortion can be considered to have
two effects on the particle motion. First, it causes a “detun-
ing” effect; i.e., Φ0 now depends on H. Second, it causes a

distortion of the phase space topology; i.e., the constant-H
contours in phase space are no longer ellipses. It can be
shown that the instability is a result of the second effect
alone. In other words, distortion of phase space from ellip-
tical contours is a necessary condition for instability. This
observation suggests that one way to alleviate this instabil-
ity is to introduce an external higher harmonic rf to reduce
the net phase space distortion.

III. APPLICATION TO SLC DAMPING RING

We have applied the analysis to the SLC Damping Rings.
The following assumptions are made: (a) synchrotron ra-
diation damping can be ignored; (b) the linearized Vlasov
equation applies below the instability threshold; (c) this
is a single-bunch, single-turn instability; (d) the wakefield
is as shown in Fig. 1; (e) coupling among the azimuthal
modes can be ignored; (f) we include two and only two
radial modes with a double water-bag beam.

Unless specified otherwise, the parameters we used for
the Damping Ring are η = 0.0145, Vrf = 1.0 MV, νs =
0.01275, cT0 = 35.268 m, E = 1.19 GeV. The unperturbed
Gaussian beam is assumed to have σδ = 0.73 × 10−3. We
mostly have studied the case of the quadrupole azimuthal
mode with ` = 2. The ` = 1 case is determined by the
Robinson damping mechanism and is not the subject of
our study.

Figure 2 shows one set of results of our calculations.
The complex mode frequency shifts Y = [(Ω(`)/ωs) − `]
as functions of the beam intensity N is shown in Fig. 2(c).
The solid curves show the real part of Y . The two radial
modes have separate frequencies for small beam intensi-
ties. At a threshold value of Nth = 1.4 × 1010, the two
mode frequencies merge, and the beam becomes unstable.
The instability growth rate τ−1/ωs is given by the dotted
curve above threshold. The portion of the solid curve below
threhold in Fig. 2(b) shows the relative bunch lengthen-
ing factor σz/σz0 versus N , where σz0 is the unperturbed
rms bunch length. The dotted curve above threshold is
an under-estimate because the calculated σz took into ac-
count of potential-well distortion but ignored bunch length-
ening due to microwave instability. (The solid curve above
threshold will be explained later.) Figure 2(a) shows the
shift of synchronous phase zs versus N . The dotted portion
of the curve gives an over-estimate of zs.

The longitudinal radiation damping rate of the Damp-
ing Ring gives τ−1

rad/ωs = 0.00095. The effect of radiation
damping on Nth is presumably small.

The instability threshold was studied as a function of the
rf Voltage Vrf . It was found that Nth = 1.7 × 1010 when
Vrf = 0.8 MV and 2.1× 1010 when Vrf = 0.6 MV.

We have also calculated the case for the sextupole az-
imuthal mode ` = 3 and Vrf = 1.0 MV. The instability
threshold is found to be Nth = 1.6 × 1010, slightly higher
than the threshold for ` = 2. The beam is first unstable in
its quadrupole motion, but the sextupole mode threshold
is not far away. The behavior is similar when Vrf is lowered
to 0.6 MV. At 0.6 MV, the ` = 3 threshold is found to be
Nth = 2.6× 1010.
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Figure. 2. (a) Shift of synchronous phase zs in mm as
a function of beam intensity N . (b) Bunch lengthening
factor (due to potential-well distortion) versus N . (c) The
complex mode frequency shifts versus N .

Our analysis describes the beam behavior at or below the
instability threshold. By an ad hoc consideration, however,
we may try to extend its application to cases above thresh-
old by conjecturing that, above threshold, the bunch would
lengthen just enough to stablize the beam. The beam is
therefore constantly staying at the edge of instability. The
extension of the solid curve in Fig. 2(b) beyond threshold
represents the conjectured bunch lengthening due to mi-
crowave instability. Note that the region between the dot-
ted and the solid curves is relatively small, indicating that
this instability is weak and a small increase of the bunch
length beyond the potential-well distortion stabilizes the
beam.It is also to be expected that the same small relative
increase would occur in the energy spread above thresh-
old. Furthermore, if there is a mechanism which causes
the beam to execute a sawtooth oscillation, as observed in
the Damping Ring [10,11], the amplitude of the sawtooth
oscillation is likely to correspond to the region between the
dotted and solid curves of Fig. 2(b).

To further study the instability mechanism, and to ex-
plore possible cures, we considered the following two pos-
sibilities: (i) add a high harmonic rf voltage to counteract
the potential-well distortion, and (ii) operate the accelera-
tor below transition with η < 0 [12].

We found that a higher harmonic rf is quite effective in
raising the instability threshold. For example, by intro-
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Figure. 3. Mode frequencies when η = −0.0145.

ducing a 12 GHz rf system (considered, e.g., for the NLC
at SLAC), which is phased 4 mm ahead of the main rf, a
voltage of 6.5 kV pushes the threshold intensity to 3×1010.

Operating the accelerator with η < 0 turned out less
conclusive. Figure 3(a) shows the mode frequencies with
η = −0.0145. The instability threshold is raised from
1.4 × 1010 to 2.0 × 1010. Figure 3(b) shows what hap-
pens to the ` = 3 modes. Operating with η < 0 seems to
improve the instability threshold somewhat in the present
study. However, whether this is a general trend needs more
investigation.

We thank B. Zotter, S.X. Fang, K. Bane, R. Siemann,
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