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Abstract

In this paper, we calculate the beam distribution function
after filamentation (phase-mixing) of a focusing mismatch.
This distribution is relevant when interpreting beam mea-
surements and sources of emittance dilution in linear col-
liders. It is also important when considering methods of
diluting the phase space density, which may be required
for the machine protection system in future linear collid-
ers, and it is important when studying effects of trapped
ions which filament in the electron beam potential. Finally,
the resulting distribution is compared with measured beam
distributions from the SLAC linac.

[. INTRODUCTION

In a conservative system, which a linear accelerator or
storage ring without synchrotron radiation closely approxi-
mate, the six-dimensional phase space density is conserved.
Similarly, if the three degrees of freedom are uncoupled, all
two-dimensional projections of the six-dimensional phase
space are also conserved. A conservative emittance dilu-
tion arises when the transverse or longitudinal degrees of
freedom become coupled. In this case, the 6-D emittance
is preserved, but the projected emittances are increased.
It can easily be shown that coupling of two planes always
increases the smaller of the two projected emittances.

Because the emittance dilutions are conservative, they
can be corrected, i.e. the the emittance can be uncou-
pled, provided that the dilution has not filamented (phase
mixed). Filamentation arises because the beam has a
spread in oscillation frequencies due to the energy spread
in the beam, nonlinear fields, space charge forces, etc. The
effect of the filamentation is to cause a phase mixing which
makes it difficult to correct dilutions of the projected emit-
tance. Once a dilution filaments, it is, for practical pur-
poses, unrecoverable (synchrotron oscillations in a storage
ring provide one obvious exception to this statement).

In this paper, we will discuss the beam distribution
function arising after filamentation of a focusing mismatch.
When a beam is injected into a storage ring or linac, it
should be matched to the periodic or natural lattice func-
tions. A mismatched beam will filament, with correspond-
ing emittance growth, until it is matched to the lattice. In
a storage ring, the beta function is chosen to be periodic
but in a linac there is room for ambiguity since one needs
to define initial values or boundary conditions. Actually,
most long linacs are constructed from adiabatically vary-
ing periodic focusing cells. The natural lattice functions
are simply those defined by the periodic cells.

Understanding the beam distribution function after fil-
amentation is relevant when interpreting beam emittance
measurements and locating the sources of emittance di-
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lution. It is also important when considering methods
of increasing the phase space density by deliberately mis-
matching the beam. Finally, it is important when study-
ing trapped ions in an electron beam. In the next section,
we will derive the distribution function for the beam ac-
tion J and the projection into the x plane. Then we will
present some measurements from the Stanford Linear Col-
lider (SLC) linac, and finally, we will discuss the applica-
tions.

II. THEORY

In a periodic linear focusing channel, a particle will
perform betatron oscillations and its position and angle
(de/ds = 2') can be expressed in a form analogous to that
of a harmonic oscillator [1]:
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Here, J and ¢ are the particle ‘action’ and ‘angle’ coor-
dinates and are constants of the motion. In addition, the
focusing lattice is described by the periodic lattice func-
tions a(s) and §(s) and the phase advance 9(s), where «
and ¢ are given by
1dg fods'
a=—-—— P(s) = <. (3)
2ds o B(s)
Finally, these equations can be inverted to solve for the
action in terms of the particle coordinates
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Next, consider a particle beam that occupies some area
in z-z' phase space and has a distribution function g(z, z).
The rms emittance of the beam is equal to
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and the beam can be described with an ellipse whose ori-
entation is specified by the second moments: (x?), (zz'),

and A&\MY and whose area is given by we. With complete
generality, the second moments can be written in terms of
the beam emittance and two parameters o and §* which
we will refer to as beam parameters:
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These beam parameters o and §* describe the orientation
of the beam ellipse in the (#,2’) phase space and are not
necessarily related to the lattice functions « and 3.

The beam distribution function can be expressed in
terms of the action-angle coordinates, but, in general it
will depend upon both J and ¢. Instead, we can write

(#%) = g (")

e (xz') = —a%e.



the position and angle of particles in terms of the beam
parameters «* and * and an amplitude and phase, J*

and ¢*:
T \/2J* 3 cos ¢*
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Now, assume that the beam distribution is rotationally
symmetric in the normalized phase space z and a*z+ % z';
this is true of bi-gaussian beams and most other distribu-
tions of interest. In this case, the distribution function will
be independent of the phase ¢* and is just a function of J*.
Furthermore, the rms beam emittance ¢ is simply equal to
the expectation of the amplitude {J*}.

The action-angle coordinates can be related to the am-

plitude and phase as:
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If the beam parameters are equal to the lattice functions,
then the beam is ‘matched’ to the lattice. In this case, the
action J is equal to the amplitude J* and the angle ¢ is
equal to ¢*. In addition, the beam distribution function,
written in action-angle coordinates, will be independent of
the angle coordinate and the rms beam emittance is equal
to the expectation of the particle actions {J). If the beam
filaments as it is transported through the lattice, effectively
randomizing the angle coordinate ¢, the beam emittance
and distribution remain unchanged.

In contrast, if the beam is mismatched to the lattice
and the beam filaments, the beam distribution function will
change and the filamented rms emittance ¢; will increase.
The emittance increase is trivially calculated from Eq. (9)
and can be expressed in terms of the B, q, parameter [2][3]:
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The calculation of the beam distribution function after
filamentation is a little more complicated. Assuming that
the angle coordinate is independent of the action after the
filamentation, we can express the distribution as
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where J* = J/X(¢*) and
X(¢*)=a sin? ¢* + 2bsin ¢* cos ¢* + ¢ cos? ¢* |
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If the initial beam has a bi-gaussian distribution in z
and #', then the distribution ¢*(J*) is an exponential dis-

tribution:
e—J*/e
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and Eq. (13) is straight forward to evaluate. In the trivial
case, where b = 0 and §* > g or 3> §*, the distribution
for J is just a y-squared distribution with one degree of
freedom. In the general case, we can evaluate the integral
by first performing a rotation to eliminate the cross term

in X(¢*). In this case,
X(¢%) = A cos?(¢* — 0) + Aasin?(¢* — 0) |

where
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By changing the variable of integration from ¢* to 1/c? —
1/X, the integral can be expressed in the form of a tabu-
lated integral [4] and the result can be expressed in terms
of the B4y parameter:

—JBmagle J
g(J) = 671((— Bag® — 1) , (21)
€ €

where I is the modified Bessel function, By,q, 1s defined in
Eq. (12), and € is the injected beam emittance before fila-
mentation. As expected, when By,,, = 1, the distribution
is an exponential and when B,,, — o0, the distribution
becomes a y-squared with one degree of freedom.

Finally, we can calculate the projection into the x plane
which is the beam distribution that would be measured.
The projection is
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where J(z,z') is given in Eq. (4). In the general case,
the distribution function can be expressed in terms of a
degenerate hypergeometric series of two variables. Unfor-
tunately, such an expression is not any easier to evaluate
than the integral Eq. (22). In the limit where Bp,qy — 00,

the projection simplifies to
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where Kj is the modified Bessel function and €; = By,q4¢.
The infinite value at & = 0 arises because we have essen-
tially assumed a one-dimensional injected beam. A similar
expression was derived in Ref. [5] where the author was
considering the distribution function for trapped ions in an
electron beam.

The distribution f(z) is plotted versus the rms beam
size \/ [ Bpmag ¢ for different values of By,4, in Fig. 1. Notice
that as the mismatch becomes larger, the relative ampli-
tude of the central core of the beam increases while long
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tails contribute to the rms emittance. In the limit of large
Bpag, the density of the core can be written:

1
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The core density decreases as In(Bpmag)/0s rather than
1/, as it would if the distribution did not change as the
emittance increased.
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Figure. 1. f(x) versus the rms beam size for Bpqy; = 1.0
(solid), Bmag = 1.25 (dashes), Bp,qy = 2.0 (dots), Bmag =
5.0 (dash-dot), and Bpag = 50.0 (dashes).
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IIT. MEASUREMENTS

Figure 2 shows the measured profile of a filamented
beam in the SLC with large non-gaussian tails. The beam
was created by an error in a solenoid at the low energy
end of the SLAC accelerator. The beam distribution was
measured after the beam had filamented; this can be de-
termined by comparing the beam profiles measured at dif-
ferent betatron phases. In Fig. 2, the resulting mismatch
had a By,qy ~ 5. The data was fit with a phenomenological
‘super-gaussian’ function [6] which shows reasonable agree-
ment. The small asymmetry that is visible in the data 1s
likely due to transverse wakefields.

IV. DISCUSSION

In this paper, we have described the beam distribu-
tion function arising from a filamented focusing mismatch.
Understanding the beam distribution can aid interpreting
emittance measurements in a linear collider as well as assist
in the diagnosis of the problem.

Another situation where this distribution is relevant oc-
curs when considering machine protection schemes for fu-
ture linear colliders. If mis-steered, the very small beams in
future linear colliders could puncture the vacuum chamber
in a single pulse. This is not a desirable feature when com-
missioning components. One possible method of protecting
the collider is to generate a large mismatch By,qy ~ 1000
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Figure. 2.  Strong non-gaussian tails form a ‘Christmas
tree’ like distribution which indicates that there is a large
mismatch of the beam.

which would then filament and decrease the beam den-
sity. This approach has the advantage of not perturbing
the beam centroid so that wakefield effects, steering, eic.,
are not changed. Understanding the evolution of the core
density is important in evaluating this technique.

Finally, the filamented distribution also describes the
distribution of ions generated by collisional ionization and
trapped in a long train of bunches [5][7]. In this case, the
ions are created with a transverse density profile equal to
the transverse beam profile but the ion thermal energy is
typically small compared to the potential energy in beam
field. Thus, the ions are mismatched relative to the fo-
cusing field of the beam. As ions continue to accumulate,
the density evolves into the filamented distribution with
Biag = Fpot/Fipn > 1 and Bey = 0%/2, where o is the rms
electron beam size.
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