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Table 1. Storage Ring and Linac Parameters

PEP-II HER NLC DR NLC-I pre-linac NLC-I linac NLC-II linac

Particles/Bunch N [1010] 2.7 0.65 0.65 0.65 1.3

Initial Energy E0 [GeV] 9 2 2 10 10

�0 [m] 15 2 13 8 8

�x [10�6m-rad] 850 3 3 5 5

�y [10�6m-rad] 34 0.03 0.03 0.05 0.05

�z [mm] 10 4 0.5 0.1 0.1

Bunches nb 1658 90 90 90 90

Bunch Separation �L [m] 1.26 0.42 0.42 0.42 0.42

Atrap 0.1 14 2 at 2 GeV 10 at 10 GeV 20 at 10 GeV

10 at 10 GeV 50 at 250 GeV 140 at 500 GeV

Ê [eV/�A] 0.0003 0.007 0.02 at 2 GeV 0.5 at 10 GeV 1.1 at 10 GeV

0.05 at 10 GeV 1.1 at 250 GeV 2.9 at 500 GeV

regimes depending upon the strength and temporal dura-
tion of the �eld. In most cases of interest, the �eld is
su�ciently strong and the bunch is su�ciently long that
the ionization arises from tunneling ionization. In the no-
tation of Ref. [6],  � c

p
2meEion=�zeE � 1 where E is

the electric �eld of the bunch and Eion is the ionization
energy.

In the tunneling regime, the transition rate for ioniza-
tion is approximately [7]:

W = 8
�3c

��2c

Eion

eE exp

�
�4
3

�

��c

Eion

eE

�
[sec�1] ; (3)

Because of the exponential factor, this process is very sen-
sitive to the electric �eld. For example, the time to ionize
CO in a 2.9 V/�A electric �eld is roughly 7 femtoseconds
(the static electric �eld approximation is valid in this case).
But, in a �eld of 1.5 V/�A, the ionization time is roughly 40
picoseconds and there is negligible probability of ionization
by a bunch.

Peak electric �elds in the bunches are listed in Table 1.
There is no tunneling ionization in the �rst four designs.
However, in the last design, the surrounding gas, within
roughly �2�x;y of the beam center, is fully ionized at the
end of the linac. There will also be signi�cant tunneling
ionization in the collimation, arc, and �nal focus regions of
both the NLC-I and NLC-II designs. In general, trapping
is not important where the �elds are strong enough for
tunneling ionization. Furthermore, because the ions are
over-focused and the gas does not fully re-populate between
bunches, the ion densities in the trailing bunches will be
much lower than that in the leading bunch.

In a storage ring the synchrotron radiation will also
ionize the residual gas, forming a swath of ions between the
beam and the vacuum chamber wall. In the PEP-II rings
and the NLC damping ring, this process yields roughly
an order of magnitude more ions than does the collisional
ionization. Fortunately, the density of these ions is very
low; they will form a halo around the beam without having
a signi�cant e�ect on the beam dynamics.

Finally, the synchrotron radiation will also generate
many orders of magnitude more photoelectrons at the
chamber wall than ions. These photoelectrons will be ac-
celerated towards the core of a positron beam and may
provide a signi�cant coupling between bunches [8].

III. BEAM DYNAMICS

With Filamentation

No Filamentation

Error
2π(n+1/2)

Correction

CorrectionError 5–957947A4

Figure. 1. Schematic of emittance correction with and
without �lamentation (from Ref. [11]).

A. Focusing Variation

In a long train of bunches where ions are trapped, the
ion density increases linearly along the length of the train.
Similarly, in a very dense electron bunch with tunneling
ionization, the free electrons are expulsed promptly and
there is a signi�cant variation of focusing along the bunch
due to the increasing ion density.

In a storage ring, the variation in focusing will cause
the coherent and incoherent tunes to vary from bunch to
bunch. This will provide a Landau damping mechanism
for transverse coupled bunch instabilities and could be ad-
vantageous.
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Figure. 2. Fraction change in vertical focusing at the end
of the bunch train in the NLC-I linac with 1 � 10�8 Torr
of CO gas; the linac consists of roughly 300 FODO cells
whose length is initially 8 meters and increases to roughly
40 meters by the end of the linac.

In a linac, non-local emittance correction has been de-
scribed as a method of easing the alignment tolerances in
future linear colliders [9] and is being utilized in the Stan-
ford Linear Collider. Unfortunately, the variation in fo-
cusing will cause the mismatches and emittance dilutions
to �lament (phase mix). This has implications for non-
local correction of the transverse emittance dilutions as is
illustrated schematically in Fig. 1; the �lamentation due
to the ions will signi�cantly reduce the e�ectiveness of the
correction techniques.

An example of the increased focusing in the NLC-I linac
is shown in Fig. 2. With a partial pressure 10�8 Torr of CO
gas, the vertical focusing is increased by roughly 3% by the
end of the bunch train in the beginning of the NLC-I linac.
The ion focusing increases as the beam sizes decrease due
to the adiabatic damping during acceleration, but, once
the ions are over-focused between bunches, the focusing
decreases rapidly. In addition, a simulation from the NLC-
I pre-linac with emittance correction is shown in Fig. 3.
Here, dispersive and wake�eld emittance dilutions, intro-
duced by 40�m random Beam Position Monitor (BPM)
misalignments, increased the emittance by roughly 100%.
Non-local emittance correction was able to reduce the di-
lution to roughly 10% at the head of the bunch train but
was much less e�ective at the end of the train.

Another e�ect, related to the variation in focusing,
arises if the bunch has a correlation between transverse and
longitudinal position such as that due to transverse wake-
�elds or a correlated energy spread and dispersion. In this
case, the ions generated by the head of the bunch deect
the tail of the bunch, reducing the o�set, but also making
it extremely di�cult to remove the correlation at a later
time. This e�ect sets a limit on the vacuum pressure in
the SLC arcs [10] and will be signi�cant in future colliders
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Figure. 3. Simulation of emittance correction in the NLC-I
pre-linac with a shortened bunch train of 30 bunches and a
vacuum pressure of 3� 10�8 Torr of CO gas; because the
ions are trapped, this is equivalent to a vacuum pressure of
1� 10�8 Torr and a train of 90 bunches.
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Figure. 4. Simulation of electron beam injected with a lin-
ear y-z correlation after 0m (solid), 300m (dashes), 600m
(dots), 900m (dash-dot), and 1200m (solid), in the SLC
arc with a vacuum pressure of 3� 10�4 Torr.

with tunneling ionization such as the arcs and �nal focus
of the NLC. The e�ect is illustrated in Fig. 4 which is a
simulation of an electron beam in the SLC arc.

B. Nonlinear Resonances and Betatron Coupling

Because the trapped particle distributions are not uni-
form, they will generate nonlinear electric �elds which can
drive nonlinear resonances. Assuming a symmetric nonuni-
form distribution, the lowest order e�ect is an octupole like
coupling resonance driven by the trapped particles. In a
at beam, this can cause an increase in the vertical emit-
tance. The e�ect has been analyzed for linacs using a sim-
ple parametric resonator model [11] and a more compli-
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Figure. 5. Emittance of the last bunch in the train ver-
sus di�erence between horizontal and vertical focusing in
NLC-I pre-linac. This shows the e�ect of betatron cou-
pling resonance; note that the resonance peak occurs for
stronger horizontal focusing because of the additional ver-
tical focusing due to the ions (from Ref. [11]).

cated analysis has been performed for storage rings [12]; it
should be noted that this coupling is very similar to the
space charge induced coupling treated in Ref. [13] more
than 25 years ago. Finally, Fig. 5 shows results from simu-
lations of the NLC pre-linac. It is straightforward to con-
trol the emittance growth by separating the horizontal and
vertical phase advances, although higher order resonances
can still be important, as discussed subsequently.

In addition to the coupling, the strong nonlinear �elds
can lead to formation of a beam halo where high order res-
onances transport particles to large amplitudes. Similar
e�ects are being studied with space charge dominated pro-
ton beams [14][15]. Beam halos will lead to a decreased
lifetime in a storage ring and cause detector backgrounds
in a linear collider.

C. Collective Instabilities

Finally, the trapped ions and free electrons can drive
collective instabilities. One possible e�ect arises due to
the photoelectrons generated at the vacuum chamber in a
positron storage ring. As mentioned, a large number of
photoelectrons are created by the synchrotron radiation.
These free electrons are accelerated towards the positron
beam and can provide a coupling between the bunches.
This e�ect is believed to be the source of a coupled bunch
instability observed in the KEK Photon Factory and is de-
scribed in Ref. [8]; it is presently being evaluated for the
PEP-II Low Energy Ring and the NLC positron damping
rings.

Another coupled bunch instability can be caused by
particles trapped within the beams. The particles oscillate
within the potential of the beam and can modulate the
transverse beam position. The modulation then resonantly
drives the trapped particles and exponential growth results.
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Figure. 6. Schematic of fast beam-ion collective instability
which can arise due to ion trapping in a long electron bunch
train or trapping of free electrons in a positron bunch.
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Figure. 7. Position of vertical centroids along the elec-
tron bunch train after being stored for 0�s (solid), 0:67�s
(dashes), 1:3�s (dots), and 2�s (solid) in the NLC Damp-
ing Ring with a vacuum of 10�7 Torr of CO gas; note that
the modulation of the electrons goes to roughly �y after
2�s (from Ref. [16]).

This instability can arise with trapped electrons within a
positron bunch or trapped ions within an electron bunch
train as is illustrated schematically in Fig. 6.

The nature and analytic treatment of the instability
closely resemble the beam break-up instability due to trans-
verse wake�elds. It is described in Refs. [16][17] and is sum-
marized in Ref. [18]. The results of macro-particle simu-
lations from the NLC damping ring are shown in Figs. 7
and 8. Because of the high bunch train charge and the
very small beam emittances the instability has a very fast
growth rate; with a CO partial pressure of 10�8 Torr, the
bunches are o�set by roughly �y after 7�s. The instability
could be a limitation in future linear colliders as well as
the SLAC and KEK [19] B-factories. Because the insta-
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Figure. 8. Growth of the action of the vertical centroid
for every twentieth bunch in the NLC Damping Ring for
a vacuum of 10�8 Torr of CO gas; note that the growth
saturates at roughly �y because of the nonlinearity of the
beam-ion force (from Ref. [18]).

bility growth depends quadratically on the length of the
bunch train, the most straightforward solution is to add
additional gaps to the train. Unfortunately, this will not
reduce the instability due to free electrons created by tun-
neling ionization in a positron bunch.

Experiments are being planned to observe this insta-
bility at third generation light sources as well as at the
Stanford Linear Collider and KEK TRISTAN Accumula-
tor Ring. Finally, this instability is similar to the ion hose
instability observed in ion focused high current induction
linacs and a similar e�ect has been seen in the Los Alamos
Proton Storage Ring (PSR) where it is believed that the
proton beam traps �eld emission electrons; measurements
from the PSR are described in Ref. [20] and the results of
simulations are described in Ref. [21].

IV. SUMMARY

We have discussed three e�ects of trapped particles in
future storage rings and linear colliders. Signi�cant ion
densities can occur in either a long train of bunches due to
collisional ionization and trapping or in very dense bunches
due to the tunneling ionization. These ions will cause �la-
mentation, transverse coupling, beam halos, and will drive
collective instabilities. These e�ects arise within the pas-
sage of a single train of bunches or, in some cases, in the
passage of a single bunch. They arise in storage rings,
linacs, and transport lines, and will limit the operation, as
well as the acceptable vacuum, in future accelerators.
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