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Abstract

Baryogenesis from the coherent production of a scalar condensate along a


at direction of the supersymmetric extension of the standard model (A�eck-

Dine mechanism) is investigated. Two important e�ects are emphasized.

First, nonrenormalizable terms in the superpotential can lift standard model


at directions at large �eld values. Second, the �nite energy density in the

early universe induces soft potentials with curvature of order the Hubble

constant. Both these have important implications for baryogenesis, which

requires large squark or slepton expectation values to develop along 
at di-
rections. In particular, the induced mass squared must be negative. The
resulting baryon to entropy ratio is very insensitive to the details of the

couplings and initial conditions, but depends on the dimension of the non-
renormalizable operator in the superpotential which stabilizes the 
at direc-
tion and the reheat temperature after in
ation. Unlike the original scenario,
an acceptable baryon asymmetry can result without subsequent entropy re-
leases. In the simplest scenario the baryon asymmetry is generated along the
LHu 
at direction, and is related to the mass of the lightest neutrino.

1



1 Introduction

One of the features which distinguishes supersymmetric �eld theories from

ordinary ones is the existence of \
at directions" in �eld space on which

the scalar potential vanishes. At the level of renormalizable terms, such 
at

directions are generic. Supersymmetry breaking lifts these directions and

sets the scale for their potential. From a cosmological perspective, these 
at

directions can have profound consequences. The parameters which describe

the 
at directions can be thought of as expectation values of massless chiral

�elds (moduli). These expectation values can start out displaced from the

true minimum. Oscillations about the minimum occur when the Hubble con-
stant becomes comparable to the e�ective mass. These oscillations have an
equation of state without pressure, and so amount to a coherent condensate
of zero-momentum particles, redshifting like matter. The coherent produc-
tion of scalar �elds along 
at directions emerges as a generic feature of any
supersymmetric theory.

String theories contain a number of perturbative 
at directions whose
potential is generated in the presence of supersymmetry breaking. At early
times the moduli can in general have Planck scale expectation values relative
to the true minimum. Because these �elds probably decay only through
Planck suppressed interactions, they would dominate the energy density of

the universe before decaying. This potential cosmological catastrophe is the
string version [1] of the \Polonyi problem" [2].

The main focus of this paper will be on another class of 
at directions,
which are present in the minimal supersymmetric standard model (MSSM).
In these directions combinations of �elds carrying baryon or lepton number,

such as squarks and sleptons, have non-zero expectation values. If baryon and

lepton number are explicitly broken it is possible to excite a non-zero baryon
or lepton number along such directions, as �rst suggested by A�eck and Dine
[3]. We will refer to this as the A�eck-Dine (AD) mechanism of baryogenesis,

and the associated �elds as AD �elds. Eventually, this condensate decays

leaving the universe with a non-zero baryon or lepton number.
In this paper, we carefully re-examine the coherent production of scalar

�elds along 
at directions. In order to make any quantitative predictions
about the production of coherent condensates in the early universe, a number

of important questions must be faced. First, how are the 
at directions lifted
in the early universe? Second, for the AD mechanism, how do the baryon
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number violating terms in the potential arise? And third, what are the

\initial conditions" for the 
at directions? These are the questions which we

wish to address.

We begin by observing that the �nite energy density of the early universe,

breaks supersymmetry by a \large" amount [4, 5]. Gravitational strength in-

teractions between the background energy density and 
at directions give

soft supersymmetry breaking terms, with scales which are parametrically of

order the Hubble constant. At very early times it is this breaking which is

most important in lifting the 
at directions. This is in contrast to the usual

assumption that the potential for 
at directions arises only from the super-
symmetry breaking terms that determine the soft potential in the present

universe. According to the standard picture (with Hubble scale masses ne-
glected), �elds are e�ectively frozen in the early universe (up to quantum
deSitter 
uctuations during in
ation) and highly overdamped. However, the
supersymmetry breaking due to the �nite energy density gives rise to masses
of order H. The scalar �eld is therefore parametrically close to critically

damped at early times, and can e�ciently evolve to an instantaneous mini-
mumof the potential. This qualitatively changes the scenario for the coherent
production of scalar �elds as discussed below.

In the case of the moduli problem, the existence of a nontrivial potential
at early times with a minimum which does not necessarily coincide with the
minimum at late times just brings the cosmological problem into sharper

focus, and calls into question some proposed solutions. It also suggests a
possible solution if the minimum of the moduli potential at early and late
times coincides. This can be technically natural if the minima lie at a point
of enhanced symmetry. We will discuss brie
y this solution and its principle
limitation: the dilaton.

The �nite density supersymmetry breaking potential also has an impor-
tant impact on the AD mechanism. A 
at direction can easily have a min-

imum far from the origin, giving rise to large expectation values for squark
and/or slepton �elds. On the other hand, because the curvature of the po-

tential is of order the (instantaneous) Hubble constant, if the minimum of

the potential is at the origin, quantum 
uctuations of this �eld during in
a-

tion will not lead to a net baryon numbe (as is frequently assumed) since the

correlation volume for the 
uctuations is generally much smaller than the
present Hubble volume.

There is another important issue which must be dealt with in the case of
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the AD �eld: the 
at directions are expected to be lifted by higher dimension

operators. This has two e�ects. First, the expectation value along a 
at

direction at early times is determined by a balance between the induced

soft potential and the higher order superpotential terms, and is typically

small compared to the scale of the higher dimension operators. On the

other hand, these operators themselves generally violate baryon and lepton

number. As a result, the baryon number per particle in the condensate is

order one. However, the fraction of the energy (and �nally entropy) density

carried by the condensate is typically rather small, and a sensitive function

of the dimension of these operators. Because of this it is possible for the
AD mechanism to produce the correct baryon to entropy ratio even without

additional entropy releases, as opposed to the usual claims in the literature.
In the end, we �nd that the mechanism is quite robust. There exist many

at directions which are broken only by operators of high dimension, and
for which an acceptable baryon number is obtained. As for the decay of the
AD �eld, we �nd that generally it evaporates by scattering with the thermal

plasma, not by free decay as assumed in the early literature. It is also possible
for the AD direction to be exactly 
at in the supersymmetric limit, and we
will discuss this possibility as well.

The �nite density supersymmetry breaking also helps to answer the ques-
tion of initial conditions along 
at directions, which are usually assumed in
some ad hoc way. In a cosmological scenario which includes in
ation, the

conditions relevant here are simply the values of the scalar �elds along the

at directions at the end of in
ation. During in
ation the �nite vacuum
energy breaks supersymmetry and generates a soft potential. If the dura-
tion of in
ation is su�cient to solve the 
atness and horizon problems, the

at directions are e�ciently driven toward an instantaneous minimum of the

potential. This sets the \initial conditions" for the subsequent evolution.
The structure of the paper is as follows. In the following section the rel-

evant properties of 
at directions are reviewed. In section 3, supersymmetry
breaking in the early universe is discussed, and the supergravity interactions

responsible for transmitting this breaking to the 
at directions presented. We

show that within a cosmological scenario with an in
aton with su�ciently

low reheat temperature to evade the gravitino problem, the �nite energy su-

persymmetry breaking is important during in
ation and the in
aton matter
dominated era following in
ation. In section 4 the impact on the AD mech-

anism is discussed. The classical evolution along a 
at direction is studied
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for the case of a negative soft mass squared. The possibility of realizing

the AD mechanism with a small positive mass squared is also considered.

The Polonyi problem is reconsidered in the light of the �nite energy density

supersymmetry breaking in section 5. The appendix contains a list of 
at

directions for the standard model.

Throughout we assume for simplicity a hidden sector model of super-

symmetry breaking in which the zero density breaking is transmitted to the

visible sector by gravitational scale interactions. The gravitino mass, m3=2,

then sets the weak scale, and is related to the intermediate scale of super-

symmetry breaking by m3=2 �M2
INT=Mp.

2 Flat Directions

Supersymmetric theories commonly have directions with no classical poten-
tial. The space of all 
at directions is usually referred to as the moduli space.
In string theory moduli �elds which parameterize an internal conformal �eld

theory are common. In some cases the degeneracy for these moduli arises
from a world sheet symmetry. In other cases it can be understood in terms of
space time discrete R symmetries [6]. More generally 
at directions are com-
mon in supersymmetric �eld theories, particularly ones with a large number
of �elds, such as the MSSM. In this case 
at directions arise as accidental

degeneracies along which both D and F components vanish. In this section
we review some properties of 
at directions which are important for the AD
mechanism. We also discuss the e�ects which lift the 
at directions, namely
higher dimension operators and soft supersymmetry breaking terms.

The classical degeneracy along 
at directions is protected from perturba-

tive quantum corrections in the supersymmetric limit by the nonrenormaliza-

tion theorem [7]. The degeneracy can be lifted by nonperturbative quantum
corrections. For the 
at directions relevant to the AD mechanism these ef-
fects are unimportant since no visible sector gauge couplings become strong

in the early universe. We will therefore assume the potential vanishes on the

moduli space in the supersymmetric and Mp !1 limit. The potential then
appears as a result of supersymmetry breaking and nonrenormalizable terms

in the superpotential.
A 
at direction is parameterized by a full chiral super�eld, including

scalar, fermionic, and auxiliary components. Here, however, the term \
at
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direction" will usually refer only to the scalar component as we are interested

in the coherent production of scalar �elds. A single 
at direction necessarily

carries a global U(1) quantum number. A condensate of the 
at direction

can therefore carry a net particle number for some U(1), as required for

the AD mechanism. As discussed in subsequent sections, condensates of

standard model 
at directions turn out to decay in the early universe through

renormalizable couplings when the temperature is well above the weak scale.

At such temperatures anomalous sphaleron processes which violate B + L

are in equilibrium [8]. The relevant quantum number the condensate must

carry in order to give a nonvanishing B after sphaleron processing is therefore
B � L. The minimal standard model contains a large number of directions

which are 
at with respect to the renormalizable interactions and carryB�L.
The subspace on which the gauge potential arising from D terms vanishes is
37 dimensional. There are a large number of directions in this subspace for
which all F components also vanish. A typical example of a renormalizable

at direction, carrying B � L = �1, is

Q�
1 =

1p
3

 
�

0

!
L1 =

1p
3

 
0
�

!
�d�2 =

1p
3
�

where superscripts are color indices, subscripts are for generation, and � is
the complex �eld parameterizing the 
at direction (with canonical kinetic
term). A list of standard model 
at directions is given in the appendix.

It is often convenient to characterize a 
at direction by a composite gauge
invariant operator, X, formed from the product of m chiral super�elds which
make up the direction. For example, the direction given above may be pa-
rameterized by the invariant X = Q1L1

�d2 (m = 3). The scalar component
of the composite operator is related to the canonical �eld, �, parameteriz-

ing the 
at direction by a relation of the form X = c�m. Fields can take
on nonzero values along multiple 
at directions simultaneously, although F


atness is then generally not maintained for other directions. For example,

the renormalizable F terms vanish if both �u1 �d1 �d2 and Q3L1
�d1 are nonzero,

while F �

Hd
does not vanish if �u1 �d1 �d2 and Q2L1

�d1 are nonzero. For multiple


at directions the relation between the invariant composite operators and the
� �elds with canonical normalization is in general highly nonlinear. However
most of the relevant dynamics for the AD mechanism does not require the

treatment of multiple directions. In fact, even when there are multiple 
at

directions, it is the lowest dimension operator generating a potential for one
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of the 
at directions which determines the ultimate baryon to entropy ratio.

Unless stated otherwise we therefore consider the dynamics of a single 
at

direction in what follows.

Typically, several supermultiplets gain mass in a 
at direction, m? =

�h�i. For example, in the Q1L1
�d2 direction given above, the Yukawa cou-

plings in the superpotential,
�
�uHu�u1 + �dHd

�d1 + �eHe�e1 + �dHdQ2

�
h�i; lead

to masses for quark, lepton and Higgs super�elds. Gauge symmetries are also

broken along 
at directions, with the broken gauge supermultiplets gaining

mass by the super Higgs mechanism,mg = gh�i. In the Q1L1
�d2 example, the

standard model gauge group is broken to a SU(2)C �U(1) subgroup. Along
more general 
at directions the gauge group is typically completely broken.

In the early universe the relevant scale for excitations in a radiation dom-
inated era is of course the temperature. Analogously the scale for quantum
deSitter 
uctuations in an in
ationary era is the Hubble constant. Far out
along a 
at direction the modes which gain mass from Yukawa and gauge

couplings become heavier than these excitation scales, and therefore decou-
ple. This is why the moduli space is the relevant subspace on which the
dynamics takes place when the �elds are large.

The directions referred to above as \
at" can be lifted by supersymme-
try breaking and terms in the superpotential. The resulting potential is of

central importance to the discussion of the evolution along 
at directions in
the early universe. For the AD mechanism the origin of the potential terms
which violate the U(1) carried by the direction is also crucial. First consider
the potential arising from the superpotential. In general since a 
at direction
can be represented by an invariant operator, it can appear to some power in
the superpotential. These superpotential terms could vanish accidentally and

not lift the direction; the nonrenormalization theorem makes this technically
natural. Certain symmetries can also forbid all such terms in the superpo-

tential, as discussed at the end of this section. However to be as general

as possible, unless stated otherwise, we will assume all superpotential terms
consistent with gauge symmetry and R parity are present.

The nonrenormalizable terms in the superpotential which lift the 
at
directions are of two types. First, since the direction can be written as an

invariant, X, it can appear to some power

W =
�

nMn�3
Xk =

�

nMn�3
�n (1)
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where X = �m, n = mk, and M is some large mass scale such as the GUT

or Planck scale. Under our assumptions above, the lowest value of k is 1 or

2 depending on whether the direction is even or odd under R parity. The

second type of term which lifts the 
at direction contains a single �eld not

in the 
at direction and some number of �elds which make up the direction,

W =
�

Mn�3
 �n�1 (2)

For terms of this form, F is nonzero along the 
at direction. An example of

this type is the direction �u1�u2�u3�e1�e2 which is lifted by W = (�=M)�u1�u2 �d2�e1,

since F �

�d2
= (�=M)�u1�u2�e1 is nonzero along the direction. In the 
at space

limit, with minimal kinetic terms, the lowest order contributions of either
type of superpotential term, (1) or (2), give a potential

V (�) =
j�j2

M2n�6
(���)n�1: (3)

These terms always dominate the potential for su�ciently large �eld value.
While the soft terms discussed below can in principle have either sign, these
terms make a positive contribution to the potential (provided � � Mp).
This has the consequence, as discussed in subsequent sections, of limiting
the �elds to be parameterically less than Mp. All the 
at directions listed
in the Appendix can be lifted by nonrenormalizable operators of the type

discussed above with n � 6.
The superpotential contribution to the potential (3) has the interesting

property that it conserves the U(1) carried by the 
at direction despite the
fact that the superpotentials (1) and (2) violate the U(1). This is because for
a single term in the superpotential there is always an accidental R symmetry

under which � has charge R = 2=n. Higher order operators can violate this
accidental symmetry in the potential through interference with the lowest

order term. However, the coe�cients of such terms are suppressed by addi-
tional powers of the heavy scale M , and so are subdominant. In principle,

with multiple 
at directions, such interference terms could arise at the same

order as the U(1) conserving terms. This would require two 
at directions

made out of the same number of �elds, but with di�erent B � L. Examina-

tion of the list of 
at directions in the appendix, reveals that this occurs for
directions made of �ve �elds. In this case, �5 = LL �d �d �d carries B � L = �3,
while all other directions made of �ve �elds carry B � L = 1. However,

7



for this example, including all superpotential terms consistent with R parity

gives a B � L conserving potential which lifts the directions at lower order.

The B � L violating interference terms are then again subdominant. We

therefore conclude that nonzero F terms arising from the nonrenormalizable

superpotential give rise (predominantly) to a U(1) conserving potential (3).

The other source of potential terms for \
at" directions is supersymmetry

breaking. In the 
at space limit these can be represented by soft breaking

terms. The general form of the soft terms is �xed. The lowest order term is

just a mass term

V (�) = m2��� (4)

In addition if there are self couplings of the 
at direction in the Kahler
potential or superpotential (as discussed above), A type terms can arise.
The lowest order A terms are of the form

V (�) =
A

Mn�3
�n (5)

where there are n �elds in the 
at direction. Assuming R-parity is unbro-
ken in the early universe all A terms for standard model 
at directions are
nonrenormalizable. There are two important points to note about the soft
terms. The �rst is the magnitude of these terms. In the present universe,
assuming hidden sector supersymmetry breaking, both m and A are of order
the weak scale, m3=2. However, as we show in the next section, the �nite

energy density in the early universe necessarily breaks supersymmetry, in-
ducing soft parameters of order the Hubble constant, m � H, and A � H

for H > m3=2. This di�ers from the usual assumption that the soft parame-
ters are order m3=2 in the early universe, and has dramatic consequences for
the evolution. The second important point is that the A term violates the

U(1) carried by the 
at direction. This will be the source of B �L violation
necessary to generate a net B � L in the evolution of the AD 
at direction.

In addition, the coe�cient of the A term is in general complex. The relative
phase between this and the \initial" phase of the 
at direction is the source

of CP violation in the AD mechanism. As discussed in section 4, all the

potential terms (3), (4), and (5) turn out to be important in determining the

evolution of the 
at direction.

It is worth noting that because of the nonrenormalization theorem for
the superpotential, even operators consistent with all symmetries need not

appear in the superpotential. In certain instances the absence of the gauge
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invariant operators which could lift the 
at direction can be guaranteed by

an R symmetry. Directions of this type are therefore exactly 
at in the su-

persymmetric limit. Only soft terms contribute to the potential along such

directions. In the absence of a superpotential the potential does not necessar-

ily grow like a power for large �elds. Field values of orderMp can therefore in

principle develop, and higher order terms in the soft potential then become

important. The general form of the U(1) conserving soft potential is (again,

specializing for simplicity to the case of a single �eld)

V (�) = m2M2
p f(�

��=M2
p ) (6)

where f is some function. Likewise the general U(1) violating soft potential
in this case is

V (�) = m2M2
p g(�

n=Mn
p ) (7)

Notice that the U(1) violating terms start at order m2. This is because A
terms (with coe�cient m) are proportional to W and so vanish if W = 0. As
shown in the next section the scale for m again turns out to be the Hubble
constant for H > m3=2. The scenario for the evolution of the AD �eld with

W = 0 turns out to quite di�erent than in the case with a superpotential.
This is in fact the picture that was originally adopted by A�eck and Dine
[3]. We brie
y comment on the cosmology of the AD mechanism for this case
in section (4.6).

The tree level superpotential also vanishes exactly for string moduli. The
potential for these directions therefore also arises from soft terms of the form

(6), again with the soft parameters set by the Hubble constant for H > m3=2.
We comment on the modi�cation and possible solution of the Polonyi problem
in the presence of such terms in section (5).

3 Supersymmetry Breaking in the Early Uni-

verse

As discussed in the previous section, 
at directions can be lifted by supersym-

metry breaking and nonrenormalizable terms in the superpotential. In this

section the potential along 
at directions arising from supersymmetry break-
ing in the early universe is considered. Generally it has been assumed that

in the early universe the relevant scale for the soft breaking parameters m
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and A are of order m3=2 (assuming hidden sector supersymmetry breaking).

Our main observation is that the �nite energy density in the early universe

necessarily breaks supersymmetry. As discussed below, for H > m3=2 this

breaking is dominant over breaking from a hidden sector, and determines the

soft potential along 
at directions.

First consider how the �nite energy density breaks supersymmetry. A

nonzero expectation value for the energy density, and therefore the Hamil-

tonian, implies the supercharge does not annihilate the vacuum, thereby

breaking supersymmetry. The speci�c form of the breaking depends on

the cosmological epoch. During an in
ationary epoch the vacuum energy
is positive by de�nition. Nonzero vacuum energy necessarily requires �nite

F and/or D components for some matter �elds, thereby signaling supersym-
metry breaking. In a post in
ationary epoch before reheating occurs, the
energy density is dominated by the oscillations of the in
aton. Again the
time averaged vacuum energy is nonzero, thereby breaking supersymmetry.
Supersymmetry is also broken in a radiation dominated era. Here the boson

and fermion thermal occupation numbers are distinct so the background is
not supersymmetric. A similar quantum mechanical e�ect also exists dur-
ing in
ation; deSitter 
uctations give bosons and fermions distinct nonzero
occupation numbers. As discussed below, these thermal and quantum ef-
fects turn out to be less important at large �eld values than the classical
supersymmetry breaking from the �nite vacuum energy.

The �nite energy supersymmetry breaking can be transmitted to 
at
directions by either renormalizable or nonrenormalizable interactions. The
e�ect of renormalizable interactions is contained in the e�ective potential
arising from integrating out the states which gain a mass along the direc-
tion, m? = gh�i, where g here represents a gauge or Yukawa coupling. In


at space at zero temperature supersymmetry guarantees that the bosonic
and fermionic functional determinants in the e�ective potential cancel to all

orders. At �nite temperature or in deSitter space, the boson and fermion
occupation numbers di�er, and a nonvanishing e�ective potential does arise.

However, at �nite temperature for � � T=g, the states which gain a mass

along the 
at direction e�ectively decouple, m? � T . The e�ective potential

arising from integrating out these states is therefore exponentially suppressed

in this region, and can be neglected. In deSitter space, where the Hubble
constant sets the scale for quantum excitations, an analogous decoupling

takes place for � � H=g. For large �eld values the induced potential from
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renormalizable interactions is therefore unimportant [9].

Nonrenormalizable interactions can also transmit the supersymmetry break-

ing to 
at directions. This contribution to the potential arises from integrat-

ing out �elds which do not gain a mass along the 
at direction. Unlike the

case of renormalizable interactions, this e�ective potential can induce a mass

for a 
at direction which is roughly independent of the magnitude of the �elds

(so long as it is less than Mp). For large �elds, nonrenormalizable interac-

tions are therefore more important than renormalizable ones. To illustrate

this e�ect consider the global limit with a term in the Kahler potential of

the form

�K =
Z
d4�

1

M2
p

�y��y� (8)

where � is a �eld which dominates the energy density of the universe, � is
a canonically normalized 
at direction, and Mp = mp=

p
8� is the reduced

Planck mass. No symmetry prevents such a term, which can be present
already at the Planck scale. In fact, the existence of such operators is guar-

anteed in the presence of Yukawa couplings since they are necessary countert-
erms for operators generated by loop diagrams [10, 11]. If � dominates the en-
ergy density, then � ' hR d4��y�i. In a thermal phase the expectation value
is just the thermal mean value of the � component kinetic terms, � ' g�T

4.
During in
ation it is given by the in
aton F components, � = F �

�F� = V (�).

In the in
aton matter dominated era after in
ation the expectation value is
again the total energy density, � = _� _��+V (�). The interaction (8) therefore
gives an e�ective mass for � of

�L = (�=M2
p )�

y� (9)

(note that a positive contribution in the Kahler potential gives a negative
contribution to m2). In a 
at expanding background the energy density is

related to the expansion rate, H, by Einstein's equations, � = 3H2M2
p . This

implies that the soft mass induced by the �nite energy supersymmetry break-
ing is m2 � H2. This is a generic result, independent of what speci�cally
dominates the energy density. For H > m3=2, this source for the soft mass is
more important than any hidden sector breaking.

In order to be concrete about the evolution along 
at directions, we will

work under the assumption that there is an in
ationary phase su�cient to

solve the horizon and 
atness problems. This requires N > 60 e-foldings of
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the scale factor during in
ation. We also assume this in
ation gives rise to

the density and temperature 
uctuations in the present universe. In most

models this occurs for H � 1013�14 GeV during in
ation. We also make

the standard assumption that after in
ation, the universe enters a matter

dominated epoch in which the energy density is dominated by coherent os-

cillations of the in
aton. When the in
aton decays, the universe enters an

era in which the energy density is dominated by the thermalized decay prod-

ucts of the in
aton. We assume that the associated \reheat" temperature,

TR, is su�ciently low to avoid the \gravitino problem" [12]. The precise

bound on TR depends on the gravitino mass and branching ratios, but can-
not be much larger than 109 GeV [12]. The Hubble constant at reheating,

HR, and TR are related by g�T
4
R � 3H2

RM
2
p . Avoiding the gravitino problem

therefore requires HR � m3=2. With this restriction the induced poten-
tial from �nite density supersymmetry breaking is only important (ignoring
any pre-in
ationary evolution) during in
ation and in the pre-reheating era
dominated by in
aton oscillations. Since the in
aton dominates the energy

density in both phases, we only need to consider the soft potential induced
by couplings of the in
aton to the 
at directions.

Since the important couplings between the in
aton and 
at directions
arise from Planck scale operators, supergravity interactions should be in-
cluded. The supergravity scalar potential is

V = eK=M
2
p

 
DiWK i�jD�jW

� � 3

M2
p

jW j2
!
+

1

8
f�1ab D

aDb (10)

where DiW � Wi + KiW=M
2
p is the Kahler derivative, Wi � @W=@'i,

K i�j � (Ki�j)
�1, fab is the gauge kinetic function. W (') and K('y; ') are

the superpotential and Kahler potential, Da � K'T
a', where ' includes

in general the 
at directions, in
aton(s), and hidden sector. By assump-
tion the in
aton dominates the energy density during in
ation, and prior to
reheating. The largest piece of (10) is then for the in
aton. It is perhaps

unlikely that D terms in the in
aton sector give a signi�cant contribution

to the in
aton potential [13]. The potential is not su�ciently 
at along D

non-
at directions to give a reasonable number of e-foldings [14, 15, 16]. If

the in
aton potential arises from F terms in some sector,

V (I) ' eK(Iy;I)=M2
p

 
F �

I F
I � 3

M2
p

jW (I)j2
!

(11)
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where F �

I F
I � DIW (I)K

�IID�IW
�(I�). The term in parenthesis necessarily

has positive expectation value and a nontrivial potential along 
at directions

is obtained as described below. Even if D terms dominate the in
aton po-

tential, a nontrivial potential along 
at directions can result. In this case

Kahler potential couplings (such as (8)) give a nontrivial potential along 
at

directions from KIT
aI, where I is the in
aton.

Under the assumptions spelled out above, the induced soft potential

for the 
at directions arises from couplings to the in
aton F components.

However, the speci�c form of the induced soft potential can depend on the

scalar value of the in
aton. During in
ation I � Mp is possible. In fact
in \natural" models I changes by order Mp per e-folding during in
ation

[14, 15, 16]. In this case since the in
aton vacuum energy is necessarily
positive, W (I)=Mp can be at most the same order as DIW (I). Using the
relation between the energy density and Hubble constant, � = 3H2M2

p , gives
the scales DIW (I) � HMp and W (I) � HM2

p . The pure supergravity cor-
rections to the potential are considerably simpli�ed if I �Mp. In this limit

KI � Mp, DIW ! WI , and jW j=Mp � WI . The in
aton potential then
reduces to V (I) ' W �

IW
I (up to corrections of O(I=Mp)

2). I may be of
order Mp during in
ation, but after in
ation I � Mp if, as we assume, the
energy density after in
ation is dominated by the coherent oscillations of the
in
aton �eld. In this era we assume that the relevant potential for the in
a-
ton is just that of a harmonic oscillator, V (I) ' m2

I(I � I0)
�(I � I0). If the

in
aton potential is at all natural, it is unlikely that the mass of the in
aton,
mI , is much smaller than HI , the Hubble constant during in
ation. There-
fore well after in
ation hI�Ii � (H2=m2

I)M
2
p � (H2=H2

I )M
2
p � M2

p and the
supergravity corrections are small. This distinction will only be important
for the induced A and � terms discussed below.

The general form for the induced potential from (10) along 
at directions
depends on whether or not the 
at direction is lifted by nonrenormalizable

terms in the superpotential. First consider terms which are independent of
the superpotential along the 
at direction. In this case the potential for a


at direction arising from supersymmetry breaking terms in the supergravity

potential comes from the following sources:
1) The eK=M

2

p prefactor

eK(�y;�)=M2

pV (I)

2) Cross terms in the Kahler derivative between the 
at direction Kahler

13



potential and in
aton superpotential

K�K
���K��

jW (I)j2
M4

p

3) Kahler potential couplings between the in
aton and 
at direction

K�K
��ID�IW

�(I)
W (I)

M2
p

+ h:c:

With the scales for the in
aton potential potential terms given above, all
these give the general form

V (�) = H2M2
p f(�=Mp) (12)

where f is some function. Notice that the overall scale of the potential is
set by the Hubble constant, V 00 � H2, and the scale for variations in the
potential is Mp. This is the form of the induced potential for string moduli
or standard model directions which are exactly 
at in the supersymmetric
limit. For string moduli the minimum of the induced potential (12) is in

general displaced by order Mp from the true minimum arising from hidden
sector supersymmetry breaking. However if there is a point of enhanced
symmetry on the moduli space, the potential (no matter what the source) is
necessarily an extremum about this point (for the potential induced by the
�nite density breaking this follows since the Kahler potential is a minimum

about a symmetry point). For standard model �elds, the origin is always
an enhanced symmetry point, so the potential is always an extremum at the
origin.

An important special case of the general form (12) results for a minimal

Kahler potential for the 
at direction, K(�y; �) = �y�. Assuming F terms

dominate the in
aton energy density as in (11), and using the relation be-
tween the energy density and expansion rate, V = 3H2M2

p , the resulting

induced potential for ��Mp is then just a mass term m2
��

��, with

m2
� =

 
2 +

F �

I FI

V (I)

!
H2 (13)

For I �Mp, V (I) ' F �

I FI as discussed above. (These expressions should be
corrected by VF (I)=(VF (I) + VD(I)) if in
aton D components contribute to

14



the energy density). The important feature of this contribution is that it is

positive with coe�cient of order one. This will have important implications

for the AD mechanism discussed in the next section. With minimal Kahler

terms only, � = 0 is stable and the large expectation values required for

baryogenesis do not result. With general Kahler terms though, jm2
�j � H2,

with either sign possible. In this paper we will assume that this is the case.

However, it is possible to choose special forms for the Kahler potential cou-

plings between the 
at direction and in
aton which partially cancel the min-

imal supergravity induced mass (13). It has been suggested that no-scale like

forms of Kahler potentials (which often arise at tree level in string theory)
might accomplish this [17, 18]. It is also important to recognize that symme-

tries can protect a compact subspace of a 
at direction from receiving a soft
potential. This is the case for a Goldstone boson of a spontaneously broken
symmetry.

There are additional contributions to the potential induced from the �nite
density supersymmetry breaking if a 
at direction is lifted by nonrenormal-

izable terms in the superpotential. These arise from:
1) cross terms in the Kahler derivative between the derivative of the 
at
direction superpotential and in
aton superpotential,

W�K
���K��

W �(I)

M2
p

+ h:c:

2) cross terms between the 
at direction and in
aton superpotential

 
1

M2
p

KIK
I �IKI � 3

! 
W (�)�W (I)

M2
p

+ h:c:

!

3) Kahler potential couplings between the 
at direction and in
aton

W�K
��ID�IW

�(I) + h:c:

With the nonrenormalizable superpotential terms (1) and (2) and the in
aton

scales given above, all these have the form of a generalized A term

V (�) = HM3
p g(�

n=Mn
p ) (14)

where g is some function. The induced A terms have the important e�ect of

de�ning the intial phase of the AD �eld, as discussed in the next section. The
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possible A terms considerably simplify if I �Mp as is the case after in
ation.

Using the in
aton scales given above for I �Mp, only the W�K
��IW �

�I
+h:c:

term can contribute signi�cantly. Since all the �elds are � Mp in this case

the Kahler potential couplings can be expanded in powers of Mp. The only

term of the required form which gives rise to an A term is then

1

Mp

Z
d4� I�y� (15)

If I is a composite �eld rather than an elementary singlet, then only terms

bilinear in the canonically normalized in
aton �eld can appear in the Kahler
potential and such a term does not exist. It is therefore possible in some
models for the induced A terms to vanish after in
ation. The same con-
clusions hold for other dimension 3 soft terms and the induced � term as
discussed in section 4.4.

In sum, for H > m3=2, the soft potential for the 
at direction (away

from the origin) is set by the supersymmetry breaking due the �nite energy
density, with soft breaking scale given by the Hubble constant. This is our
most important result. Previously it had been (implicitly) assumed that the
hidden sector supersymmetry breaking set the scale for the soft potential.
Self couplings from nonrenormalizable superpotential terms have also not

been consistently included in discussions of the evolution of 
at directions.

4 Evolution of the AD Scalar

The evolution of the �elds parameterizing a 
at direction is governed by the
classical equations of motion. For the AD mechanism, assuming the baryon

number does not average to zero over the current horizon size, only the zero

mode of the �eld is relevant. The equation of motion for the zero mode is
just that of a damped oscillator

��+ 3H _� + V 0(�) = 0 (16)

where the damping term, proportional to the Hubble constant, arises because

of the expanding background. The behavior of the solutions of (16) are
well know. For H2 � V 00(�) the �eld is overdamped and the friction term
dominates the evolution. For H2 � V 00(�) the �eld is underdamped and the
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inertial term dominates the evolution. Previously, the implicit assumption

has been that the potential for � arose from hidden sector supersymmetry

breaking, V 00(�) � m2
3=2. If this were the case, at early times when H �

m3=2 the �eld would be highly overdamped, and e�ectively frozen at some

\initial" value. When H � m3=2 the �eld would begin to oscillate about

a local minimum. However, as discussed in the previous section the scale

for the soft potential arising from the �nite density supersymmetry breaking

is the Hubble constant. At early times the �elds are parameterically near

critically damped. During in
ation when H is roughly constant, the �elds

can therefore very e�ectively evolve to an instantaneous minimum. This has
very important consequences for the AD mechanism of baryogenesis, which

requires large �eld values to develop.
Crucial in assessing the possibility of baryogenesis is the sign of the in-

duced mass squared at � = 0. As discussed in the previous section, with
minimal Kahler terms the m2 is of order H with positive coe�cient. In this
case as long as the �eld is within the basin of attraction (which is very likely

for directions which are lifted by nonrenormalizable terms) the average value
of the �eld evolves to � = 0 exponentially in time. This is in contrast to
the usual statement that \scalars are not damped during in
ation." Within
supergravity, scalars can be very e�ectively damped away during in
ation.
After in
ation no coherent production results, and the AD mechanism does
not occur. Quantum deSitter 
uctuations do excite the �eld with h��2i � H2

for m � H, but with a correlation length of l � O(H�1). Any resulting
baryon number then averages to zero over the present universe. In addition,
the relative magnitude of the B violating A term in the potential is small
for H � M . One possibility might be that m2 > 0 but m2 � H2. The
correlation length for deSitter 
uctuations in this limit is l ' H�1e3H

2=2m2

[19]. This is only large compared to the horizon size if (m=H)2 < 1
40
. Al-

though baryogenesis may be possible in this case, as discussed in section
3, m2 � H2 requires arranging couplings in the Kahler potential partially

cancel the minimal supergravity contribution (13) to m2 over a wide range

of values for the in
aton �eld (including after in
ation). Although this is

possible in toy models, it seems likely to require �ne tuning in any realistic

example.
However, if the sign of the induced mass squared is negative a large expec-

tation value for a 
at direction can develop. With nonminimal Kahler terms
this is perhaps just as likely as a positive mass squared. The magnitude of
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the �eld is then set by a balance with nonrenormalizable terms in the super-

potential which lift the 
at direction. The post in
ationary evolution turns

out to be remarkably simple and independent of the details of the potential.

We �rst summarize the salient features of the evolution in the negative mass

squared scenario and then explain each point in more detail in subsequent

subsections.

� During in
ation, the AD �eld evolves exponentially to the minimum

of the potential, determined by the induced negative mass squared

and nonrenormalizable term in the superpotential. This process may
be thought of as establishing \initial conditions" for the subsequent
evolution of the �eld. The B violating A terms play an important role

in determining the initial phase of the �eld.

� Subsequent to in
ation, the minimum of the potential is time depen-
dent (as it is tied to the instantaneous value of the Hubble parameter).
The AD �eld oscillates near this time dependent minimum with de-
creasing amplitude

� WhenH � m3=2 the soft potential arising from hidden sector supersym-
metry breaking becomes important and the sign of the mass squared
becomes positive. At this time, the B-violating A term arising from the
hidden sector is of comparable importance to the mass term, thereby
imparting a substantial baryon number to the condensate. The frac-
tional baryon number carried by the condensate is near maximal, more

or less independent of the details of the 
at direction. Subsequent to
this time, the baryon number violating operators are negligible so the
baryon number (in a comoving volume) is constant.

� The in
aton decays when H < m3=2 (consistent with the gravitino

bound on the reheat temperature). The baryon to entropy ratio sub-

sequent to this is
nb

s
� nb

n�

TR

m�

��

�I
(17)

where nb and n� are baryon and AD �eld number densities, TR is the
reheat temperature,m� � m3=2 is the low energy mass for the AD �eld,
and �� and �I are the AD �eld and in
aton mass densities (both at the

time of in
aton decay).
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The �nal baryon density depends principally on the reheat temperature and

the dimension of the operator which stabilizes the 
at direction (in the super-

symmetric limit), through the factor ��=�I . The net baryon number density

is a robust prediction which depends only weakly on the other variables in

the problem, such as the numerical values of the coupling constants (and

their phases) appearing in the superpotential.

In the following four subsections we discuss details of the evolution and re-

sulting baryon to entropy ratio in the negative mass squared scenario outlined

above, assuming the 
at direction is lifted by nonrenormalizable operators.

In section 4.5 the evolution for positive (small) mass squared is considered. In
section 4.6 we consider the evolution in the case that the direction is exactly


at in the supersymmetric limit.

4.1 The In
ationary Epoch

The large Hubble scale mass is clearly important to the evolution of the �eld,

as the �eld is parameterically near critically damped. We now consider in
detail the evolution of the AD �eld during in
ation. The 
at direction is
assumed to be stabilized, even in the absence of supersymmetry breaking, by
a high dimension operator in the superpotential of the form (1) or (2). During
in
ation the Hubble parameter is roughly constant. Given the discussions of

sections 2 and 3 the relevant potential during in
ation then takes the form

V (�) = �cH2
I j�j2 +

 
a�HI�

n

nMn�3
+ h:c:

!
+ j�j2 j�j

2n�2

M2n�6
(18)

where c and a are constants of O(1), and M is some large mass scale such

as the GUT or Planck scale. For HI � m3=2 soft terms arising from the
hidden sector are of negligible importance. For c > 0 the potential (18) has

an unstable extremum at the origin. As discussed at the beginning of section
3, there is a contribution to the potential for � � HI coming from deSitter


uctuations of the �elds coupled to the 
at direction by renormalizable cou-
plings. This gives a positive mass squared contribution to the free energy of

�m2 � g2H2
I , where g is a gauge or Yukawa coupling. However, for c � O(1)

the origin remains unstable. Even if the origin is a local minimum from this
e�ect (which might happen if a large number of �elds become massless at

� = 0) the global minimum at large � is una�ected. For very large �, (18)
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grows as j�j2n�2. ForHI �Mp this limits ��Mp just on energetic grounds.

The only soft terms which are important are therefore the lowest order ones,

namely the mass and A terms.

The minimum of the potential (18), is given by

j�0j =
 
�HIM

n�3

�

! 1

n�2

(19)

where � is a numerical constant which depends on a, c, and n. Notice that �0
is parameterically between HI and M . For example, with HI � 1013 GeV,
M=� � Mp, and n = 4, �0 � 103HI . The minimum is larger for greater

n. The A term in (18) violates the U(1) carried by � and gives n discrete
minima for the phase of �. The potential in the angular direction goes like
cos(�a+ ��+ n�) where � = j�jei�, etc. During in
ation if c is not too small,
the �eld quickly settles into one of the minima.

In order to see just how fast the �eld evolves to the minima, it is useful to

consider explicitly the evolution of the magnitude, ignoring for the moment
the A term. At the beginning of in
ation � might be arbitrary. However a
simple constraint arises by requiring that the energy density of the in
aton,
3H2

IM
2
p , be greater than that in � (otherwise in
ation could not take place).

For M=� � Mp this gives �=�0 < (Mp=HI)
1=(n�1)(n�2). For n = 4 this gives

� < 10�0. For larger n the maximum value is even smaller. As a worst case,
suppose � did start near this maximal value. Then we expect that the �eld

oscillates rapidly with a period much less than H�1
I . The amplitude of the

oscillations, �m, is expected to decrease with a characteristic time H�1
I . The

time rate of change of the energy in � can be found from the equations of
motion,

dE

dt
= _�

d

d�
(T + V ) = �3HI

_�2 = �6HI(E � V ) (20)

where T is the kinetic energy. Using the expression for V (�) for large � and
averaging over a period gives _�m ' �6HI=(2n�1)�m. We therefore conclude

that in the large � regime, � decreases exponentially towards smaller values,

�m ' e�6HIt=(2n�1)�i (21)

where �i is the initial value of the �eld with espect to the origin. Thus after
just a few e-foldings � is near a minima.
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Once near a minimaum, the �eld evolves like a damped harmonic oscil-

lator. For the region in which the potential is approximately harmonic, the

equation of motion, neglecting the a term, is

��0 + 2H _�0 � 2(n� 2)cH2
I �

0 = 0 (22)

where �0 = � � �0. So long as c is not too small, the system will quickly

settle into a minimum. The �eld undergoes deSitter 
uctuations about the

minimum, with amplitude h��2i � H2
I . This is a small perturbation in the

radial mode since �j�j=�0 � HI=�0 � 1, and has a very small correlation
length l � H�1

I . If a is not too small, the angular mode also has a mass
of order HI . The 
uctuations are then also a small perturbation in this

mode, �� � HI=�0 � 1, again with a small correlation length. At the end
of in
ation, over regions large compared to the current horizon size, � is
left with essentially a constant \initial" phase. As discussed in section 3 it
is possible in principle that the �nite density A term is very small during
in
ation (if the in
aton is composite and I � Mp). In this case there is

no potential for the phase of �. The phase then undergoes a random walk
from deSitter 
uctuations. But by the end of in
ation, the correlation length
for �� is necessarily larger than the current horizon. So again the present
universe is left with an essentially constant (random) \initial" phase [20].

We conclude that at the end of in
ation, the average value of the �eld

is at one of its minima, with a large expectation value (19). In addition the
�eld has a de�nite value for its phase, which is constant over scales large
compared to the present horizon. This amounts to the \initial" conditions
for the subsequent evolution.

4.2 Post-In
ation: In
aton Matter Dominated Era

After in
ation the universe enters a matter era dominated by the coherent

oscillations of the in
aton. During a matter era the Hubble constant is
related to the expansion time by H = 2

3
t�1. The equation of motion for � is

then
��+

2

t
_�+ V 0(�) = 0 (23)

where V (�) is still given by (18), though the dimensionless constants c and a
may be di�erent, and H is now time dependent. To simplify the analysis, we

will neglect a during this phase of the evolution. (If a 6= 0 and di�erent from
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that during in
ation then the phase simply evolves to a di�erent value.) The

most important feature of (23) is that the minimum of the potential, �0, now

decreases with time. Since the potential grows like a power law for large �,

one might guess that if the �eld starts out not too far from the minimum at

early times, it will closely track the minimum.

Greater insight into the solutions of (23), can be gained by making

changes of variables. Since the minimum decreases as a power law in t it

is useful to rescale time as

z = log t

and de�ne the dimensionless �eld � with respect to the instantaneous mini-
mum

� = ��0(t) = �

 
�

�
Mn�3e�z

! 1

n�2

where � =
q
c0=(n � 1) for a = 0, and c0 = 4

9
c. The equation of motion in

these rescaled variables is then

��+

�
n� 4

n� 2

�
_��

"
c0 +

n� 3

(n� 2)2

#
�+ c0�2n�3 = 0: (24)

The rescaled problem is so simple because the e�ective mass term, Hubble
damping term, and acceleration term are all homogeneous in z. The equation

of motion (24) has two important properties. First, there is a �xed point at

�� =

 
1 +

n� 3

c0(n� 2)2

! 1

2n�4

(25)

For reasonable values of the parameters this is just slightly larger than the

position of the instantaneous minimum. So if � starts at this �xed point it
remains there, i.e. �(t) = ���0(t), and � tracks just behind the decreasing
minimum. Second, the damping in the rescaled problem depends on n. For

n > 4 the e�ective damping in the rescaled problem is positive. In this case

the �xed point is attracting. For general initial conditions, the �eld oscillates
about �� with decreasing amplitude. For n = 4 there is no damping of �. The

�eld � therefore oscillates about the attracting point with an envelope which
decreases in time in proportion to the instantaneous minimum. For n < 4

the damping is negative, but this corresponds to a direction which is not even
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at at the renormalizable level. We conclude that for n � 4 the magnitude

of � decreases with the instantaneous minimum.

The oscillatory motion about the �xed point in the rescaled problem is

physically reasonable. If � starts at a large value it is underdamped (V 00 �
H2) and gets driven to smaller values by the acceleration term. Eventually it

reaches small values of � where it is overdamped (V 00 � H2) and slows due

to the friction term. Still later, the instantaneous minimum catches up and

overtakes �, again leaving it in an underdamped regime, and so forth. As

the instantaneous minimum decreases, the �eld therefore naturally oscillates

about a point at which V 00(�) � H2, which is necessarily close to �0(t).
Numerical evolution of (24) supports this picture, and the n dependence

explained above.
It is possible that the �eld does not start near the minimum when the

AD �eld potential during and subsequent to in
ation are very di�erent. This
would only occur when I during in
ation is of orderMp, so that there can be
terms which change the qualitative form of the potential during in
ation but

are negligible afterwards. In this case, one can proceed using the adiabatic
approximation of the previous section. Here, because the Hubble constant is
time dependent, the �eld is only damped with a power law dependence, and
decreases at a rate � / t�1=(n�2).

4.3 Late Stage of Evolution: H � m3=2

The most interesting behavior of the �elds is for H � m3=2. Until this
time, the quadratic term, and A terms are of comparable importance (un-
less a � 1), and there is no sense in which baryon number is conserved.
Once H � m3=2, the baryon number per comoving volume is frozen. The

potential, including now the low energy soft terms arising from hidden sector

supersymmetry breaking is

V (�) = m2
�j�j2 �

c0

t2
j�j2 +

 
(Am3=2+ aH)��n

nMn�3
+ h:c:

!
+ j�j2 j�j

2n�2

M2n�6
(26)

where m� � m3=2. At early times the �eld tracks near the time dependent
minimum as discussed in the last section. Therefore when H � m3=2 all

the terms in (26) have comparable magnitudes. Since the soft terms have
magnitudes �xed by m3=2 the �eld is no longer near critically damped, but
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becomes underdamped as H decreases beyond m3=2. In addition, the m2
�j�j2

term comes to dominate the �cH2�2 term as H decreases. The �eld therefore

begins to oscillate freely about � = 0 whenH � m3=2, with \initial" condition

given by �0(t) (eq. (19)) with t � m�1
3=2. The oscillation of the �eld is the

coherent condensate, n� ' m�j�j2.
Crucial for the generation of a baryon asymmetry are the B violating A

terms in (26). However, as discussed above when H � m3=2 all the terms

have comparable magnitude, including the A terms. Since VB � V6B when the

�eld begins to oscillate freely a large fractional baryon number is generated

in the \initial" motion of the �eld when m2 becomes positive. Notice that

in this negative mass squared scenario nb=n� is roughly independent of �=M .
This is because the value of the �eld is determined precisely by a balance
of (negative) soft mass squared term and nonrenormalizable supersymmetric
term. That the B violating A term also has the same magnitude follows from
supersymmetry since its magnitude is the root mean square of the soft mass
term and nonrenormalizable supersymmetric term. In this scenario there

is no need for ad hoc assumptions about the initial value of the �eld when
it begins to oscillate freely. The expectation that nb=n� � O(1) falls out
naturally.

The important role of CP violation is also dictated by the A terms. As
discussed in section 4.1 at early times the potential for the phase of � goes

like cos(�a + �� + n�). As H decreases below m3=2 the low energy A term
becomes more important and the angular potential goes like cos(�A+��+n�).
When the �eld begins to oscillate freely a nonzero _� is therefore generated
if �a 6= �A. This is of course required in order to generate a nonzero baryon
number since nb = 2j�j2 _�. The resulting baryon number therefore depends on

the CP violating phase �a� �A, i.e. on a relative phase between the in
aton

and hidden sectors. Alternately, as discussed in section (4.1) it is possible in
principle for a to vanish during and after in
ation. The initial phase is then
random (but constant over scales large compared to the present horizon).

The CP violation from the initial phase is then e�ectively spontaneous. It is

interesting to note that if this is the case, the net baryon number averaged
over all in
ationary domains vanishes.

Let us now consider in detail the numerical evolution of the �eld equation
in this late stage of evolution. In the discussion which follows, we will assume

a = 0 after in
ation, and take the initial phase, �i, of � as an input. We
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have also done the analysis with a 6= 0 and �nd no qualitative di�erence. It

is useful to once again work with rescaled variables. The �eld is rescaled as

�!
 
m3=2M

n�3

�

! 1

n�2

�

From the arguments above and (19), up to a numerical constant of order

unity, this is just the value of the �eld when H � m3=2. All other mass scales

and time are rescaled with respect to m3=2. The equation of motion (26)

with a = 0 and �A + �� = 0 is then

��+
2

t
_�+

 
m2
� �

c0

t2

!
�+A (��)n�1 + (n� 1) (���)n�2 � = 0 (27)

The equation of motion for the real and imaginary parts (appropriate for
numerical integration) are

��R +
2

t
_�R +

 
m2
� �

c0

t2

!
�R +Aj�jn�1 cos ((n� 1)�) + (n� 1)j�j2n�4�R = 0

��I +
2

t
_�I +

 
m2
� �

c0

t2

!
�I �Aj�jn�1 sin ((n� 1)�) + (n � 1)j�j2n�4�I = 0

(28)

where � = �R + i�I, and � = Arg �. The initial � and _� for t � 1 were
chosen such that the �eld tracks the �xed point (ignoring the m2

3=2 mass
term). The equations of motion (28) were then integrated forward in time
to t � 1. In this regime nb=n� asymptotes to a constant value. A typical

trajectory in the � plane is shown in �g. 1 for m� = c0 = �a = 1, n = 4, and
n�i =

9
10
�. The �eld tracks near the �xed point until the m3=2 mass and A

terms become important. When t � 1 (H � m3=2) the �eld feels a \torque"

from the A term, and spirals inward in the harmonic potential. The nonzero
_� in the trajectory gives rise to the baryon number. For the trajectory in

�g. 1 nb=n� ' :8, as can be estimated by eye from the eccentricity of the

ellipse. The fractional baryon number carried by the condensate is shown in
�g. 2. as a function of n�i for m� = c0 = �a = 1, and n = 4. Notice that

nb=n� is 0 for �i = 0 which corresponds to a minimum of V (�), and changes

sign at n�i = �, which is a maximum of V (�). For this choice of parameters,
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before spiraling in the harmonic part of the potential, the �eld goes through

one angular oscillation about the minimum of V (�) while the A term is still

important. This is the origin of the zero in nb=n� for n�i ' 0:65�. For this

initial value the �eld receives an equal and opposite integrated torque as it

oscillates through V (�) while the A term is important. Integrating over �i,

the rms nb=n� is 0:3. This is typical of the result for other n and reasonable

soft parameters.

At very late stages of the evolution when H � m3=2, the only potential

term which is relevant in (26) is the soft mass termm2
�j�j2 which is of course

B conserving. The baryon number created during the epoch H � m3=2 is
therefore conserved by the classical evolution of � for H � m3=2.

4.4 Baryon to Entropy Ratio

As discussed in the previous subsection, the fractional baryon number stored
in the condensate is likely to be near maximal, independent of the order at

which the 
at direction is lifted. The relevant physical quantity of interest
however is the baryon to entropy ratio, which is nb=s � 10�10 in the present
universe. In this section we show that nb=s depends in an essential way
only on the reheat temperature after in
ation, TR, and the magnitude of
the nonrenormalizable operator which lifts the 
at direction. These in turn

determine the fractional energy density stored in the AD �eld. The reheat
temperature depends on details of the in
ationary model, and introduces
some uncertainty in the �nal answer. The dependence on some nonrenor-
malizable B or L violating operator could in principle relate nb=s to some
B or L violating process observable in the laboratory. Unfortunately this
is generally not the case because the B or L violation occur through higher

dimension operators, the e�ects of which are negligible at small �eld value.

However, the success of the preferred scenario is related to the lightest neu-
trino mass, as discussed below.

Although nb=n� is not small, the total density in the condensate �� �
m2

3=2�
2, is much smaller than the total density for �0 � Mp. For H � m3=2

the coherent oscillations of the in
aton still dominate the energy density

as discussed previously, �I � 3H2M2
p . Using the estimate (19) for �0 at
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H � m3=2, the fractional energy in the AD condensate at this time is

��

�I
�
 
m3=2M

n�3

�Mn�2
p

!2=(n�2)

: (29)

For n = 4, ��=�I � 10�16(M=�Mp), while for n = 6, ��=�I � 10�8(M3=�M3
p )

1=2,

Notice for smaller (�=Mn�3) the direction is e�ectively 
atter, and �0 and

�� are larger. A greater total energy is therefore stored in the oscillating

condensate for smaller � or larger n. As discussed in section 3 the in
a-

ton decays when H < m3=2. Until the in
aton decays ��=�I stays roughly
constant as both the AD condensate and in
aton redshift like matter. The
number density in the AD condensate is n� = ��=m�. After the in
aton
decays the baryon to entropy ratio is therefore

nb

s
� nb

n�

TR

m�

��

�I
: (30)

where s � �I=TR. This formula only applies if n� < �I=TR at the time of
decay. This is well satis�ed for n = 4 or 6. If this inequality is not satis�ed,
the entropy is actually dominated by the AD decay, and nb=s is order unity in
this case. For TR above the weak scale anomalous sphaleron processes are in
equilibrium. So only directions with nonzero B�L give a signi�cant baryon
number in this scenario. As long as the AD condensate decays through B�L
conserving decays after the in
aton, the estimate (30) is insensitive to the
details of the decay. Once the amplitude of the �eld becomes small enough for
degrees of freedom coupled to the 
at direction by renormalizable couplings
to be excited by the thermal plasma (i.e. m? = gh�i < T where g is a
gauge or Yukawa coupling), the condensate can decay by B � L conserving

thermal scatterings. The rate for this scattering is set by T rather than
m3=2 (as would be the case for a free decay [3]). For typical parameters the

condensate evaporates by thermal scattering some time after the in
aton
decays.

In order for the estimate given above to apply, the �eld must begin to

oscillate freely when H � m3=2, and evaporate by thermal scatterings with

the plasma at a later epoch. Even though most of the in
aton energy is

not converted to radiation until H � HR < m3=2, subsequent to in
ation
but before reheating there is still a dilute plasma with temperature T �
(T 2

RHMp)
1=4 arising from the in
aton decay products [21]. Scatterings with
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this ambient plasma must therefore be unimportant when H � m3=2. This

is the case if gh�i > T . If this were not the case, the condensate would be

highly damped by thermal scatterings and potentially evaporate before the

epoch at which the baryon asymmetry is established. Using the scaling for

the temperature given above,

h�i
T

�����
H�m3=2

� 1p
TRMI

 
HMn�3

�

!1=(n�2)

(31)

For n = 4, �=T � (MI=TR)
1=2(M=�Mp)

1=2, where MI =
q
m3=2Mp, while

for n = 6, �=T � (Mp=TR)
1=2(M3=�M3

p )
1=4. It is clear that for the n = 6

directions and TR < 109 GeV, the condensate survives intact whenH � m3=2,
allowing for the successful creation of baryon number. However, the n = 4

case is somewhat borderline, depending on the value of Yukawa couplings
along the direction, and the scale of the nonrenormalizable operator which
sets the expectation value. For example, ifM=� � 103Mp, thermal up quarks,
with Yukawa coupling of order 10�4, could scatter with the LiHu directions
(for any i) unless TR < 106 GeV.

The total density in the AD condensate, and therefore nb=s, is very sen-
sitive to n, the order at which the 
at direction is lifted. For n > 4 with
M �Mp and a reasonable TR, nb=s is generally too large, without additional
entropy releases. For example, n = 6 naturally gives the correct nb=s only
when TR is of order the weak scale. Such low reheat temperatures can in fact

arise for composite 
at directions which act as in
atons [15]. However, for
n = 4

nb

s
� 10�10

�
TR

106 GeV

� 
10�3M

�Mp

!
(32)

The parameters in (32) represent ones which satisfy the constraint on �=T
to avoid the thermal scatterings discussed above. This is quite a reasonable

range for TR to be consistent with the bounds from thermal gravitino pro-

duction. The estimate (32) is in contrast the standard scenario [3] in which

nb=s is generally quite large (as discussed in section 4.6). The only directions

which carry B � L and can be lifted at n = 4 in the standard model are the
LHu directions. The nonrenormalizable operator is then

W =
�

M
(LHu)

2 (33)
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This operator may be present directly at the Planck scale, or could be gener-

ated, as in SO(10) GUTs, by integrating out heavy standard model singlets,

N , with couplings gLHuN , and Dirac massesMNNN , giving �=M = g2=mN ,

where g is a Yukawa coupling which could be less than O(1) [22]. At low

energies this is the operator which gives rise to neutrino masses. For baryoge-

nesis along the LHu direction in this scenario, nb=s can therefore be related

to the lightest neutrino mass since the �eld moves out furthest along the

eigenvector of LiLj corresponding to the smallest eigenvalue of the neutrino

mass matrix.
nb

s
� 10�10

�
TR

106 GeV

� 
10�8 eV

m�

!
(34)

Note that nb=s is inversely proportional to the neutrino mass. A smaller

nonrenormalizable term leads to a larger baryon number [23]. Assuming

TR < 109 GeV in order to satisfy the gravitino bound [12], then requires that
at least one neutrino be lighter than roughly 10�5 eV. Including the consider-
ations about thermal scatterings with the condensate at H � m3=2 discussed
above, would reduce the allowed TR to roughly 106 Gev, and therefore the
upper limit on the lightest neutrino to 10�8 eV.

It is intriguing that the LHu direction is so successful. There are a few
things worth noting about this particular direction. We haven't addressed at
all the likelihood that any particular 
at direction is favored. LHu is special
in that it contains a Higgs �eld. So for one of the LHu nonzero all the
directions listed in the appendix are lifted at the renormalizable level except
LL�e and LL �d �d �d. Including nonrenormalizable operators, it is not hard to

see that these remaining directions will not have amplitudes larger than that

along LHu. So the estimate for nb=s is robust for this direction.
The Hu content is also special for another reason. Even with minimal

Kahler terms at the high scale, the induced mass squared can become neg-

ative after including quantum corrections (this is the origin of electroweak

symmetry breaking in the radiative breaking scenario). The leading log cor-
rection just comes from renormalization group evolution from the high scale

down to the particle mass which is being integrated out. For a 
at direction
the running comes from integrating out particles which couple through renor-

malizable couplings. So this amounts to running down to the scale Q ' �,

since the modes coupled to the 
at direction have a mass m? = g�. For the
LHu direction the Hu component receives the largest modi�cation because
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of the large top quark Yukawa coupling. With minimal particle content the

one loop beta function for m2
Hu

is

d

dq
m2
Hu
' 3g22m

2
2 + g21m

2
1 � 3�2t

�
m2
t +m2

�t +m2
Hu

+A2
t

�
(35)

where q = �(4�)�2 ln(Q2), m1 and m2 are the hypercharge and weak gaugino

masses, and here At � Am3=2+ aH. In principle all the mass parameters in

(35) could be of order H at early times. The top Yukawa gives a negative

contribution to the mass squared. Now the physical mass squared for the


at direction is m2
LHu

= m2
Hu

+m2
L+ j�j2, where the last contribution comes

from the e�ective �HuHd term in the superpotential. For H > m3=2 it is
possible that the � term induced by the �nite density is much smaller than
H. As discussed in section 3, after in
ation I � Mp. The only source for

an induced � � H term in this era (ignoring any superpotential couplings)
is therefore

1

Mp

Z
d4� IHuHd (36)

If the in
aton transforms nontrivially under some symmetry then such linear
terms don't arise, and �� H (likewise, A terms and gaugino masses are not
induced with scales or order H after in
ation in the absence of terms linear

in the in
aton). If in fact � � H after in
ation, then it is possible that
m2
LHu

turns negative at a high scale during and/or after in
ation, allowing
large a large expectation to develop. This is especially true in GUT models
where the larger representations can give even larger negative contributions
to the beta function between the Planck and GUT scales. When H � m3=2,

m2
LHu

can become positive from the positive �2 � m2
3=2 contribution. Even

though m2
Hu

+�2 must turn negative from running to the weak scale in order

to drive electroweak symmetry breaking in the present universe, m2
LHu

can

remain positive at late times because of the m2
L contribution. Whether this

scenario for inducing a negative mass squared actually is realized depends

crucially on the beta function and therefore particle content at very high
scales, and on the nature and couplings of the in
aton. This scenario does

in fact work for certain values of standard model parameters.1 However, it

might be that with minimal kinetic terms, the LHu direction is the most
likely of all the directions which carry B � L 6= 0 to have a negative mass

squared at early times.

1We thank Diego Castano for verifying this scenario numerically.
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4.5 Evolution for Positive Mass Squared

It is possible for the induced mass squared along a 
at direction to be either

positive or negative. As mentioned at the beginning of section 4, baryoge-

nesis along a 
at direction with m2 � H2 but m2 > 0 may be possible if

the induced mass term is small. If m2 � H2, large deSitter 
uctuations

can result during in
ation. The correlation length for these 
uctuations is

l ' e3H
2=2m2

[19]. The magnitude and phase of the �eld is correlated over

this scale. If the baryon asymmetry is to be constant over the current horizon

scale, (m=H)2 < 1
40
. Ignoring any higher order terms in the potential, the


uctuations reach an equilibrium distribution after N > (H=m)2 e-foldings

with h��2i ' 3H4=8�2m2 [19]. Including higher order terms, the distribution
of 
uctuations saturates at V (�) � H4. However, large correlation lengths
only arise in regions where � is highly overdamped, i.e. V 00(�)� H2. These
deSitter 
uctuations have been suggested as a possible mechanism to ob-
tain large \initial" �eld values for baryogenesis [24]. It is important to note

though, that the induced mass squared must be tuned to be small over the
entire range of the in
aton during in
ation.

The induced mass must also be tuned to be numerically small after in-

ation. In a quadratic potential, the �eld evolves in the in
aton matter
dominated era following in
ation with m2 = c0=t2, as

�(t) '
(
�it

�
1

2 cos
�
1
2

p
4c0 � 1 ln(t=ti)

�
c0 � 1

4

�it
�c0 c0 � 1

(37)

where �(ti) = �i If the induced mass is not also small after in
ation the

envelope of the �eld decreases rapidly as a power law to small values. For

c0 � 1
4
, the envelope of the �eld scales as j�j � j�ij

q
H=Hinf . However, if c

0 �
1 after in
ation, ignoring for the moment higher order terms in the potential,

the �eld is highly overdamped in regions where the correlation length is large,

V (�)00 � H2, and therefore roughly consant after in
ation. Eventually, as

the induced mass contribution in the potential becomes small as H decreases,
the higher order terms in the potential become more important. Once the
higher order terms become important, V (�)00 � H2, and the �eld becomes

near critically damped and begins to move. This evolution can be analyzed

with rescalings similar to those given in section 4.2. For c0 � 1 there is again
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an attracting point at

��(t) '
 

Mn�3

�t

! 1

n�2

(38)

where 
 =
q
(n� 3)=(n � 1)=(n � 2). As the Hubble constant decreases

the � �eld therefore oscillates about this value, which is very similar to the

attracting point in the negative mass squared scenario. When the �eld begins

to oscillate freely at H � m3=2 all the terms in the potential have roughly

the same magnitude, and near maximal fractional baryon number can result.

So the entirely (small) positive mass squared scenario is parametrically the
same as the negative mass squared case, and gives a similar result for the
baryon asymmetry.

4.6 Evolution for W=0

As discussed in section 2, it is possible that the superpotential vanishes along
a 
at direction. This can be enforced by a discrete R symmetry. This case
may be thought of as the n!1 or �! 0 limit of the preceding discussions.

For exactly 
at directions the potential arises solely from Kahler potential
couplings, and is of the form (6) and (7). The typical scale for variations in
the potential is therefore Mp. If � = 0 is unstable during and after in
ation,
a minimum can occur for � �Mp at early times. When H < m3=2 the mini-
mum at large � from the induced soft potential must disappear. There must
be a minimum in the soft potential at � = 0 from hidden sector supersym-

metry breaking since for MSSM �elds ��Mp in the present universe. The
initial value for the �eld when H � m3=2 is therefore of order Mp. The B
or L violating soft potential (7) (arising from the Kahler potential couplings
or hidden sector supersymmetry breaking) is then roughly equal in magni-

tude to the conserving potential when the �eld begins to oscillate freely. A

large fractional baryon number is stored in the condensate as in the previous
scenario, and nb=n� � O(1). Now however, for � � Mp, the energy density

stored in the A�eck-Dine condensate is of order the energy density of the
universe. So it is no longer true that � represents a small fraction of the

energy. This is the situation originally considered by A�eck and Dine [3].

Once the in
aton decays, there is a thermal background which can in
principle scatter o� the condensate as in the previous scenario. However,

before in
aton decay the AD and in
aton �elds have roughly equal energy
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density. The value of the AD �eld at the era of in
aton decay is therefore

� � (
p
g�TR=m3=2)TR � TR. So any �elds which have renormalizable cou-

plings to � (and therefore gain a mass of m? = g�) are too heavy to be

excited by the thermal plasma. As a result, the condensate remains after

in
aton decay, and comes to dominates the energy density since the plasma

energy density redshifts away. Once m? < m�, decays through renormaliz-

able couplings become kinematically accessible. For g > 10�5 the condensate

decays essentially as soon as such decays are allowed, with an e�ective re-

heat temperature TR;� � m�=
p
g [14]. Since the condensate decay is itself

the dominant source of entropy, nb=s is much di�erent than in the previous
scenario. For TR;� � m� the decays give a relatively large number of low

energy particles. In order to thermalize, these particles would have to gain
energy through multibody scatterings to a smaller number of higher energy
particles. However, baryon number conservation prevents this, thereby limit-
ing the actual reheat temperature to TR � m�. Once the decay products do
thermalize, the plasma can carry at most roughly one unit of baryon number

per degree of freedom, giving nb=s � O(1) [25]. In this large entropy case,
the production of such a degenerate plasma can also be couched in terms of
a chemical potential for baryon number [26]. For an acceptable baryon to
entropy ratio to result the B violating parameters of the soft potential must
be suppressed, or there must be an additional source of entropy at or below
the electroweak phase transition.

As given in the appendix, the directionsQQQL and �u�u �d�e carry B�L = 0
but have nonzero B + L. If baryogenesis takes place along one of these
directions with TR greater than Tc, the temperature of the electroweak phase
transition, anomalous sphaleron processes destroy the generated B + L [8].
It has been suggested that the condensate can survive to a temperature

below Tc, thereby suppressing the sphalerons if � � Tc at Tc, and allowing
baryogenesis along directions which carry B � L = 0 [26]. However, as

discussed above, the condensate decays at or above this scale. So it may be
marginally possible for baryogenesis to take place along B�L = 0 directions

in theW = 0 scenario. Baryogenesis can certainly take place along exact 
at

directions with B � L 6= 0 [3]. The main drawback here is the requirement

for additional entropy releases below the electroweak phase transition.
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5 Cosmological Evolution of String Moduli

String moduli are exactly 
at (perturbatively) in the supersymmetric limit,

and couple to standard model �elds only through Planck scale suppressed

interactions. The coherent production of string moduli leads to the string

version [1, 14] of the Polonyi problem [2]. Such a condensate decays at

a very low temperature, T � 5 keV, and leads to a number of cosmological

problems. These include modi�cation of the light element abundances [2], the

requirement for baryogenesis at such a low temperature, and overproduction

of LSPs [14]. In discussions of the cosmological evolution of string moduli,

it is usually assumed that V 00 � m2
3=2 at very early times. If this were the

case, the moduli would e�ectively be frozen for H � m3=2, and begin to
oscillate when H � m3=2. If the initial displacement were O(Mp) the moduli
dominate the energy density essentially as soon as oscillations begin, leading
to the cosmological disasters mentioned above.

We have seen, however, that at early times because of the �nite density

induced soft potential, V 00 � H2, so that the �elds are parameterically close
to critically damped. During in
ation the �elds are therefore driven to a
local minimum within a few e-foldings ( unless the induced mass happens to
be numerically much less than H). The induced potential of course remains
after in
ation. However, in general the minima of the induced potential do

not necessarily coincide with the minima of the low energy potential. In fact
since the scale for variations in the soft potential is O(Mp), one expects the
minima to di�er by this amount. Once H �Mp, the moduli start to oscillate
freely about a minimum of the low energy potential with initial amplitudes
of O(Mp).

As an example of the moduli evolution consider the following toy model

V = (m2
3=2 + a2H2)jMj2 + 1

2M2
p

(m2
3=2 + b2H2)jMj4: (39)

For H � m3=2, the minimum lies at (a=b)Mp. For H � m3=2, the minimum
lies at Mp. For suitable a and b, the system sits near the �rst minimum

until H � m3=2. At this point, the �eld begins to oscillate about the second
minimum, with \initial" amplitude of M� (1� a=b)Mp. This is, of course,

just a statement of the original Polonyi problem. Our observation that the

curvature of the potential is of order the Hubble constant at early times,
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rather than ameliorating the problem, just gives a concrete realization of the

initial conditions.

The present discussion suggests a solution of the moduli problem [4]. If

the minima coincide at early and late times the moduli are driven to a mini-

mum during in
ation (up to quantum deSitter 
uctuations). This is techni-

cally natural if there is a point of enhanced symmetry on moduli space. Very

roughly, the moduli transform under some symmetry near such points. The

lowest order invariants are therefore bilinears, and the potential (no matter

what the source) is necessarily an extremum at such points. So it is possible

that the potential is a minimum at a symmetry point at both early and late
times. More precisely the moduli are composite �elds near points of enhanced

symmetry. At the symmetry point, the �elds making up the moduli become
massless (ignoring any nonperturbative e�ects). In string theory, there often
exist points of enhanced gauge symmetry on moduli space. The moduli act
as Higgs �elds near the symmetry points. The most famous example of this
is self dual point of R ! 2

R
duality in toroidal compacti�cation. At such

points the Kaluza Klein U(1) for each S1 gets enlarged to SU(2). Analogous
points seem to be a generic feature of many compacti�cations.

As an example of enhanced symmetry, consider �rst moduli other than
the dilaton. For these, it is possible in many instances to �nd points where
all the moduli transform under a discrete symmetry. An example is provided
by the Z3 orbifold [27]. This orbifold can be constructed as a product of three

two-dimensional tori, each exhibiting a Z3 symmetry. (One of these Z3's is
modded out; the other two survive). The enhanced symmetry at this point is
SU(3)�Z3�Z3. All of the moduli in the twisted sectors are charged under
SU(3). Of the untwisted moduli, all but 3 transform under the Z3's; these
correspond to breathing modes for the three tori. However, for particular

values of the radii and of the antisymmetric tensor �elds (torsion), there are
further enhanced symmetries. In particular, one can go to what would be

the SU(3) points of conventional 2-d toroidal compacti�cations, for each of
the three tori. After modding out by the Z3, six U(1)'s remain, under which

all of the remaining moduli transform.

Clearly the Z3 orbifold does not describe the real world. On the other

hand, this example illustrates the possibility that all of the moduli (except

the dilaton) can transform under some enhanced symmetry. For this scenario
to be realized in a realistic example our vacuum must be at or near a point

of enhanced symmetry. Any enhanced continuous gauge symmetries must
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either be identi�ed with part or all of the standard model gauge group or be

spontaneously broken. In the latter case there would be extra light gauge

bosons at the weak scale. Upon supersymmetry breaking, it is perfectly

possible that some of the continuous gauge symmetries are broken byO(m3=2)

vev's.

The main problem with this idea is the dilaton. One might hope that

S duality could be realized in the e�ective potential. However, at the dila-

ton self dual point the four dimensional gauge coupling is likely to be very

large. So if symmetries are the solution of the moduli problem, the dilaton is

probably on di�erent footing than the other moduli. The dilaton mass might
arise from dynamics not directly associated with supersymmetry breaking

[1, 14, 16]. In no-scale type theories it may also be possible in some cir-
cumstances to avoid the dilaton problem if the dilaton dominates the energy
density at very early times [28]. Alternately a period of late in
ation can in
principle dilute the dilaton [14, 29].

6 Conclusions

Exact and approximate 
at directions are a generic feature of supersymmetric
theories. If low energy supersymmetry has anything to do with nature, these

at directions are likely to play an important role in cosmology. The coherent

production of scalar �elds along 
at directions emerges as a generic feature
of supersymmetric theories. In this paper, we have explored certain aspects
of the cosmology of 
at directions. Perhaps our most important, albeit quite
simple, observation is that the scale for the induced soft potential at early
times is of order H. This has dramatic consequences for the AD mechanism

of baryogenesis, and the evolution of string moduli.
The AD mechanism of baryogenesis is not generally obtained with a min-

imal Kahler potential for the standard model �elds. In this case the induced

potential has a minimum at the origin, and the �elds are driven to small
values during in
ation. With nonminimal Kahler couplings the origin can be

unstable and large expectation values along 
at directions can result. Such
nonminimal couplings can in fact be generated radiatively in the presence of

Yukawa couplings. For directions lifted by nonrenormalizable terms in the
superpotential, the �elds begin to oscillate freely in the low energy potential

at H � m3=2 with an \initial" condition which is determined by a balance
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between the induced soft mass term with and nonrenormalizable term. This

guarantees that the B conserving and violating terms in the potential are

the same order. The resulting baryon number per condensate particle is near

maximal. However, since the \initial" �eld value is parameterically less than

Mp, the baryon to entropy ratio can be quite small. Within this scenario

the mechanism is quite robust. For the LHu direction an acceptable baryon

number results with a reasonable value for the reheat temperature after in-


ation. In this case the baryon asymmetry is related to the lightest neutrino

mass.

For the moduli problem, the induced potential generally gives a concrete
realization of the initial conditions, which are usually just assumed in an ad

hoc way. However, it suggests a solution if there is an enhanced symmetry
point on moduli space. The minimum of the potential can then in principle
coincide at early and late times. However, it is not clear how the dilaton can
�t into such a picture. If symmetries are the solution of the moduli problem,
our vacuum is quite close to an enhanced symmetry point, which might have

interesting phenomenological consequences.
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8 Appendix

In the global limit the scalar potential is a sum of gauge and superpotential
contributions, V = 1

2
g2DaDa+F �

'F', where D
a = '�T a', and F �

' = @W=@'.

There are many 
at directions in the standard model �eld space on which

the potential vanishes with respect to the renormalizable superpotential. D

at directions can be parameterized through gauge invariant operators. In
order to form such invariants it is useful to �rst construct potentially D, and

F 
at combinations of �elds. A set of such operators which are F 
at with
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respect to the standard model Yukawa couplings

W = �uQHu�u+ �dQHd
�d + �eLHd�e

are given in table 1. Throughout, unbarred �elds are SU(2)L doublets while

barred �elds are SU(2)L singlets, and generation indices are suppressed. The

Higgs �elds appear in only a limited number of 
at directions. The �eld Hd

does not appear in table 1 contracted with Q or L since the Yukawa couplings

give nonzero F �

�d
and F �

�e respectively in this case. LikewiseHu does not appear

contracted with Q as F �

�u would be nonzero. It can appear contracted with
Hd or L though. The only 
at directions involving Higgs �elds are therefore
HuHd and HuL. The superpotential � term,

W = �HuHd

generates a nonzero F component if either Higgs is nonzero, F �

Hu
= �Hd and

F �

Hd
= �Hu. However � can not be much larger than the weak scale. So this

contribution to the potential is the same order as that from the zero density
soft supersymmetry breaking masses. Directions which are lifted only by
the � term in the supersymmetric limit are therefore included in the list of
renormalizable \
at" directions.

Flat directions can be constructed by tensoring together products of the
combinations of �elds that appear in table 1. A complete list of standard

model 
at directions made out of up to 7 �elds is given in table 2. Gauge
indices are contracted in an obvious manner. In general many possible direc-
tions exist for each invariant by permuting 
avor indices. For example, the
invariant LL�e contains the independent F 
at invariants L1L2�e3, L1L3�e2, and
L2L3�e1. For each invariant there is a single Goldstone boson for the sponta-

neously broken U(1) global quantum number carried by the invariant, and
its supersymmetric partner. The scalar components of the other directions

in the invariant are Goldstone bosons for the spontaneously broken 
avor
symmetries.

Fields can take values along multiple directions simultaneously, and re-

main F 
at, although this is not guaranteed. For example, the directions
Q1L1

�d2, �u2 �d2 �d3, and L1L2�e3 can be nonzero and preserve the D and F 
at

conditions. Typically most directions not related by 
avor are lifted when
�elds take on nonzero value along some direction. For example, when LHu

is nonzero, all the directions in table 2 are lifted except LL�e and LL �d �d �d.
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All the 
at directions in table 2 made of given number of �elds have

the same B � L, with the exception of HuHd and LL �d �d �d. This may seem

surprising, but follows from the following simple combinatorics. As listed in

table 1 the number of �elds minus B � L equals 4 for units which do not

involve Higgs �elds, and is zero for �e. This has the e�ect that all directions

made out of a given number of F 
at combinations from table 1, any number

of �e �elds, and no Higgs �elds, have the same B�L. All the directions listed
in table 2 without Higgs �elds are in fact constructed in this way, with the

exception of LL �d �d �d. This direction is made of two operators from table 1

while the other directions with 5 �elds are made from one operator and some
number of �e �elds.

39



References

[1] B. de Carlos, J. A. Casas, F. Quevedo, and E. Roulet, Phys. Lett. B

318 (1993) 447; T. Banks, D. Kaplan and A. Nelson, Phys. Rev. D 49

(1994) 779; T. Banks, M. Berkooz, and P. Steinhardt, Phys. Rev. D 52

(1995) 705.

[2] G. Coughlan, W. Fischler, E. Kolb, S. Raby and G. Ross, Phys. Lett. B

131 (1983) 59; J. Ellis, D.V. Nanopoulos and M. Quiros, Phys. Lett. B

174 (1986) 176.

[3] I. A�eck and M. Dine, Nucl. Phys. B 249 (1985) 361.

[4] M. Dine, L. Randall, and S. Thomas, Phys. Rev. Lett. 75 (1995) 398.

[5] The fact that during in
ation �elds generically have masses of order H
has been noted by many authors. In the context of the Polonyi problem,
it was noted by M. Dine, W. Fischler, and D. Nemeschansky Phys. Lett.
B 136 (1984) 169. In other contexts it was noted by O. Bertolami and

G. Ross, Phys. Lett. B 183 (1987) 163; E. Copeland, A. Liddle, D.
Lyth, E. Stewart, and D. Wands, Phys. Rev. D 49 (1994) 6410. The
relevance to the Polonyi problem and baryogenesis has been pointed
out by M. Dine, L. Randall, and S. Thomas, talk presented at the US-
Polish Workshop on Physics from the Planck Scale to Electroweak Scale,

Sept. 1994; and at the DESY Theory Workshop on Supersymmetry, Oct.
1994; and for the Polonyi problem by G. Dvali, preprint IFUP-TH 9-95,
hep-ph 9503259.

[6] M. Dine and N. Seiberg, Nucl. Phys. B 306 (1988) 137.

[7] M. Grisaru, W. Siegel, and M. Rocek, Nucl. Phys. B 159 (1979) 429; N.
Seiberg, Phys. Lett. B 318 (1993) 469.

[8] V. A. Kuzmin, V. A. Rubakov and M. E. Shaposhnikov, Phys. Lett. B

155 (1985) 36.

[9] The only exception is a Yukawa coupling of two �elds in the 
at direction

directly to a �eld in the in
aton sector with small expectation value but
large F component. The F component would then induce a soft mass

for the 
at direction of m � g
q
HMp.

40



[10] M. K. Gaillard and V. Jain, Phys. Rev. D 49 (1994) 1951.

[11] J. Bagger, E. Poppitz, and L. Randall, preprint EFI-95-21, hep-ph

9505244.

[12] J. Ellis, A. Linde, and D. Nanopoulos, Phys. Lett. B 118 (1982) 59;

M. Yu. Khlopov and A. Linde, Phys. Lett. B 138 (1984) 265; J. Ellis,

J.E. Kim and D.V. Nanopoulos, Phys. Lett. B 145 (1984) 181. For

recent discussions of the gravitino problem seeM. Kawaski and T. Morio,

preprint hep-ph 9403364; W. Fischler, Phys. Lett. B 332 (1994) 277; R.
Leigh and R. Rattazzi, Phys. Lett. B 352 (1995) 20.

[13] Nonzero D terms can arise during in
ation in the presence of a lin-
ear Fayet-Iliopoulos D term. For example, consider an SU(2) � U(1)
model with gauge couplings g and e, and �eld content ' = (2;+1) and
�' = (2;�1). With a linear D term for the U(1), �

R
d4�V , there is 
at

direction '�' � �'� �' = �1
2
(e2=(e2 + g2))�, along which the gauge po-

tential does not vanish, VD = 1
8
(e2g2=(e2 + g2))�2. With a nonminimal

Kahler potential, in
ation can take place along this direction.

[14] L. Randall and S. Thomas, preprint MIT-CTP-2331, SCIPP 94-16, hep-
ph 9407248, to appear in Nuc. Phys. B.

[15] S. Thomas, Phys. Lett. B. 351 (1995) 424.

[16] T. Banks, M. Berkooz, G. Moore, S. Shenker, and P. Steinhardt, preprint
RU-94-93, hep-th 9503114.

[17] E. Stewart, preprint KUNS 1261, hep-ph 9405389; E. Stewart, preprint

KUNS 1286, hep-ph 9408302.

[18] M. K. Gaillard, H. Murayama, and K. Olive, preprint UMN-TH-1334-95,

hep-ph 9504307.

[19] T. Bunch and P. Davies, Proc. R. Soc. A 360 (1978) 117; A. Linde,

Phys. Lett. B 116 (1982) 335; A. Starobinsky, Phys. Lett. B 117 (1982)
175; A. Linde, Phys. Lett. B 131 (1983) 330.

[20] If no potential for the phase of � exists during in
ation the baryons

which are eventually produced have a (roughly) scale invariant spectrum

41



of density 
uctuations, �nb=nb � HI=j�0j, where j�0j is the minimum

during in
ation. These 
uctuations can not be too large in order that

structure does not form too early after matter domination, i.e. ��b=�tot <

10�5. This gives a bound of �0=HI < 104 during in
ation.

[21] E. Kolb and M. Turner, The Early Universe (Addison Wesley, New York,

1990).

[22] If this operator is generated by integrating out a heavy singlet with

mN < HI , the singlet can be excited during in
ation with amplitude
h�N2i � H2

I . This gives an e�ective mass squared to the LHu direction
of m2 � g2H2

I . But to obtain an acceptable baryon number in this case
g � 1. So the negative mass squared scenario can still be realized even

if the singlet is excited during in
ation.

[23] Of course for very small m� the baryon number must vanish as m� ! 0.
For m� < 10�20 eV the �

M
(LHu)

2 term in the superpotential is less

important in determining the value of the LHu direction when H � m3=2

than higher order terms in the soft potential. For m� less than this value
the baryon number therefore does decrease (ignoring any U(1)L violation
in the Kahler potential).

[24] J. Ellis, K. Enqvist, D. Nanopoulos, and K. Olive, Phys. Lett. B 191

(1987) 343; K. Enqvist, K. W. Ng, and K. Olive, Phys. Rev. D 37 (1988)
2111; H. Murayama and T. Yanagida, Phys. Lett. B 322 (1994) 349.

[25] A. Linde, Phys. Lett. B 160 (1985) 243.

[26] A. Dolgov and D. Kirilova, Sov. J. Nucl. Phys. 50 (1989) 1006 [Yad.
Fiz. 50 (1989) 1621]; S. Davidson, H. Murayama, and K. Olive, Phys.

Lett. B 328 (1994) 354.

[27] L. Dixon, J.A. Harvey, C. Vafa and E. Witten, Nucl. Phys. B 261 (1985)

678.

[28] I. Antoniadis and C. Kounnas, Nucl. Phys. B 284 (1987) 729.

[29] D. Lyth and E. Stewart, Phys. Rev. Lett. 75 (1990) 201.

42



Figure Captions

Figure 1. Trajectory in � plane for n�i =
9
10
�, with m� = c0 = �a = 1, and

n = 4.

Figure 2. Fractional baryon number carried by condensate as a function of

n�i for m� = c0 = �a = 1, and n = 4.
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Y B � L N � (B � L)

�e 2 1 0

LL �2 �2 4

HuHd 0 0 2

LHu 0 �1 3

�u�u�u �4 �1 4

�u�u �d �2 �1 4

�u �d �d 0 �1 4

�d �d �d 2 �1 4

QL�u �2 �1 4

QL �d 0 �1 4

QQ�u�u �2 0 4

QQ�u �d 0 0 4

QQ �d �d 2 0 4

QQQL 0 0 4

QQQQ�u 0 1 4

QQQQ�d 2 1 4

Q6 2 2 4

Table 1: Combinations of �elds for constructing 
at directions.
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B � L

HuHd 0

LHu �1

�u �d �d �1
QL �d �1
LL�e �1

QQ�u�d 0
QQQL 0
QL�u�e 0
�u�u �d�e 0

QQQQ�u 1
QQ�u�u�e 1
LL �d �d �d �3
�u�u�u�e�e 1

QLQL �d �d �2
QQLL �d �d �2
�u�u �d �d �d �d �2

QQQQ�dLL �1
QLQLQL�e �1
QL�uQQ �d �d �1
�u�u�u �d �d �d�e �1

Table 2: Renormalizable F and D 
at directions in the standard model.

45






