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The total loss parameter for each cavity is computed to
be kl = 1.7 V/pC for a bunch length of 3.3 mm, of which the
fundamental mode contributes 0.26 V/pC and modes below
cut-o� contribute 1.1 V/pC. The transverse kick factor is
39.4 V/pC/m. Tables 1 and 2 list the strongest monopole
and dipole mode frequencies and R/Q's.

The determination of the number of cavities required
involves a compromise between their power handling capa-
bilities and the beam impedance presented by the cavities.
We expect that two cavities per ring will be su�cient to
attain the required 1 MV RF voltage [1].

Table 1. Strongest monopole HOM's.
Frequency (MHz) R/Q (
)

1932 7.3
2362 4.9
3150 4.8
4673 3.2

Table 2. Strongest dipole HOM's.
Frequency (MHz) (R/Q)/(kr)**2 (
)

1194 17
1995 4.2
2312 0.9
2404 0.8
2509 6.7

IV. Coupled Bunch Instabilities and Feedback

A. Longitudinal m = 0

In the case of longitudinal beam oscillations, the RF
cavities provide the only sources of impedance strong
enough to drive coupled bunch (CB) instabilities. As de-
scribed above, we are using the measured parameters of
the HOM's of the 476 MHz PEP-II RF cavity scaled to
714 MHz to estimate the growth rates in the NLC damp-
ing ring. For calculations of the CB growth rates, we have
assumed that all HOM's have been damped to Q's of 200.

In this case, we �nd that all CB growth rates fall below
the radiation damping rate of 400/sec except for a few CB
modes which are driven by the HOM at 3150 MHz and have
growth rates of 450/sec. Because the bandwidth of the
HOM's is large compared to the revolution frequency, we
do not expect any change in the growth rate from frequency
variations of the HOM's. All growth rates for higher mode
CB (m > 0 modes) oscillations fall well below the radiation
damping threshold.

Because the fastest growth rates are only slightly above
the radiation damping threshold, we are not planning for
a longitudinal CB feedback although the situation must be
reevaluated once an actual RF cavity is available. Also,
although most CB modes are stable, it is possible that
their transient response following injection has unaccept-
ably large amplitudes, resulting in an emittance increase
or beam loss. This is especially important because of the
relatively short time the beam is in the damping ring. We
are currently evaluating this problem.

B. Transverse m = 0

In the transverse plane, the principal impedances for
driving CB oscillations are the dipole HOM's of the RF
cavities and the resistive wall impedance. For the expected
aluminumbeam pipe with a radius of 1.25 cm, the real part
of the resistive wall impedance is estimated to be Zrw =
0:47 M
=m. As for the monopole HOM's, we assume the
dipole HOM's are damped to Q's of 200.

We �nd the fastest growth rates of �1400/sec to be
driven by the resistive wall impedance. This is about ten
times the radiation damping rate of 216/sec in the ver-
tical plane. The CB modes driven by cavity HOM's all
have growth rates less than the radiation damping rate ex-
cept for a mode at 1194 MHz which is roughly three times
higher.

A transverse CB feedback system or a large transverse
bunch-to-bunch tune variation is needed to stabilize the
fast CB growth rates. Because the CB growth is domi-
nated by the resistive wall impedance, it may be possible
to design a lower bandwidth system (�50 MHz) to deal
only with those CB modes rather than a broadband sys-
tem (357 MHz) which would cover all possible CB modes.

C. Transverse m = 1

The method described in [4] and [5] was used to com-
pute m = 1 (head-tail) coupled bunch growth rates. The
m = 1 modes are especially important since they are very
hard to damp with a feedback system. If the cavity Q's
are less than 300, the m = 1 growth rates are negligible. If
instead we assume cavity Q's of 3000, there is one cavity
mode (2509 MHz) which drives an m = 1 mode above the
radiation damping rate at a beam current of roughly 1.3
A. This is probably not a signi�cant limitation.

V. Impedance and Microwave Instability

Usually the microwave instability is considered to be a
benign instability, leading an increased bunch length and
energy spread. But, there is some concern that the insta-
bility can exhibit a bursting behavior [6]. This can be a se-
vere limitation in a damping ring since the extracted beam
energy and phase uctuates pulse-to-pulse.

To calculate the potential well distortion and the
threshold for the microwave instability, we need to know
the details of the vacuum chamber geometry. As was the
case for the SLC damping rings, small changes in vacuum
chamber cross-section can dominate in their contribution
to the ring impedance over larger objects such as the rf
cavities[7]. In the SLC rings, we were able to model the
important elements and construct an accurate wake func-
tion; using this wake function the calculated bunch shape
and basic properties of the microwave instability generally
agreed well with measurements [8][9].

At this time, we are assembling detailed designs of the
BPMs, bellows, masks, etc., so that we can perform a sim-
ilar calculation for the NLC rings. Although this task is
not yet complete, as a zeroth order approximation, we have
assumed that the impedance is dominated by RF cavi-
ties. Using the wake�eld of these cavities, and solving the



Ha��ssinski equation[10] we �nd that the potential well dis-
tortion is small, hardly perturbing the distribution from
the nominal, gaussian shape. Next, using the perturbation
approach of [11] to solve the linearized, time independent
Vlasov equation, which includes the potential well distor-
tion as a zeroth order e�ect, we �nd a microwave threshold
at roughly 3.5 times the nominal current. While these re-
sults are encouraging, they are obviously incomplete and
we need to calculate the full wake�eld to perform more re-
alistic estimates.

VI. Other Issues

A. Mode-coupling

We use the method described in [4] and [5] to compute
the single bunch mode-coupling threshold. For the trans-
verse impedance, we use the model described in in [12]
which consists of the transverse HOM's, the resistive wall,
and a high frequency tail due to the cavities. The e�ect is
most severe in the vertical plane where we �nd a thresh-
old at roughly 28 mA; this is about an order of magnitude
above the actual single bunch current.

B. Ion E�ects

Because of the high beam current and the small beam
emittances, ion e�ects can be signi�cant. Although the 60
ns gap separating the bunch trains clears the ions between
trains and prevents `ion trapping', ions generated within
the passage of a single bunch train will a�ect the dynam-
ics. There are two primary issues: tune shifts due to the
focusing from the ions and a fast beam-ion collective insta-
bility that can arise in both the electron and positron rings
and grows as exp(

p
t=�c) [13].

At a vacuum pressure of 10�9 Torr, the ions will pro-
duce a variation in betatron tune of ��y � 0:002 across the
electron bunch train; although this is small, it can have an
appreciable e�ect and may even stabilize some of the trans-
verse coupled bunch instabilities. At this same vacuum
pressure, the predicted characteristic times �c for the col-
lective instability are 500 ns in the electron ring and 120 �s
in the positron ring; the characteristic times are inversely
proportional to the vacuum pressure and decrease by an
order of magnitude at a pressure of 10�8 Torr. Methods of
alleviating this instability are discussed in Ref. [13].

C. Intrabeam Scattering and Touschek Lifetime

Because of the small emittances, intrabeam scattering
and Touschek e�ects are signi�cant. With a single bunch
population of 1:54 � 1010, intrabeam scattering increases
the equilibrium horizontal emittance of the beam core by
about 25% and the equilibrium vertical emittance by about
5%; the scattering has a much smaller e�ect on the verti-
cal emittance, which is mainly determined by the vertical
dispersion because hHyi=hHxi � �y=�x, where Hx;y is the
Courant-Snyder dispersion invariant [14]. In addition, the
scattering populates large amplitude tails in the particle
distribution that need to be collimated before the IP [15].

Similarly, the Touschek lifetime is only 100 seconds. Al-
though this is very short, it is long compared to the store

time of 22 ms. If stored beam is desired for commission-
ing or diagnostic purposes, the Touschek lifetime can be
lengthened by introducing vertical dispersion in the wig-
glers and increasing the equilibrium vertical emittance.

D. Beam-Gas Scattering

With vacuum� 10�8 Torr, beam-gas scattering has no
signi�cant e�ect on the emittances. It only contributes to
large amplitude tails in the particle distribution [16], [17].
These tails must be collimated before the IP to prevent
backgrounds in the detector.

VII. Summary and future work

Baseline designs for the vacuum chamber and RF cav-
ities are given for the NLC damping ring, from which in-
stability estimates were made. We �nd that coupled bunch
instabilities can be handled by reasonable feedback sys-
tems. Preliminary estimates indicate that the beam is be-
low the microwave instability threshold, but more detailed
calculations need to add in numerous small contributions.
Simulations indicate that ion e�ects could put stringent re-
quirements on the vacuum; here experimental veri�cation
is desirable.
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