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Abstract

Beginning with a tracking code for the LHC, we construct
the canonical generator of the full-turn map in polar co-
ordinates. For very fast mapping we adopt a model in
which the momentum is modulated sinusoidally with a pe-
riod of 130 turns (very close to the synchrotron period).
We achieve symplectic mapping of 107 turns in 3.6 hours
on a workstation. Quasi-invariant tori are constructed on
the Poincar�e section corresponding to multiples of the syn-
chrotron period. The possible use of quasi-invariants in
deriving long-term bounds on the motion is discussed.

I. Introduction

In [1], we showed how to construct the mixed-variable
generating function for the full-turn map, using only single-
turn data from a symplectic tracking code. The gener-
ator is represented as a Fourier series in angle variables,
the Fourier coe�cients being B-spline functions of action
variables. The symplectic map induced by this generator
gives a good representation of the dynamics de�ned by the
tracking code (according to physical criteria to be stated
presently), even with moderate numbers of Fourier modes
and spline knots. There are two special features of the B-
spline{Fourier basis that promote fast map iterations: (i)
the B-spline basis functions have \limited support," which
is to say that only a few of the functions are non-zero at
a particular point, and (ii) among all Fourier amplitudes
with mode numbers less than some cuto�, a great many
are found to be negligible.
A method to set long-term bounds on nonlinear motion

was proposed in [2]. The idea is to make a canonical trans-
formation to new action-angle variables (J ;	), such that
the action J is nearly invariant, and then examine the
residual variation of J . In [2] the method was illustrated
only in a simple example of transverse motion.
In this paper we construct maps for a realistic injec-

tion lattice of the LHC. The maps are su�ciently fast so
that one can economically follow single orbits for 107 turns,
and also construct quasi-invariant surfaces with account of
synchrotron oscillations. We make the �rst steps toward
derivation of long-term bounds, but �nd that the method
of [2] must be elaborated if one is to �nd good bounds at
large amplitudes.
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II. Poincar�e section at the synchrotron period

Long-term behavior of transverse coordinates is strongly
a�ected by momentum oscillations, but the synchrotron
motion itself remains roughly harmonic. For a �rst view
of the full six-dimensional system, it is then reasonable to
modulate the momentumexternally, and ignore the coordi-
nate conjugate to momentum (time-of-ight). Experience
with tracking shows that such a model gives results rather
similar, if not identical, to those of the full six-dimensional
treatment. The synchrotron period of the LHC injection
lattice is nearly 130 turns. We suppose it to be exactly 130,
and take the momentum deviation at the mth turn to be

� =
p � p0

p0
= �0 sin

2�m

130
; �0 = 5 � 10�4: (1)

The momentum change is localized at a single r.f. cav-
ity. For the rest of the ring we have a 4-dimensional map
for �xed �, which is represented in terms of coordinates
centered at its ��dependent �xed point [1]. To save com-
puting time in map iteration, we store the coe�cients that
determine the 4-d generating function, for each of the 130
values of �.
The Hamiltonian is periodic in s with period 130C,

where C is the circumference of the reference orbit. The
surface s = 0 (mod 130C) is then a Poincar�e section on
which there exist two-dimensional invariant surfaces and
resonances that can be studied in the usual way. In com-
parison to the situation for the single-turn map at �xed

�, we �nd many more low-order resonances. This is not
surprising, since even without modulation of � the 130-th
power of the map will have many more resonances than the
�rst power. The resonance condition for the N -th power,
Nm � � = P , has more solutions than that for the �rst
power, m � � = p, where P , p and the components of m
are any integers.

III. Construction and Validation of Full-turn

Map for the LHC

In contrast to the approach based on Taylor series, we do
not look for a map to be valid over all of the relevant phase
space. Rather, we concentrate our approximative power
in a small region of action space, over which the map has
relatively little variation in action. We can then get high
accuracy from a small set of spline basis functions, and
that allows fast iteration of the map. For a global study
of stability we string together several overlapping regions,
and make a map for each region.
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To set the scale, we �rst run the tracking code to de-
termine the short term (2000 turn) dynamic aperture. In
the plane of our action variables (I1; I2), described in units
of 10�7m, this aperture roughly follows the straight line
from (6; 0) to (0; 9). To illustrate map construction, we
discuss a map that is valid for initial actions I1(0); I2(0)
(with initial angles being zero) in the region R such that
1 � I1(0); I2(0) � 1:5. This region is located at about
one half of the short-term aperture in the plane of dis-
placements x1; x2. The generator is determined in a larger
region R1, to allow for smear of orbits (as determined by
short-term tracking) and an extra \apron" to account for
possible long-term drift. The map iteration is programmed
to stop if the orbit leaves R1.

The map in question has 10 Fourier modes for each angle,
10 spline interpolation points for each action, and 6 for �.
The splines are cubic polynomials locally. The construction
of the generator requires 264600 turns of tracking, with
68ms per turn (thus 5 hours) on an IBM RS6000 Model 590
workstation. The resulting implicit map (made explicit by
Newton's method) can be iterated in 1.2ms on the same
machine, giving 107 turns in 3.6 hours. The map agrees
with the tracking code to about 1 part in 104 at one turn.
The accuracy of agreement can be increased essentially at
will by increasing the number of Fourier modes and spline
points, or the order of the splines. The time for iteration
does not increase with the number of spline points if the
spline order is �xed (thanks to the limited support of B-
splines), but the construction time is proportional to that
number.

Rather than trying for higher accuracy, we consider it
most interesting to work with a map of modest accuracy
(hence short iteration time) and try to show that it gives es-
sentially the same physical picture as the underlying track-
ing code. We do that by comparing resonances and quasi-
invariant surfaces of the map and the tracking code. An
easy way to �nd resonances (on our Poincar�e surface at the
synchrotron period) is to look for orbits con�ned to narrow
bands in the plane of angles �1;�2; see [2]. In the case of
relatively broad resonances, of which there are great many
at moderate amplitudes, we always �nd that an initial con-
dition giving a resonance of the map also gives the same
one in tracking. In trying the same test for narrow, high-
order resonances, we found a 62-nd order resonance of the
map at (I1(0); I2(0)) = (1:1; 1:1). This did not appear in
tracking from the same initial condition, but another 59-th
order resonance did appear. Readjusting slightly the initial
condition of the map trajectory, we found the 59-th order
in the map, at (I1(0); I2(0)) = (1:09983; 1:1). This orbit of
the map is plotted for 10000 synchrotron periods in Fig. 1.
The corresponding orbit of tracking for 5000 synchrotron
periods agrees very well on visual inspection; (quantitative
comparison is di�cult, since the points �ll the \curves"
di�erently in the two cases).

To compare quasi-invariant tori of the map and tracking,
again on the Poincar�e surface, we constructed a torus by
the method of [2] in which a nonresonant orbit is �tted to
a Fourier series in angle variables. Taking 20 modes for

Figure. 1. �2 vs. �1 on a 59th order resonance of the map,
33�1 � 26�2 = p, for 10000 synchrotron periods. Initial
conditions: I1(0), I2(0) = (1:09983; 1:1) � 10�7 m.

each angle, a few quasi-invariant tori of the map were com-
puted. It typically took about 7000 synchrotron periods of
mapping to compute a torus, requiring about 20 minutes
on the Model 590. We check invariance under the map or
under tracking by starting orbits at many randomly cho-
sen points on the torus, and see how close the orbit is to
the torus after one synchrotron period. With 50 randomly
chosen points, a typical surface was invariant to one part
in 105 under the map from which it was constructed, and
invariant to one part in 104 under the tracking code.
These and other tests convince us that the Hamiltonian

system represented by symplectic maps of modest one-turn
accuracy (1 part in 104) represent a physical system very
similar to that of the underlying tracking code, at least
at amplitudes not too close to the dynamic aperture. At
very large amplitudes it is not easy to validate the map
by the above arguments, since one �nds large-scale chaotic
behavior rather than clean resonances and quasi-invariants.

IV. A String of Large-amplitude Maps and

Long-term Mapping

In one over-night run, using a small fraction of avail-
able CPU time on a \farm" of workstations at SLAC, we
produced a string of �ve maps in partially overlapping rect-
angular regions. Numbers of modes and spline knots were
the same as in the example above. This gives a continuous
strip of allowable initial conditions (with �1 = �2 = 0),
between two lines running parallel to the short-term aper-
ture. The outer border of the strip is at 70% of the aper-
ture. The outer corners of the rectangles go beyond the
strip, and allow orbits that go within at least 85% of the
aperture. At the time of writing we have done a few runs
of 107 turns using these maps. Fig. 2 shows a plot of I1
at every eighth synchrotron period in such a run. The ver-
tical frame size of the graph indicates the domain of the
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Figure. 2. I1 vs. number of synchrotron periods, for 107

turns. Initial conditions: I1(0), I2(0) = (1:87; 0:937) � 10�7

m.

splines in I1. The domain of the maps does not include
the coordinate axis, I1 = 0, I2 = 0. The map construction
fails in a small neighborhood of each axis, since the polar
coordinate system becomes inappropriate.

V. A First Try at Long-term Bounds

Here we are concerned solely with the dynamics de-
�ned by the map. For a �rst attempt at long-term
bounds we work at smaller amplitudes, in a region with
0:4 < I1(0); I2(0) < 0:6 (in units of 10�7m). Following
the method of [2], we construct a set of 9 tori on the
Poincar�e section, for points close to a 3 � 3 rectangular
grid in I1(0); I2(0). These tori have twenty Fourier modes
in each variable, and are invariant to about 1 part in 105.
We next interpolate the tori in actions, so as to de�ne a
smooth canonical transformation to new action-angle vari-
ables J ;	. Although J is fairly constant on and near the
original tori, it remains to be seen how much it varies in
the region of interpolation.

Let 
 denote the region in which J is de�ned. Suppose
that �J is an upper bound for the change in jJij during m
synchrotron periods, for any orbit beginning in 
. Let 
o

be a subregion of 
, and let �J be the minimum distance
from 
o to the boundary of 
. Then an orbit beginning in

o cannot leave 
 in fewer than nm synchrotron periods,
where n�J = �J . Then we have stability (in the sense of
being con�ned to 
) for N = 130m�J=�J turns.

We take m = 1000 and try 1000 randomly chosen initial
conditions in 
 to estimate �J . We �nd that �J is about
0.01, which is much larger than the variation of J for orbits
starting on the original tori. If we take 
o to be a small box
in the middle of 
, then �J is about 0.1, and we can predict
stability only for N = 1:3 � 106 turns, a disappointingly
small number.

The reason for the large variation of J is the presence
of a fairly broad resonance inside 
. A su�ciently iso-

lated resonance in mode m = (m1;m2) can be identi�ed
by plotting the change of m � J against m �	 at constant
K = m1J2 �m2J1 [2]. As is shown for a (6; 1) resonance
in Fig. 3, these variables perform a pendulum-like motion.
Note that this motion would be hard to see without �rst

Figure. 3. Plot of m̂ �dJ vs. [m�	 (mod 2�)]=2�, where
m̂ is the unit vector in the direction ofm = (6; 1), and dJ
is the deviation of J from a �xed \average action," J0.
Each of the 9 orbits plotted is started at the same value of
K = m2J1(0) �m1J2(0). The action unit is 10�7 m.

transforming to J ;	. The resonance could be quite stable,
but still lead to large oscillations in J . In order to make
our argument for long-term bounds, it will be necessary to
�nd quasi-invariants of resonant orbits. Preliminary work
by Armando Antill�on showed that a simple pendulum-type
Hamiltonian H(m � J ;m �	;K) could be �tted to orbit
data so as to provide at least a rough quasi-invariant; K is
a second quasi-invariant. We hope to use H andK in place
of J1; J2 in our argument for long-term bounds. It may be
necessary to re�ne the de�nition of these quantities, so that
they are functions of all the canonical variables J ;	.
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