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Abstract

For a Vlasov treatment of longitudinal stability under an

arbitrary wake �eld, with the solution of the Ha��ssinski

equation as the unperturbed distribution, it is important

to have the action-angle transformation for the distorted

potential well in a convenient form. We have written a

code that gives the transformation q; p! J; �, with q(J; �)

as a Fourier series in �, the Fourier coe�cients and the

HamiltonianH(J) being spline functions of J inC2 (having

continuous second derivatives).

I. The Canonical Transformation

We suppose that the Hamiltonian has the form

H =
p2

2
+ V (q); (1)

where V (q) is a potential well with continuous derivative.

We discuss only values of the constant H such that the

motion consists entirely of oscillations between two turning

points at which p = 0. We denote the turning points by

q0 and q1, with q0 < q1, and exclude values of H for which

either V 0(q0) or V
0(q1) is zero. We de�ne

p(q;H) = �
p
2[H � V (q)]; (2)

where p > 0 as q moves from q0 to q1, and p < 0 as it

returns from q1 to q0. The action integral, which extends

over a full period of the motion, is

J(H) =
1

2�

I
p(q;H)dq =

1

�

Z q1

q0

p(q;H)dq: (3)

Thanks to our assumption that V 0(qi) 6= 0, there is a well-

de�ned inverse function H(J).

Hamilton's equations imply that p = dq=dt. If t = 0 at

q = q1, the time t for displacement q is

t =

Z q

q1

dq0

p(q0;H)
(4)

where the integration path is understood to follow all oscil-

lations that occur by time t: q1 �! q0 �! q1 �! � � � �!
q(t). Since H depends only on J , Hamilton's equations

in action-angle variables give � = �0 +H0(J)t. Choosing

�(q1) = 0, we have

�(q;H) = H0(J(H))

Z q

q1

dq0

p(q0;H)
(5)
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We wish to �nd the functions q(J;�), p(J;�), and H(J)

in a form that will be convenient for repeated and fast nu-

merical evaluations, with 2�-periodicity in � guaranteed.

We also want these functions to have continuous second

derivatives in both variables. These requirements arise

from an intended application in solutions of the Vlasov

equation with Fokker-Plank term, as discussed below. A

convenient expression of the functions is

q(J;�) =

1X
m=0

qm(J) cosm� (6)

p(J;�) =
@q(J;�)

@�
H0(J) (7)

with qm(J) and H(J) expanded in terms of some C2 basis

functions Bk(J) and Ck(J):

qm(J) =
X
k

qmkBk(J) (8)

H(J) =
X
k

hkCk(J) (9)

The formula (7) follows from the derivative of (5) with

respect to �, if we recall that H is only a function of J

when written in action-angle coordinates.

If the series (6), (8), and (9) are truncated at a �nite

number of terms, the resulting transformation J;� �! q; p

will not be precisely canonical (i.e., symplectic). A measure

of symplecticity is the agreement of p as given in (7) with

p(J;�) = �
p
2[H(J)� V (q(J;�))]: (10)

If p is given by (10), a calculation of the Poisson bracket

yields

[q; p] =
1

p

@q

@�

dH

dJ
: (11)

Thus, if p from (7) agrees with p from (10), we have a

canonical transformation, since [q; p] = 1. With a mod-

erate number of terms in the series (6), (8), and (9), the

transformation can be made to satisfy the canonical con-

dition with su�cient precision for our purposes.

II. The Primary Integrations

We �rst evaluate the integrals (3) and (5) on a regular

mesh in H: fHiji = 1; : : : ;Kg. The turning points q0(Hi)

and q1(Hi) are easily found by a Newton iteration. The

factor H0(J(Hi)) is de�ned at each i by

� = H0(J(Hi))

Z q0

q1

dq

p(q;Hi)
: (12)
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For numerical integration, it is useful to change the variable

to

u = cos�1 q1 + q0 � 2q

q0 � q1
: (13)

The inverse of this transformation is

q =
q0 + q1

2
+
q1 � q0

2
cosu: (14)

Then (5) becomes

�(q;Hi) =
q1 � q0

2
H0(J(Hi))

Z u(q)

0

sinu0 du0p
2[Hi � V (q(u0))]

:

(15)

The integrand is now free of singularities. For a nearly

quadratic potential, � is close to u. The same change of

variable is used to compute J(Hi) by (3).

Now u = � corresponds to q = q0. We divide the interval

[0; �] into N intervals, and integrate by Simpson's rule [1].

The �rst and last intervals are treated by an open Newton-

Cotes formula [1], to avoid taking the limit of the integrand

at the endpoints. We evaluate the integrand (15) for upper

limit u at all of the mesh points ui. The value of N is

increased until the integral on [0; �] converges to machine

precision.

III. Finding the Fourier Coe�cients

After the integrations, the angles �(j) = �(q(uj);Hi)

are known, with the uj on a large regular mesh of N + 1

points. To evaluate the Fourier coe�cients qm for jmj �M ,

we search through the �(j) to �nd those that are closest

to the points one would normally use in a discrete Fourier

transform, namely the points

�k

M
; k = 0; : : : ;M: (16)

Denoting those angles by �k, and the corresponding values

of q(uj) by q
(k), we solve the following linear equations for

the Fourier coe�cients:

q(k) =

MX
m=0

qm cosm�k; k = 0; : : : ;M (17)

We solve this system as follows: if we assume that the

function q(�) can be expressed exactly as

q(�) =

MX
m=0

qm cosm�; (18)

then we can write q(�k) in terms of the values xk =

q(�k=M ) as

q(�k) =
1

2M

�
x0 cot

�k

2
sinM�k

+xM cot
�k � �

2
sinM (�k � �) (19)

+

M�1X
n=1

xn
sin�k

sin(�k + �k=M )

sinM (�k � �k=M )

sin[(�k � �k=M )=2]

�

This linear system can then be solved for the xk, the func-

tion values at the mesh points. The discrete Fourier trans-

form of the xk then gives the coe�cients qm. The advan-

tage of this is that the system (19) is very well conditioned

if the �k are close to the mesh points (16); this is why we

chose the mesh points �k as described above.

The system (17) can also be solved as a Vandermonde

system. There are O(n2) direct methods for solving such a

system which should work very well [2].

IV. Expressing the Transformation as a Function

of J

Let q
(i)
m and J (i) denote the values of qm and J at H =

Hi, as determined by the procedure just described. To get

the required functions of J , we invoke the expansions (8)

and (9), and determine the coe�cients by solving the linear

systems

q(i)m =
X
k

qmkBk(J
(i)) (20)

H(i) =
X
k

hkCk(J
(i)); (21)

where i = 1; : : : ;K. A possible improvement is to use the

values of H0(J (i)) as determined in (12) for an additional

constraint on the function H(J). One would then use a

larger set of basis functions Ck, and augment (21) with the

additional equations

H0(J (i)) =
X
k

hkC
0

k(J
(i)); i = 1; : : : ;K (22)

This step should make the whole scheme more self-

consistent, and could be quite worthwhile.

V. Example

We have written a code which �nds the transformation

described for an arbitrary di�erentiable potential V . It

computes the transformation from J = 0 (which is found

by �nding the minimum of the potential) up through the

J corresponding to a given value of H. The basis functions

Bj and Cj are both taken to be B-Splines [3] in
p
J , whose

knots ti are chosen to be

t0 = � � � = tk�1 = 0 (23)

ti+k =
1

k � 1

i+k�1X
j=i+1

p
J (i) i = 0; : : : ; n� k � 1(24)

tn = � � � = tn+k�1 =
p
J (n�1) (25)

as described on pp. 218-9 of [3]. The code computes qm
for m �M for a given integer M . We do not use the data

for H0(J (i)) as described above.

We take as an example the potential V (q) = 1 � cos q.

We know the transformation for this potential:

J =
8

�

�
H

2
K

�
H

2

�
�K

�
H

2

�
+ E

�
H

2

��
(26)
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� =

8>><
>>:

�
2

�
1� F (sin�1 [

p
H=2 sin q=2]jH=2)

K(H=2)

�
p < 0

�
2

�
F (sin�1 [

p
H=2 sin q=2]jH=2)

K(H=2)
� 1

�
p > 0:

(27)

Here F and K are elliptic integrals [4].

We will check the accuracy of our transformation by com-

puting q and H on a uniform mesh in J of 10K points

and a uniform mesh in � of 10M points (excluding � = 0

and � = �). First, we compute H(J) at each J mesh

point, then substitute that value in Eq. (26) and com-

pare to the original J . We give the maximum value of

�J = jJ(H(Ji)) � Jij=Ji in table I. Next, we take H(Ji)

M K �J �� �S
4 8 2� 10�5 8� 10�4 4� 10�3

4 16 6� 10�7 8� 10�4 3� 10�3

4 32 2� 10�8 8� 10�4 3� 10�3

4 64 8� 10�10 8� 10�4 3� 10�3

4 128 2� 10�11 8� 10�4 3� 10�3

8 8 2� 10�5 8� 10�4 2� 10�2

8 16 6� 10�7 4� 10�5 9� 10�4

8 32 2� 10�8 2� 10�6 3� 10�5

8 64 8� 10�10 8� 10�7 7� 10�6

8 128 2� 10�11 8� 10�7 7� 10�6

16 8 2� 10�5 2� 10�3 1� 10�1

16 16 6� 10�7 2� 10�5 1� 10�3

16 32 2� 10�8 5� 10�7 2� 10�5

16 64 8� 10�10 9� 10�9 5� 10�7

16 128 2� 10�11 5� 10�10 8� 10�9

Table I

Accuracy of the transformation. Quartic B-splines are

used throughout. Maximum value of H is 1.

and q(Ji;�j) on the grid described and compute � using

Eq. (27) for each of these values. These results are then

compared to the original �. We record the maximumvalue

of �� = j�
�
H(Ji); q(Ji;�j)

�
��j j in the second column of

table I. Finally, we check the symplecticity of the resulting

transformation by computing

�S =

�������

@q

@�

dH

dJp
2[H � V (q)]

� 1

�������
(28)

for values where neither the square root nor @q=@� is zero.

The maximumvalue of this is recorded in the third column

of table I.

VI. Conclusion

We have described a method for determining a transfor-

mation of a one-dimensional system described by a Hamil-

tonian of the form (1) to action-angle variables. A com-

puter program to implement this method has been written,

and gives satisfactory results regarding convergence.

We note that this method can be applied even to a V (q)

which is only given at a �nite number of points qi. We

simply de�ne V (q) to be a function which passes through

these values. Any interpolation method may be used to

de�ne such a V (q).

This work was motivated by the desire to give a more

thorough treatment of the Vlasov equation for longitu-

dinal instabilities, along the lines followed by Oide and

Yokoya [5]. These authors linearize the Vlasov equa-

tion about the stationary distribution derived from the

Ha��ssinski equation, and then use the action-angle vari-

ables J;� of the \distorted potential well" implied by that

distribution. The perturbed distribution function 	1(J;�)

is represented as a Fourier series in � with the coe�cients

being step functions in J . The step function technique

has some de�ciencies. It gives at best slow convergence as

the steps are re�ned, and makes it di�cult to treat the

Fokker-Planck term, �2�(@=@p)(p	1+@	1=@p). We think

that it would be better to use a C2 spline basis for the

J dependence of 	1. Then the Fokker-Planck term can

be handled easily with the help of our Fourier series (6)

for q, since @=@p = �(@q=@J)(@=@�) + (@q=@�)(@=@J).

Oide's rough treatment of the Fokker-Planck term by a

perturbative method suggests that it is very important in

determining thresholds of instabilities.
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