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Abstract

For a Vlasov treatment of longitudinal stability under an
arbitrary wake field, with the solution of the Haissinski
equation as the unperturbed distribution, it is important
to have the action-angle transformation for the distorted
potential well in a convenient form. We have written a
code that gives the transformation ¢, p — J, ¢, with ¢(J, ¢)
as a Fourier series in ¢, the Fourier coefficients and the
Hamiltonian H (.J) being spline functions of J in C? (having
continuous second derivatives).

I. The Canonical Transformation
We suppose that the Hamiltonian has the form

»?

H=" v, 1)
where V(q) is a potential well with continuous derivative.
We discuss only values of the constant H such that the
motion consists entirely of oscillations between two turning
points at which p = 0. We denote the turning points by
go and q1, with ¢y < ¢1, and exclude values of H for which
either V'(qq) or V'(q1) is zero. We define

p(QaH) == 2[H - V(q)]a (2)

where p > 0 as ¢ moves from ¢y to ¢, and p < 0 as it
returns from ¢; to go. The action integral, which extends
over a full period of the motion, is

J(H) = %j{p(q,ﬂ)dqz %/qlp(q,H)dw (3)

4o
Thanks to our assumption that V'(g;) # 0, there is a well-
defined inverse function H (.J).

Hamilton’s equations imply that p = dg/dt. If t = 0 at
q = q1, the time ¢ for displacement ¢ 1s

_ [t dd
B /q plg', H) ®)

where the integration path is understood to follow all oscil-
lations that occur by time t: ¢ — qo — ¢ — -+ —>
q(t). Since H depends only on J, Hamilton’s equations
in action-angle variables give ® = &y + H'(J)t. Choosing
®(q1) = 0, we have

s = o) [ s
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We wish to find the functions ¢(J, ®), p(J, ®), and H(J)
in a form that will be convenient for repeated and fast nu-
merical evaluations, with 2m-periodicity in & guaranteed.
We also want these functions to have continuous second
derivatives in both variables. These requirements arise
from an intended application in solutions of the Vlasov
equation with Fokker-Plank term, as discussed below. A
convenient expression of the functions is

q(J,®) = qu(J)cosmCI) (6)
sy = P ) M

with ¢,,(J) and H(J) expanded in terms of some C? basis
functions By (J) and Cy(J):

i) = 3 gk Be(]) ®)

H(J) > hCi(J) (9)

The formula (7) follows from the derivative of (5) with
respect to @, if we recall that H is only a function of J
when written in action-angle coordinates.

If the series (6), (8), and (9) are truncated at a finite
number of terms, the resulting transformation J, ® — ¢, p
will not be precisely canonical (i.e., symplectic). A measure
of symplecticity is the agreement of p as given in (7) with

p(J, @) = £V2[H(J) = V(¢(J, 2))]. (10)

If p is given by (10), a calculation of the Poisson bracket
yields

1 dq dH
= —-——. 11
Thus, if p from (7) agrees with p from (10), we have a
canonical transformation, since [¢,p] = 1. With a mod-

erate number of terms in the series (6), (8), and (9), the
transformation can be made to satisfy the canonical con-
dition with sufficient precision for our purposes.

IT. The Primary Integrations

We first evaluate the integrals (3) and (5) on a regular
mesh in H: {H;|¢ =1,..., K}. The turning points ¢o(H;)
and ¢;(H;) are easily found by a Newton iteration. The
factor H'(J(H;)) is defined at each i by

ﬂ:H’(J(Hi))/qD dq

W) (12)
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For numerical integration, it is useful to change the variable

to
~1 90— 2

U = COoS 13
do — 1 ( )
The inverse of this transformation is
qIfJo-l-le_i_fh—fJocosu. (14)
2 2
Then (5) becomes
_ u(q) : /d /
(g, H;) = Lo m (g () ——

2 o V2[Hi = V(g(w))]

(15)
The integrand is now free of singularities. For a nearly
quadratic potential, ® is close to u. The same change of
variable is used to compute J(I;) by (3).

Now u = 7 corresponds to ¢ = gg. We divide the interval
[0, 7] into N intervals, and integrate by Simpson’s rule [1].
The first and last intervals are treated by an open Newton-
Cotes formula [1], to avoid taking the limit of the integrand
at the endpoints. We evaluate the integrand (15) for upper
limit « at all of the mesh points u;. The value of N 1s
increased until the integral on [0, 7] converges to machine
precision.

ITT. Finding the Fourier Coefficients

After the integrations, the angles ®U) = ®(q(u;), Hy)
are known, with the u; on a large regular mesh of N 41
points. To evaluate the Fourier coefficients ¢,, for |m| < M,
we search through the ®U) to find those that are closest
to the points one would normally use in a discrete Fourier
transform, namely the points

wk

2 k=o0,..., M 16
M’ 3 3 ( )

Denoting those angles by @, and the corresponding values

of ¢(u;) by ¢™®), we solve the following linear equations for
the Fourier coefficients:

M
q(k):quCOSan)k, kIOaaM (17)
m=0

We solve this system as follows: if we assume that the
function ¢(¢) can be expressed exactly as

M
4(8) =Y _ gmcosmo, (18)
m=0

then we can write ¢(®g) in terms of the values #; =

q(rk/M) as

1 0]
q(Pr) = W{xo cot Tk sin M ®,,

<I>k—7'l'

4237 cot sin M (@, — ) (19)

Ml sin @y, sin M (®y — nk /M)
+ ; U in (@ + 7k /M) sin[(Dr, — 7k /M) /2]}

This linear system can then be solved for the zj, the func-
tion values at the mesh points. The discrete Fourier trans-
form of the x; then gives the coefficients ¢,,. The advan-
tage of this is that the system (19) is very well conditioned
if the @, are close to the mesh points (16); this is why we
chose the mesh points ®; as described above.

The system (17) can also be solved as a Vandermonde
system. There are O(n?) direct methods for solving such a
system which should work very well [2].

IV. Expressing the Transformation as a Function

of J

Let q%) and J) denote the values of ¢,, and J at H =
H;, as determined by the procedure just described. To get
the required functions of J, we invoke the expansions (8)
and (9), and determine the coefficients by solving the linear
systems

> g Be(J) (20)

> hiCr(JD),
k

—_
)
=

(21)

where ¢ = 1,..., K. A possible improvement is to use the
values of H'(J@) as determined in (12) for an additional
constraint on the function H(J). One would then use a
larger set of basis functions Cj, and augment (21) with the
additional equations
H(JD) =3 "mCp (Y, i=1,.. K (22)
k

gy

This step should make the whole scheme more self-
consistent, and could be quite worthwhile.

V. Example

We have written a code which finds the transformation
described for an arbitrary differentiable potential V. Tt
computes the transformation from J = 0 (which is found
by finding the minimum of the potential) up through the
J corresponding to a given value of H. The basis functions
B; and C} are both taken to be B-Splines [3] in v/.J, whose
knots ¢; are chosen to be

to = =11 =0 (23)
1 i+k—1

tigh = VIO i=0,. =k —1(24)
Jj=i+1

t, = ---= tn-l—k—l = J(”_l) (25)

as described on pp. 218-9 of [3]. The code computes ¢,
for m < M for a given integer M. We do not use the data
for H'(J() as described above.

We take as an example the potential V(q) = 1 — cosgq.
We know the transformation for this potential:

r = 2R (5)-n(5)re(5)]

(26)



1— F(sin™'[\/H/2sin q/2]|H/2)

3 R(H/2) p<0
® = F(sin=[/Ti/2sin g/2)|H/2) (27)
T sin Slnq

Here ' and K are elliptic integrals [4].

We will check the accuracy of our transformation by com-
puting ¢ and H on a uniform mesh in J of 10K points
and a uniform mesh in ® of 10M points (excluding & =0
and ® = ). TFirst, we compute H(J) at each J mesh
point, then substitute that value in Eq. (26) and com-
pare to the original J. We give the maximum value of

AJ = |J(H(J;)) — Ji|/J; in table I. Next, we take H(J;)

M| K AJ AD s

41 8 [ 2x107% | 8x107%F [4x 1073
4 116 | 6x1077 | 8x107* | 3x 1073
4 132 ] 2x1078 | 8x107* | 3x 1073
4 | 64 | 8x 10710 | 8x107* | 3x 1073
4 1128 | 2x 107 | 8x107* | 3x 1073
8 8 [ 2x107% [ 8x10=% [ 2x 1072
8 | 16 | 6x 1077 | 4x107% | 9x10~4
8 | 32 | 2x 1078 | 2x107% | 3x107°
8 | 64 | 8x 10710 | 8x 1077 | 7x10°°
8 | 128 | 2x 1071 | 8 x 1077 | 7x 1076
16 8 [ 2x107°% | 2x107% [ 1x 1071
16| 16 | 6x 1077 | 2x107% | 1x 1073
16| 32 | 2x107% | 5x 1077 | 2x 1073
16| 64 | 8x1071° | 9x107° | 5hx 1077
16 | 128 | 2x 1071 | 5x 10719 | 8 x 10~?

Table 1

Accuracy of the transformation. Quartic B-splines are
used throughout. Maximum value of H 1s 1.

and ¢(J;, ®;) on the grid described and compute ® using
Eq. (27) for each of these values. These results are then
compared to the original ®. We record the maximum value
of Ad = |<I>(H(Ji), q(Ji, <I>j)) —®;| in the second column of
table I. Finally, we check the symplecticity of the resulting
transformation by computing

Oq dH
o — 0® dJ _
S pu—

- V(0] (%)

for values where neither the square root nor dq/0® is zero.
The maximum value of this is recorded in the third column

of table I.

VI. Conclusion

We have described a method for determining a transfor-
mation of a one-dimensional system described by a Hamil-
tonian of the form (1) to action-angle variables. A com-
puter program to implement this method has been written,
and gives satisfactory results regarding convergence.

We note that this method can be applied even to a V(q)
which is only given at a finite number of points ¢;. We
simply define V(¢) to be a function which passes through
these values. Any interpolation method may be used to
define such a V(g).

This work was motivated by the desire to give a more
thorough treatment of the Vlasov equation for longitu-
dinal instabilities, along the lines followed by Oide and
Yokoya [5]. These authors linearize the Vlasov equa-
tion about the stationary distribution derived from the
Haissinski equation, and then use the action-angle vari-
ables J, @ of the “distorted potential well” implied by that
distribution. The perturbed distribution function ¥y (J, @)
is represented as a Fourier series in @ with the coefficients
being step functions in J. The step function technique
has some deficiencies. It gives at best slow convergence as
the steps are refined, and makes 1t difficult to treat the
Fokker-Planck term, —24(8/0p)(p¥1 + 0¥, /0p). We think
that it would be better to use a C? spline basis for the
J dependence of ¥;. Then the Fokker-Planck term can
be handled easily with the help of our Fourier series (6)
for q, since 9/0p = —(09q/0J)(D/0P) + (0q/0®)(D/T).
Oide’s rough treatment of the Fokker-Planck term by a
perturbative method suggests that it is very important in
determining thresholds of instabilities.
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