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Abstract

A qumi-classicalmethod is developed to calculate the radi-
ation damping of a relativisticparticle in a straight, contin-
uous focusing system. In one limiting case where the pitch
angle of the particle OPis much larger than the radiation
opening angle l/y, the radiation power spectrum is similar
to synchrotron radiation and the relative damping rate of
the transverseaction is proportional to the relativeenergy
10SS rate. In the other limiting cme where 6P<<117, the
radiation is dipole in nature and the relative damping rate
of the transverseaction is energy-independentand is much
fwter than the relative energy rate. Quantum excitation
to the transverseaction is absent in this focusing channel.
These results can be extended to bent systems provided

- that the focusing field dominates over the bending field.

I. INTRODUCTION

Radiation reaction including damping and quantum ex-
citation h= been studied extensively in synchrotrons and
storage rings [1]. Recently, we demonstrated [2] that in a
straight, continuous focusing channel, the radiation reac-
tion is essentiallydifferentfrom that in a bending magnet.
A fully quantum mechanical approach w- used to inves-
tigate in detail the radiation reaction in the case 76P <<1
where the radiation is formed over many oscillation wave-
lengths. We have shown that the transverse action damps
expofientially with an energy-independent damping rate,
and that no quantum excitation is induced. As yOP be-
comes much larger than o-ne, the radiation is formed in a
small portion of one wavelength, which can be nearly re-
placed by a segment of a circle. Therefore, both the radi-
ation spectrum and the radiation damping will be similar
to that from a sequence of bending magnets. In this paper,
to illustrate the smooth transition between these two lim-
iting cmes, we develop a quasi-clwsical method to evaluate
the radiation damping rate for any yeP and obtain the ex-
pected results in both small and large 7eP limits. Then we
extend these findings to focusing-dominated bent systems
and consider the possibility of beam cooling based on the
damping effect.

II. RADIATION

Let us contider a planar focusing system that provides
a continuous parabolic potential KZ2/2, where K is the
focusing strength. A charged particle with energy E =
~mc2 (~ >>1) oscillates in the transversez direction while
moving freely in the longitudinal z ‘direction with a con-
stant longitudinal momentum pz in the absence of radia-
tion. Define the pitch angle of the particle eP = pc,~az /p=
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(Pc,m.z being the maximum transverse momentum) and
assume that eP is always much less than one. The motion
of the particle can be decomposed into two parts: a free
longitudinal motion and a transverse harmonic oscillation; -
i.e., we have E z Ez + E= with Ez = m2c4 + p~c2 and
E= = p:c2/2Ez + Kx2/2.

A quantum mechanical theory of radiation and radiation
reaction for such a system w= given in Ref. [2]. We only
need to know that Ec = (n+ l/2)tiZ, where n = O, 1,2, ...
is the transverse quantum number and Wz = m is
the transverse oscillation frequency. For suffi~iently large
quantum number n, the transverse motion is classical and
the radiation can be described by classical electrodynamics
provided that the typical photon energy emitted is much
smaller than the energy of the particle. Thus the energy
radiated per unit solid angle per unit frequency is given
by [3]

where E is the unit vector from the source to the observa-
tion point, ~c and F are the velocity and position of the
particle at the retarded time t’.

We can express Eq. (1) in the form of a double integral :
with respect to tl and t2:

==%l:d’1L:dt2(fi~-l)ei(”l-”2)‘2)
where we have introduced the notation @l,2 = ~(t1,2),

71,2= F(t1,2)and 01,2 = w(t1,2–fi. Fl,2). Going over to the
new variables of integration t and r via the transformation
tl= t– T/wz and t2 = t + rlwz, and treating the integrand
in the integral with respect to t as the angular spectral dis-
tribution of the radiated power at time t, we have

d3E e2w2 m

Jdtd~dw = 2W=X2C _W
dr(~l .$2 – l)ei(@l-@2). (3)

The averaged radiated power is obtained by integrating
over dQdw and then averaging over one oscillation period
(indicated by ( )). In the system we consider here, it can
be shown that [4]

()dE

‘w’~21m’d’L::g(’’)e-if(T”)’ ‘4)T=TC

?(~,t) = 2t~[l + 72e;(l - sin2 r/r2)/2],

g(~,() = JO(U)+ ~2e~ sin2 r[~o(u) – i~l(u)],

u = ~2e~~(Sin2 T/T — Sin 2T/2), ( = W/272w2,

and JV(U) is the Bessel function of order v (v = O, 1,2, ...).
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Equation (4) is completely general for any ~OP. The con-
tour of integration with respect to r must be displaced be-
low the real mis around ~ = O to guarantee the vanishing
radiation when the field is switched off [4]. The range of ~
that gives a significant contribution to the integral can be
defined as the ratio of the radiation formation length 1, to
the oscillation wavelength A. = 2~~~ = 2rc/wZ [5].

Since 1. is of the order (p)/~ [1], where (p) is the av-
eraged radius of curvature and can be approximated =

(P) N E/(KA) -. ~:/A - Az/eP, the ratio lr/Az is in-
versely proportional to yeP. We consider two opposite lim-
its yeP >> 1 and yeP << 1 where Eq. (4) can be greatly
simplified.

In the c=e 7eP >>1 or lT << ~., using the integral rep-
resentations of the Bessel functions and the method of sta-
tionary ph=e around r = O, we obtain the asymptotic ex-
pression of Eq. (4) [5]

where X. = 4ti</[37eP(l – sin ~)llz] and K5i3(y) is the
modified Bessel function of order 5/3. This expression is
very similar to the frequency spectrum of synchrotron ra-
diation [3], with x here playing the role of w/wC. Thus the
equivalent criticai’frequenc”y is WC- ~3ePwZ, or the equiv-
alent rotational frequency is wo w c/(p) w ePwz.

In the case yeP <<1 or lT >> ~z, expanding the integrand
in Eq. (4) to leading order in ~eP and applying contour
integration in the complex ~ plane, we get [5]

whe& @(l — ~) is the Heaviside step function. Since
( = -w/272w ~, we conclude that the radiation frequency
distribution has a sharp cutoff at wd = 272WZ, which is the
characteristic of dipole radiation.

In both c~es, we-can carry out the integrals in Eq. (5)
and (6) and find the averaged radiation power (dE/dt) =

e2~4e~w~/3c. By using relations e~”= 2Ez/E ~ 2nhwz /E

and w; N ~c2/E, we see that the rate of energy loss agrees
with that in Ref. [2].

III. RADIATION DAMPING

The differential radiation power spectrum (i.e., Eq. (3))
can be used to define the differential number rate of photon
emissions m follows: Let R(w, Q) be the number of photons
emitted per unit time with energies between fiw and h(w +
dw) in the directions between Q and Q + d~, i.e.,

(7)

then the average rate of change of any physical 4uantity,

say F, is given by

(:)=12”’”zs/dw/dQIAF(wQ)lR(wQ)‘8)

where AF(w, Q) is the change of F after a photon with
energy hw is emitted in the direction Q. For example, the
rate of energy loss (dE/dt) is obtained by replacing AF
with AE = h and is given in the previous section.

The transverse action ‘J= is defined through the re-
lation J= = EC/wz = (n + l/2)h E nfi. For small
change of J. after a photon emission, we have AJ= ~
AEZ/wZ – Awz EZ/w~ . The energy and the longitudinal
momentum conservation require AE= ~ hw( 1 – ~ cos e) [2],
where e is the angle between the photon direction and -
the longitudinal direction. Writing Awz z –hwwz /2E z
–hwwZ e; /4 E=, we get

AJZ R hw(l – @cose + e~/4)\w. , (9)

which is always positive definite. Thus the transverse ac-
tion always decremes after a photon emission process and
the quantum excitation is absent in such a system. This
result w= obtained for the transverse quantum number n
b~ed on the same kinematic argument in Ref. [2].

The damping rate of transverse action (dJX/dt) is ob-
tainable by replacing AF in Eq. (8) with AJZ in Eq. (9).

With the expansion 1 – ~ cos e = 1/(272)+ e2/2, (dJ=/dt)
can be written w (dJzl/dt) + (dJ=2/dt), where

The first of the above equations is simply proportional to ~
the rate of energy loss found in the previous section. The
second one involves a more complicated angular integral.
Together they account for the radiation damping for any
~eP.

In the case ~eP >1, Eq. (10) can be simplified as [5]

(%)=;$(:) (11)

()

dJz2 .2

– ‘wz72e~lm’d’l:$h(’’)e-if(’”)’dt = 2TC

[

Jo(u) J2(u) 1h(r, f) = Jo(u) + iJl(u) + ~2ej sin2~ ~ + ~ .

All quantities used above are defined in Eq. (4). Similar
to the calculation of the averaged radiation power, we can

show [5] (dJzl/dt) = 2(dJz2/dt) = e274e~wz/12c. By US-

ing the relation J=/E ~ e~/(2wz ), it is straightforward to
obtain

(12)

Thus, the relative damping rate of the transverse action is
proportional to the relative energy loss rate, which depends
on both energy and the transverse action. This result re-
sembles the radiation damping in a bending magnet [1],
with the numerical difference due to the chromatic effect
and the sinusoidal variation of the focusing field [5].
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In the c~e yOP<1, Eq. (10) becomes [5]

Applying contour integration again, we can show [5]
(dJzl/dt) = (dJC2/dt) = e2y20~wz/6c. Therefore,

()dJz 1 e2y2Q~w, = 2 reKJ
—= _ ——
dt.3c 3 mc “

(14)

where re = e2/mc2 is the classical electron radius. We
see that the transverse action damps exponentially with
an energy-independent damping constant r. = 2re K/3mc.
An identical result for the transverse quantum number n
was obtained in Ref. [2] for the “undulator regime” where
yOP << 1. We also notice that the relative damping rate
of the transverse action is much faster than the relative
energy loss rate in this regime since

We have shown that the radiation damping in a straight,
continuous focusing channel is fundamentally different from
that in a bending magnet. In the longitudinal direction the
particle recoils against the emitted photon to conserve the
longitudinal momentum between the two particles. How-
ever, in the transverse direction, the existence of the focus-
ing force destroys the momentum balance and suppresses
the direct recoil effect. As a result, the radiation reaction is
not opposite to the photon emission direction, but always
h= a component pointing towards the focusing axis.

IV. FOCUSING-DOMINATED SYSTEMS

So ~far we have assumed that the focusing system is
straight. In fact, the above discussion can be extended
to bent systems under certain conditions. Consider a
bent system with a constant radius p. A highly relativis-
tic particle of energy E being bent by a uniform mag-

netic field, B = E/ecp, radiates at the rate (dE/dt) =
2recE4/(3~3c6p2). Thus the characteristic damping (or
anti-damping) rate in all three degrees of freedom due to
the bending is rb w (dE/dt)/E = 2recT3/(3p2).

In addition, the particle radiates while executing rapid
betatron oscillations around the circular bent trajectory
due to the focusing field. If the bending is adiabatic and
the particle’s pitch angle relative to the ideal orbit is small
compared with l/~, the transverse damping rate due to
betatron oscillations can then be approximated by rC =
2reK/3mc, a discussed in the previous section. Taking
the ratio of these two rates, we obtain:

(16)

where AD = ~p/2r = ~ = c/w~ is the reduced beta_
tron wavelength. Equation (16) shows that if p/7 >> X6,

the transverse damping due to local oscillations is much
stronger than that from the global bending of the trajec-

tory. Since p/7 = E/7ecB = mc/eB, we conclude that in a
system that satisfies mc/eB >> ~ or K >>7e2 B2/m,
the radiation damping is dominated by the focusing field.

To illustrate the choice of parameters for such a system,
we consider a numerical example: a focusing-dominated

low energy electron ring. Let us assume that the radius
of the ring is p = 33m and that E = 0. lGeV electrons
circulate around the ring. A rather weak magnetic field
B = O.OITis required to confine the particles on the ideal -
circular trajectory. Suppose along the ideal trajectory,
the electrons are continuously focused with the focusing
strength K = 30GeV/m2, So the reduced betatron wave_
length 26 is about 5.8cm and p/7 is about 17cm. From
Eq. (16), we see that the transverse damping rate due to
the focusing field is about nine times as fast m the charac-
teristic damping (or anti-damping) rate from the bending
field.

In a straight system, quantum excitation is absent be-
cause the transverse action must decrease after every ph~
ton emission to satisfy the kinematic constraints. In a bent
system, the dispersion effect may introduce a random fluc-
tuation of the transverse action. Nevertheless, because of
the discreteness of the transverse action, there seems to
exist a set of consistent conditions under which quantum
excitation is prohibited even in a dispersive system [2].

V. CONCLUSION

The basic resultsobtained here apply to straightor bent,
focusing-dominated systems. The excitation-free, ~Ym-
metric radiationdamping in such systemsis the direct con- ~
sequence of the kinematic requirementsand does not de-
pend on the various approximations used above. There
may be interesting applications of this phenomenon in
beam cooling. For example, in a sufficiently low-energy,
focusing-dominatedelectron ring, this damping effect could
perhaps be utilized to obtain ultra-cool beams in transverse
phase space without much energy loss. Since the system
is free of radiation excitation, the actual equilibrium beam
emittance will depend upon the details of the application
considered.
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