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IV. Optics

Once the disrupted electrons have cleared the detec-
tor, taken to be �5 m along the IP, using essentially a
quadrupole doublet, we observe where the disrupted beam
crosses the photon beam using third order TURTLE. Be-
cause this was nearly 20 m from the IP and it took 10 m to
get the full energy beam moving parallel toward the dump,
we �nd the �rst available space for diagnostics between 11
and 16 meters. RF BPMs [5] are assumed to begin at 5 m
where the outgoing beams are still small and C-Band cavi-
ties could have apertures comparable to the quads(� �=4).
The �rst dipole of a horizontal chicane, used to separate

the outgoing photon and electron beams, begins at 16 m.
It allows separate experiments, before recombining both
beams into a common dump. Figure 1 shows the Twiss
functions when the four bends are sized to separate the
two beams by 12�. Their maximum separation is

�x = 2�B(1� cos�B) + L1tan�B

where �B is the bend angle for the full energy of any one
rectangular dipole of length LB=�Bsin�B and L1 is the
separation between bends BD1 and BD2. Notice that this
is just the dispersion �x in the center of the chicane. This
separation requires a minimum distance of

Lmin = 2�Bsin�B + L1 :

The change in the bunch separation, due to the chicane,
after this point in the central region is

R56 =
�lz

�p=p
= 2�B(tan�B � �B) + L1tan

2�B :

This is proportional to the RF phase shift[6]. Thus we have
a common beam pipe and su�cient dispersion to measure
the energy and spread of the undisrupted beam.
For example, if we want to use the �rst bend for analyz-

ing low energy particles from the IP or from a laser interac-
tion before this bend, then the �rst order resolving power
for some downstream location L is

R1(�; �; L) =
�(1� cos�) + L � tan�

[xicos� + x0i(�sin� + L=cos�)]
:

In the middle of the chicane R depends on the optics we
impose. R12!0 for point-to-point so R=�x=(10��x=8000
for a magni�cation of 10 i.e. this region of the chicane
can resolve a single beam, undisrupted energy spread of
�p/p=0.0125% while the region directly in front of BD2
gives R�800 or 0.13% capability.
Notice that there were several factors that constrained

the bends e.g. electron spin rotation as well as the energy
resolution necessary to resolve low-energy electrons near
the Compton edge (required for monitoring beam polariza-
tion). Further, dipoles drive many higher order aberrations
that act to blow the beam up that require higher multipoles
to correct. These were not needed to get the beams into
the dump with the 12� constraint through the line.

Fig.1: Prototype Optical Layout for the NLC Dump Line.

V. Instrumentation

The guiding principle in the instrument layout Fig. 2
was to minimize the material in the high power beams.
Thus, there is a signi�cant use of lasers to control the pro-
duction of additional particles. Nevertheless, since beam-
strahlung is unavoidable, there are possibilities[7] to use ei-
ther Compton or beamstrahlung photons that could prove
quite useful for monitoring the position, size and correla-
tions of the bunches at the IP on a bunch-to-bunch basis.
Clearly, beamstrahlung is quite sensitive to any changes in
these parameters at the IP. In fact, the photon distribution
is a better measure of the bunch pro�le at the IP than the
outgoing, disrupted electrons. We also assume wire scan-
ners and screens similar to SLC[8].
An important tool for optimizing luminosity at the SLC

is the beam-beam de
ection scan[9]. This gives the de-

ection of each beam as a function of the relative o�set.
Typically, this procedure requires many points and makes
a number of assumptions about the beam's characteris-
tics. Multi-bunch trains complicate this. Depending on
the beam's aspect ratios, one can estimate many e�ects as
though an additional quad was added e.g. energy loss can
be calculated. In lowest order this is proportional to the
beam sizes but is very small for SLC so that it is masked
by the incident beam's energy spread. Taking the simple
expression for the de
ection of one particle at the periph-
ery of the other beam:

�D � p?=p =
2Nre


�?
!

2Nre


(�x + �y)
=

Dx;y�x;y

�z
;

we �nd a maximum outgoing angle of �x;max=�D=256
�rad. The disruption parameters are Dx;y=0.104,10.2
while ��x;y=245,2.5 nm. Dy is so large that there is over fo-
cusing or a thick lens e�ect whereas the focusing over the
length of the beam in x is weaker but cumulative i.e. more
like a simple thin lens. This is most easily dealt with by
reversing the polarity of the �rst outgoing quad.
The �nal angle of relevance here is the spin precession

angle �s. This can be expressed in terms of the spin tune:
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Fig 2:  NLC Electron Extraction & Diagnostic Line

�s =
E[GeV ]

0:44065
�
�

2�
;

where � is some de
ection angle in radians. For the bends
used here this is typically 2-4 times the maximum disrup-
tion angle �D=256 �rad. The e�ective polarization after
such a bend is Peff = Pinccos(2��s)=0.42-0.84 although
this is just a rotation in the bend plane.
We need to make a good measurement of the polarization

that doesn't interfere with the primary disrupted beam on
its way to the dump or other measurements. While this
can be done at other locations, it is done here in the mid-
dle of the chicane shown in Fig. 2 because this is where
the dispersion is largest and the net rotation from the
bends is zero. In our worst case scenario 20% of the beam
goes undisrupted i.e. should have its original polarization.
Compton scattering can then be used to monitor the po-
larization at this point by measuring the asymmetry in the
scattered electrons as a function of laser polarization[10].
For best results, one needs to measure the electrons near

the Compton edge with good resolution. In lowest order:

�edgec =
�in

1 + x
=

�in

1 + 0:0153�in(GeV )!L(eV )
� 26 GeV:

Because these electrons fall on the far tail of the disrupted
beam spectrum, the only requirement is the ability to re-
solve their energy to one-half GeV i.e. a resolving power of
only R=P/�P � 50. Because R=8000 for the full energy
beam, there is clearly no problem i.e. the laser spot can
be any required size up to ���4 mm. This is also a good
place to measure the electron beam pro�le and disruption
characteristics to monitor bunch overlap, synchronization
and luminosity.

VI. The Beam Dump

The dump has to dispose of essentially all of the power.
Water is the primary absorber in a cylindrical vessel hous-
ing a vortex-like 
ow of water with vortex velocity �1-1.5

m/s normal to the beam momentum. The vessel is 1.5 m
diameter and has a 5.5-6.5 m long water section, followed
by � 1 m of water-cooled solids to attenuate a 500-750GeV
EM cascade shower. The beam enters through a thin win-
dow �1 mm thick and 20cm diameter. Production of �3
l H2/10 MW beam power from radiolysis[11] can be miti-
gated with a catalytic H2/O2 recombiner that has a closed
loop system that contains all radioisotopes.
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