
I ,.

SLAC-PUB-95-6814

CHANNELING ACCELERATION: A PATH

TO ULTRAHIGH ENERGY COLLIDERS*

PISIN CHEN, ZHIRONG HUANG, AND RONALD D. RUTH
Stanford Linear Accelerator Center

Stanfoti University, Stanford, CA 94309 USA

ABSTRACT

Acceleration of charged particles along crystal channels has been proposed ear~er in an attempt

to achieve high acceleration gradient while at the same time to suppress excessive emittance growth.

Recently we demonstrated that a particle in a generic focusing channel can in principle absolutely

damp to its transverse ground state without any quantum excitation. This yields the minimum

beam emittance that one can ever attain, ~C~i. = h/2mc, fimited only by the uncertainty principle.

In this paper we discuss sources of excitation when a more re~stic channel is considered, including

bremsstrahlung and multiple Coulomb scattering. We investigate the possibility of co~iding ultra-

high energy particles in such strong focusing channels without the need of a find focusing system,

where the. ~oncept of luminosity departs from the conventional approach. We show that a high

luminosity can be attained with a rather modest beam power.

Invited talk presented at the Fourth Tamura Symposium on Accelerator Physics, Austin, Texas,

November 14-16, 1994.

* Work supported by Department of Energy contract DE–AC03–76SFO0515.



I .*

1. INTRODUCTION-WHY ACCELERATION IN CRYSTALS?

It is known that in plasma accelerators ‘1]the theoreticWy attainable particle
acceleration gradient is G w @ V/cm, where nP is the plasma ambient density.
For a plasma density nP N 1018cm‘3, the corresponding gradient is G -1 GeV/cm,
much larger than that in the conventional accelerators, and this is one of the main
attractions for novel accelerator concepts, with the hope that the construction cost
of fut ure accelerators can be lowered.

However, a high gradient is not the only requirement for high energy finear
co~ders. St abifity and emit t ante requirements for the accelerating system are very
stringent. Since the beams from two independent accelerators must co~de at an
interaction point, excessive transverse motion and emittance growth of the beams
induced during acceleration must be avoided. Motivated by these considerations,
Chen and Noble [2’3]proposed to accelerate particles along crystal channels by the
plasma waves excited in the meta~c crystal. It is known that the conduction elec-
trons in a metal form a very uniform high-density plasma exhibiting longitudinal

‘4] Typical conduction electron densities are of order 1022cm–3plasma osci~ations.
corresponding to a maximum gradient of order 100 GeV/cm! In an independent
effort, Tajima and Cavenago

[5] suggest to power the tryst al acceleration by an ex-
ternal source of x-ray. An extremely large acceleration gradient is also expected in
this apprgach. But more importantly, it is hoped that the crystal channels can in
addition help to stabifize the accelerated beam and to preserve its emittance.

Motivated by these crystal accelerator concepts and by the interest of the fun-
damental phenomena of radiation reaction, we have recently shown [6’71that in a
generic continuous focusing channel the radiation reaction of the channeled particle
is quantum excitation free, and this absolute damping effect leads to the existence
of a transverse ground state which the particle inevitably decays to. In this pa-
per we first review these novel characters in the channeling radiation reaction. We
then further demonstrate that once at the ground state, other sources of excitation
in a more retistic crystal channel, such as bremsstrahlung and multiple Coulomb
scattering, are not deleterious enough to compete against the strong channeling radi-
ation dam.pjng. We thus argue that the ground state of the channeled particle can in
principle be preserved, at least in semiconducting crystals. Due to adiabatic invari-
ance, one expects that the particle in the ground state can be accelerated without
any radiation loss, and the theoretical minimum emittance can be preserved.

There are, however, further constraints in the conventional approach to hnear
co~ders. Even if the beam emittance can be wefl-preserved during acceleration, the
dehverable luminosity is constrained by the fundamental physics such as the Oide
hmit ‘8]in the find focus and beamstrahlung and its backgrounds ‘9]from beam-beam
interaction. One nat ura~y wonders how much further can the conventional approach
be extended before these constraints severely fimit the attainable luminosity. Earher,
the concept of adiabatic focusingtlo] was introduced as a means to circumvent the
Oide Imit. Nevertheless, the fact that it is sti~ a focusing system, the adiabatic
focusing helps only to relax the timit, but not to efiminate it. The existence of the
channeling ground stat e gives us an entirely different prospect. We can envision the
acceleration and co~sion of channeled particles in their transverse ground states,
without the need of a fin;l fo;using system. Under this scenario the luminosity
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is associated with the overlap of the quantum mechanical wave functions of the
co~ding particles. We investigatee the luminosity attainable in such an approach.

2. ABSOLUTE DAMPING IN CHANNELING RADIATION

Consider an electrost atic focusing channel that provides a transverse continuous
potential V(Z) = Kz2/2 for a charged particle, say a positron, where K is the
focusing strength. The parabofic potential could be, for example, an approximation
of the Lindhard potential in the case of planar crystal channefing[ll’lz] For simpbcity,
we take x as the single transverse dimension of the particle, which has relativistic
energy E = ~m and which moves freely (wit bout acceleration) in the longit udind
z-direction wit h a constant moment urn pz = ~m~z in the absence of radiation. We
set e = h = c = 1 in most equations, but reinsert them when suitable. The effect
of the additional transverse dimension wi~ be discussed later. We consider the case
in which the peak transverse momentum in one osci~ation pz,~~z << PZ. Defining
E= = ~-, we can approximate the total energy, E = ~m2 + p; + p% + V(Z),
as E=+ Em, where EZ = p~/2EZ+ V(z) is the so-caued transverse energy. The motion
of the particle is now decoupled into two parts: a free relativistic longitudinal motion
and a transverse harmonic osci~ation with an effective mass EZ.

We now move straight to quantum mechanical analysis oft he system because we
want to’ c~culat e “the fu~ radiation reaction including damping and excitation due
to discrete photon emissions. Work on relativistic crystal channeling has shown that

’13]Therefore, we use the Klein-the spin ‘degree of freedom plays a neghgible role
Gordon equation to describe the general wavefunction W(*, z, t) of the channeled
particle,

[(-i~ - 1)2+ m2]W = (idt - V)2W . (1)

In the absence of radiation, we let ~ = O and look for the energy levels E and
the stationary states V(Z, z, t) = e-iEt [n, pZ) of Eq.(1) by neglecting terms of the
order (EX/~)2[14]. We find

EiE2+E. =Jm+.z(.+1/2) , (2)

[n,p~) = (C~/L)li2(E.w.)114eipzze-EzWz’212H.(~~z) , (3)

where Cn = (2nn!fi)-1, L is the length of the channel, E= = ~- as before,

WZ = im is the transverse osci~ation frequency, n is the transverse quantum
number (n = O,1,2...), and H~ is the nt~ order Hermite polynomial. It is clear that
the tmnsverse energy level E. = (n + l/2)wZ and the transverse state function are
contro~ed by both n and pz.

Couphng between the channeled particle and the radiation field, represented
by the vector potential ~ In Eq.(1), leads to spontaneous emission of photons. By
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-. ~ = O, and ignoring the 12choosing Coulomb gauge, V
emission), we arrive at

[-V2 + m2 + i21. 5]v(z, z,t) = (is, - V)2V(Z,

term (double-photon

z, t) . (4)

Moving to the interaction representation we write W(X,z, t) = exp(–iHOt)@(z, z, t).
Identifying (H. – V)2 = (–V2 + m2), and neglecting ~(t) in the expansion of
(iO, – V)2V(t) in Eq.(4), we obtain

~(t) = eiHo’[(HO- V)-li. ~]e-i~ot+(t) . (5)

Using first-order, time-dependent perturbation theory (Fermi’s Golden Rule),
we obtain the transition rate Wfi for the particle from
energy E) to a final state In’, p:) (with energy E’):

Wfi = 2mlM~i126(E – E’ – Wq)

where tih~ matrix element Mfi is defined by

I

an initial state In, pZ) (with

7 (6)

(7)

The vector potential ~ acting on the radiation field creates a photon of mo-
=. mentum ~v and energy WV(UV= Ikv I) with two possible polarizations 81 and 22

(21 . ~2 = O and &l,2. ZT = O). The operator (H. – V)-l can be approximated as

H;l by neglecting terms of the order (EZ/E). Therefore

(8)

The integral over z in the above equation gives rise to ti(pz –p: – kTZ), which ex-
presses the conservation of longitudinal momentum. Together with the conservation
of energy, this places a tight constraint on the radiation reaction of the particle. In
order to conserve longitudinal momentum, we have P: = PZ – W7 cos 6, where 8 is the
photon emission angle relative to the focusing axis. For the photon energy WT< E,

the lo~gitudind energy, Ez = ~m, must accordingly decrease by an amount
AE~ B (p~/Ez)Ap~ = W7P cos 0. Since the total energy of the particle is reduced
by an amount Uv, its transverse energy E. = E – E. must decrease by AEZ =

WT(l –~cos O) >0. It foflows that (n+ l/2)u~ – (n’+ l/2)wj = W7(1 –@cos8) >0.

For a sma~ change in EZ, ~~ =‘{ K/(E, – AEZ) m Uz(l + AEz/2Ez). Substituting
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UTPcos e for AEZ, we obtain an equation that relates the change of the transverse
quantum number to the photon energy and its emission angle,

(n - ~’)wz = (1 – P COSe)u. + (up cose)Ez/2Ez >0 , (9)

which is always positive definite. We therefore conclude that both the transverse
energy and the transverse quantum number always decrease after a photon emission
process for aH possible photon angles.

Introducing the harmonic number v = n – n’ and the pitch angle of the particle
eP = pZ,~.Z/pZ = ~=, we find from Eq.(9) a condition for the photon energy

(lo)

Note that yeP in the above equation plays the same role as the undulator strength
. . parameter in undulator radiation ’15].

The exact form of the transition rate Wji given by the integral over z in Eq.(8)
is more complex than usual because the initial and the final transverse states have
different “effective” masses. This issue is handled by expanding the find transverse
wavefunction as a superposition of the initial ones. One can then express Wfi in

terms of” associated Legendre polynomials and Laguerre functions ‘13’14]. However,

in the “undulator” regime where ~eP << 1, the effective mass difference can be

ignored for UV << E, and Eq.(8) can be evaluated by the dipole approximation
[13]

where terms beyond the hnear order in z are neglected. Thus, the transition rate is
nonzero only if n’ = n – 1 (the dipole

[

2r2nwz COS2@(COSe – @)2
Wji = ~ ~-

Z7 (1 - pcose)2

Therefore, in this regime the rate of
dipole radiation is

selection rule) and is simply given by

1+sin2 # 8[(1 – @ cos e)u7 – Uz] . (11)

change of the particle’s total energy due to

2 TeK
E)Wfi = –jxy2nhwZ , (12)

where r. = e2/mc2 is the classical electron radius. After identifying nhwz with the

rms ampfitude of the osci~ating particle in the large n fimit (nbz N E. = K(z2)),
we see that dE/dt in the above expression is identicd to the classical radiation power,

which is proportional to E2F~ (Fl being the transverse focusing field strength).

We have shown from Eq.(9) that the transverse quantum level n always de-
creases after a random photon emission. This conclusion is vafid for fl osci~ation

amplitudes, although we f;cus on the undulator regime where yeP << 1 to i~ustrate
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the unique feature of radiation reaction in a focusing channel. With the dipole tran-
sition rate given by Eq. ( 11), we can calculate the rate of change of the transverse
quantum level

(13)

We see that n damps exponentidy with an energy-independent damping constant,
r. = 2r.K/3mc. Note that in the case of radiation in a bending magnet, there is
an additiond term of opposite sign independent of the quantum level in question

that represents the excitation of transverse oscillations ’16]. That term is absent in

Eq.(13) and the radiation damping is absolute because no quantum excitation is
induced by random photon emissions. Since the action of the transverse oscillation
is Jm = Ez/wz = (n+ l/2)h, the decrement of the transverse energy level n leads to
the radiation damping of this action given by dJ./dt = –rC(J. – h/2).

One can use classical radiation reaction to obtain a similar result for the radi-
’17] However, our treatmentation damping of the transverse osci~ation ampfitude .

shows that it is the action that damps exponentifly (the change of energy modifies
the ampfitude damping). It dso clearly shows how to extend the results to the case
where 76P z 1. More importantly, the quant urn mechanical calculation above au-

tomatic~y takes “into account the fufl radiation reaction and shows the absence of
excitation in this system (a surprising result viewed from the standpoint of electron
synchrotrons and storage rings). It is difficult if not impossible to model the radia-
tion reaction effect of discrete photon emissions classically for 76P <<1, because the
time during which a typical photon is emitted is much longer than the osci~ation

period in the undulator regime ’18].

The excitation-free reaction of radiation comes from the fact that the trans-
verse quantum level must decrease after each radiation process. In the longitudinal

direction the particle recoils against the emitted photon in order to conserve the lon-
gitudinal momentum between. the two particles. However in the transverse direction
~he existence of t-he focusing force destroys the momentum balance and suppresses
the recoil effect. The external focusing environment absorbs the excess transverse
momentum during the process of radiation. In this sense, the radiation reaction of
a channeled Darticle in the transverse dimension is similar to that in the Mossbauer.
effect ’19].

3. GROUND STATE AND MINIMUM EMITTANCE

Because of the lack of recoil and excitation in the transverse dimension, the
particle damps exponentially to its transverse ground state (n = O), and this ground

state is stable against further radiation (energy and momentum conservation forbid
further radiation). In the ground state the particle reaches the minimum value of
the action Jo = fi/2. Relating this minimum action to a normtized emittance, we
find _

yemi. E Jo/me = ~C/2 , (14)

where Xc = h/me is the Compton wavelength. This minimum is also the fundamen-

tal emitt ante fimited by tfie uncertainty principle.
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One can estimate the time needed for a particle to damp to its ground state.
Suppose the particle enters the focusing channel with a transverse energy (ni +
l/2)uZ satisfying the undulator condition, it reaches the ground state in a time
t~ w tn(n;)/r~. The channeling strength for a typical crystal channel is K w
1011GeV/m2, so r. w (lOnsec)- 1. When a 100 MeV particle is initidy barely cap-

tured by the crystal channel, the transverse energy of the particle is of the order of
the maximum channeling potential energy 100eV, and the corresponding quantum
number n;’ is about 500. Thus, in the absence of any dechannefing effects the time
it takes to damp to the ground state is t~ N 60nsec.

Another novel characteristic of this radiation reaction is that the relative damp-
ing rate of the transverse action can be much faster than the relative damping rate
of longitudinal momentum, i.e., the radiation reaction is asymmetric in these two

dimensions. The rate of change of the longitudinal momentum can be obtained from
the energy loss equation, Eq.( 12), with the approximation p= = E= R E. We obt tin

1 dp.——
pZ dt

1 dE r.

‘E dt
= ~y20; ,

which is less than rC for ~29~ < 2. In the undulator

1 dJ. 1 dpZ
~ rc >> ——

J. dt pZ dt

One major consequence of the above inequality is

(15)

regime we have the condition

(16)

that a particle may lose only a
negligible amount of total energy when it is damped to the transverse ground state.

By replacing n = ni exp(–r.t) and w. N ~~ in Eq.(12) and integrating over
time, we find the find energy retained in the ground state nf = O is

. .

Ef = Ei/[1 + (76,):/4]2 . (17)

Note that Eq.( 17) is derived in the undulator regime where 78P ~ 1. Thus particles
that enter the focusing channel with the same initial energy but different initial
pitch angles wiU W end up in the transverse ground state with a very sm~ relative
Iongitudind energy spread of (70P)~/2.

We have shown that the radiation reaction in a straight, continuous focusing
channel is fundament afly different from that in a bending magnet. In a uniform
magnetic field, the radiating particle recoils against the emitted photon by both re-

ducing its orbital quantum number and by shifting the center of its circular orbit “8].
This latter change is aUowed due to the translational invariance of the system in the
plane perpendicular to the magnetic field, i.e., the system is degenerate with regard
to the orbiting centers. The center shift is even necessary in order that the tangent
of the particle trajectory be continuous before and after the emission. Therefore,
the photon emission yields a random recoil of the electron due to variations in both
angle and magnitude of the photon’s momentum. The resulting random shifts in

the orbit center give rise t: the random excitations of radial betatron osci~ations.
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On the other hand, the existence of a focusing axis in a straight, continuous fo-
cusing environment removes such a degeneracy and therefore eliminates any quan-
tum excitation to the particle from random photon emissions. In a conventional
storage ring, the stored particles are confined by both bending and focusing fields.
However, the focusing field is typictiy so much weaker than the bending field that
its radiation effect is negligible. On the average, radiation damping in a conventional

storage ring shrinks the momentum vector of the particle proportiondy ‘20’21].

4. RANDOM EXCITATIONS IN A CRYSTAL CHANNEL

When retistic tryst d channels are considered, however, one immediate concern
is that the novel characteristics of radiation reaction found above may be prone to
various sources of excitation such as bremsstrahlung, multiple Coulomb scattering,
imperfections, etc. The issue of such excitation in crystal channels has been studied

by many authors 113’17’22].The standard calculation employs the Born approximation,
in which the find results were obtained by integrating over W possible impact pa-

rameters ’23] This approach is in fact improper in the case of sm~-angle channeling

phenomena.

In channeling one basic notion is that the trajectory of the channeled particle
can be we~ described by classical osci~atory motion in the potential weU of the
channel. The problem of channeling is therefore a semiclassical one in which the
impa~t ‘parameter between the channeled particle and the tryst d atomic chain is
assumed to be known. To this end the cross section of any physical process that
involve the channeled particle and the atomic chain should not be freely integrated
over aU impact parameters.

Let us first look at bremsstrahlung. As a model we assume a rectilinear motion
of the particle and ignore its transverse oscillation. In the channeling osci~ation,
especi~y for the undulator regime, the oscillation takes place over a chain of tens
of thousands of atoms, while the amphtude is much sm~er than the channel size.

So locfly for a particular target atom the particle moves by with a fixed impact
parameter b. At-the instant when the channeled particle is a distance R from the

target atom, their longitudinal separation is z where R = iw. The screened

potential c;n be represented by the fo~owing function ‘]3]:

(18)

where a = aoZ ‘1/3 is the screening radius. a. z 0.52~ is the Bohr radius and Z
is the atomic number. Al and A2 are numerical coefficients and Al w A2 w 0.3
for typical crystals. In the rest frame of the channeled particle the nucleus interact
with the particle via its virtual photons with the spectral density

(19)

where f’ = u~h/~c and K1 is the modified Bessel function. These virtual photons
Compton-scatter against the channeled particle. When transformed back to the lab-
oratory frame, the Compt;n backscattered photons emerge as the bremsstrahlung.
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Applying the Klein-Nishina formula in the rest frame and carrying out the proper
transformation back to the Lab frame, we find the energy loss per nuclear encounter:

(20)

where

273.

6*= b+27Xc .
(21)

It can be straight-forwardly verified that integration of AE(b) in Eq(20) over W
impact parameters (i.e., J AE(b)2rbdb) recovers the standard Bethe-Heitler formula
of bremsstrahlung for screened atoms (with a mild difference in the logarithm).

To look for the transverse random excitations, we note that only a part of the
above energy loss formula cent ribut es. The Iongit udinal moment urn of the virt ud
photon is

qz=pz–p; –kzw
m2 Ey m~

2E(E– E7)=271–6 ‘... ---
(22)

where ~ = hw/7mc 2. From the uncertainty principle, there is a formation length
during which the bremsstrahlung process takes place:

(23)

In the regime where the formation length is larger than the atomic spacing, d, the
bremsstrahlung becomes coherent, i.e., the neighboring atoms contortedly induce the
radiation. However, the coherent fimit of bremsstrahlung is precisely the channehng
radiation ‘wlich has already been treated in the previous sections. For a rough
estimate of the random element, we restrict the bremsstrahlung to the regime where
lf & d, or

(24)

Thus the only part of the bremsstrahlung spectrum that contributes to the random
excitation is Ed s 6 X c*, and we find, in the fimit of b, d << 73.,

4Z2a2 (d – b)T.
AE(b) = ~ .2 A~A~l{~(A2b/a)mc2 . (25)

It can be seen that since the above expression is controUed by the Bessel function,
AE(b) is largely suppressed if b > a.
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Now we look for the excitation of the transverse momentum of the channeled
particle upon emitting a bremsstrahlung photon. The typical opening angle of the
emitted photon is 1/7. Thus the transverse momentum induced is ApZ ~ AE(b)/7.
The rms increase in the transverse energy is then

(26)

per nuclear encounter. Consider an axial channel where there are four atomic chains
surrounding the channel tis. If we ignore the sma~ channeling osciHation ampfitude
for a particle in a low-lying transverse eigenstate, we can put b & d/2. The rate of
bremsstrahlung induced excitation is then

dE: _ 4C(AE.) =

[

2Z2a2 red 122mc3
x– d

~7A;A;I{:(A2d/2a) — (27)
73d .

As an example, consider a positron with energy E = 100 MeV channeling in a

Sihcon crystal where Z = 14, d E 2A, and Al N A2 N 0.3. Note that in this case
a E 0~2~’ << b N d/2 & 1A, i.e., a large fraction of the channel cross section is
outside the effective size of the screened atoms. This helps to greatly reduce the
bremsstrahlung cross section. Inserting these numbers, we find that the excitation
rate due to bremsstrahlung is much sm~er than the damping rate from the first
excited state to the ground state due to channeling radiation:

dE: dE:

dt N
5 X 10-7mC2SeC-l< –— ~ hwzr. ~ 42mc2sec–1 .

dt
(28)

We thus see that near the channel axis any mild excitation due to bremsstrahlung
will be quic%ly damped by the channeling radiation. Using the same methodology,
it can be shown that the excitation due to ionization is also neghgibly sma~.

. Another source of excitation is due to multiple Coulomb scattering of the con-

duction electrons. A calculation was done earher by Montague and SchneH[24] on

the multiple scattering in a plasma. The formula derived there is directly applicable

if the minimum impact parameter associated with protons is replaced by that for
the conduction electrons: bmin R 2aXC. With this replacement the rms angular

divergence of the channeled particle is

d(A02)

()

4rn r2 Ape~n>,
dz = T2 xc

where AD = (kT/mc2)112(l/4rnPr. )112 is the Debye length.

gence is related to the transve~se energy. By definition, (A02)

(29)

The angular diver-

= (AP:)/E:. Thus

10



I .=

transverse energy induced by multiple scattering is

For Si, the conduction electron density is nP N 1015cm–3. At 1 degree Kelvin, the

Debye length is AD w 2 x 10-7 cm, and we find, for E = 100MeV,

dE~
e 1.5mc2sec—l ,

dt
(31)

which is again much sma~er than the channeling radiation damping rate. We con-
clude that particles can indeed be damped to their ground states in (at least semi-
conductor) crystal channels.

5. QUANTUM LUMINOSITY IN A CRYSTAL COLLIDER

We note that au the results obtained here are not affected by adiabatic accelera-
tion along the longitudinal direction, since both the action and the stationary states
in our system are adiabatic invariants. The condition for adiabatic acceleration is
given- by-’

(32)

Using the previous examples, we get wZE w 105GeV/m for a crystal channel when
the energy of the particle is only 100MeV. This is to be compared with the accel-
eration gradient G w 104 Gev/m attainable in met~ic crystals and w 10 GeV/m
in semiconductor crystals. We conclude that the particle, once damped to its trans-
verse ground state in a continuous focusing channel, can be accelerated adiabatic~y
along the channel. The occasional excit at ions due to bremsstrahlung, ionization or
multiple Coulomb scat tering wi~ be rapidly damped by the channe~ng radiation.
Thereforej the theoretical minimum transverse emittance can be retained at a much
higher accelerated particle energy, and the relative longitudinal energy spread can
be reduced through acceleration.

We can therefore envision the acceleration and co~sion of channeled particles
in their transverse ground states, without the need of a find focusing system. Under
this scenario the concept of luminosity turns into a quantum mechanical one, which
involves the overlapping of the transverse wave functions of the co~ding particles.

Let there be N. particles captured in every channel during each injection. Since there
is no depth-of-focus problem, d Nc particles within each channel wi~ pass through

the Nc particles from the opposite side. Therefore, by definition, the luminosity per
co~sion per channel is

JLC = 2N~ dxdydsdt

--
where s = Z1 +t = —Z2 —t, and ni is

nl(x, y,zl, t) .n2(x, y,z2, t) , (33)

the probability density of the co~ding particle
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in its transverse ground state:

(34)

where n~ is the longitudinal distribution of NC particles and

are the graound state wave function and amptitude, respectively. Similar expression
appfies to the y-dimension. Carrying out the integration, we find

(36)

Consider a 5TeV + 5TeV crystal co~der with N = 109 particles in a bunch,
nb = 10 bunches in a bunch train, and the repetition rate is ~rep = 180sec–1.
For the. sake of discussion, let us assume the beams are injected into the crystal
at E. = lGeV, with normalized emittance Cn = 1 x 10–8mrad. Since the typical

tryst al critical angle is Oc = ~~, where VC is the channel potential height, to
match the injection optics, we choose the beta-function to be

(37)

Note that it is independent of the injected beam energy. The typical crystal potential
height is V. w MOeV. This means ~ N 25pm, and in turn it gives the size of

the beam upon injection: g=~m. 100~. This corresponds to an area

that occupi~s about n. = 104 channels. The number of particles captured in each

channel is then Nc = 105. With the typical crystal strength IK w 1011GeV/m2, we

find X. w 3 x 10-locrn at”5 TeV, and the total luminosity is

~ = f=.Pncn~LC N 3 x 1036cm-2sec-l . (38)

This is a reasonable luminosity for co~ders at such a center of mass energy, yet
achieved without using any final focusing system! Note that although this luminosity
may sti~ be attainable with the conventional approach, the total beam power needed
in our scenario is only 2 x 1.5 MW, at the same level of that for the O.5 TeV
next generation finear co~ders, which is 20 times sma~er in machine energy. We
emphasize that the above numerical example is only for the sake of demonstrating
the concept, and is not at d optimized.

‘6. DISCUSSION
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As mentioned in the Introduction, the stabitity and the emittance requirements
are very stringent in future finear cofiders. In addition there are dso constraints
set by Nature such as the Oide Emit and the beamstrahlung backgrounds. In this
paper we explore the possibihty of acceleration and co~sion in tryst d channels. The

discussion is evidently highly ideafized. We have not looked into other deleterious
effects such as that induced by potential crystal channel imperfections. In addition,
while the mean value of the Coulomb potential from the screened atoms constitutes
the channeling Lindhard potential, there can be an rms fluctuation of this poten-
tial which wi~ induce random excitations. Furthermore, at finite temperature the
channeled particle can interact with the co~ective motions of the lattice, namely the
phonons. AH these need to be further investigated.

The calculations in the paper are essentia~y based on single particle dynamics.

When deahng with a bunch of particles, even in different channels, the equivalent of
the conventional wakefield effects, here in the form of beam-sofid interaction, should
be addressed. Needless to say, our study is just the beginning. But we hope to have
demonstrated in this paper that channeling acceleration and cofision in crystals
may indeed be a path that would lead to future ultrahigh energy co~ders.
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