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ABSTRACT

We assume that a single particle of mass m cannot be localized to better than

+h/2mc. Using our understanding of finite and discrete measurement accuracy,

the single particle transition in 1+1 space-time from (O, O) to (z, t) can then be

characterized by a scale factor N and two integers r, 1defined by z = N(r – l)h/mc

and ct = N(r + l)h/mc 2. The average velocity over this finite interval is v = fic.

The square of the average momentum is p2 = #mc2. We show that the solution

of the free particle Dirac equation with these boundary conditions can be derived

by assuming that the (unobserved) trajectories connecting the two endpoints are all

constructed from Nr steps to the right and NZ steps to the left, with velocity +C or

—c respectively; each single step has length h/me. We attribute this Zitterbewegung

to the emission and absorption of transverse photons to and from the background

radiation, each of which necessarily flips the spin. We assert that the symmetry
. ...-.

condition on the background radiation that this radiation be undetectable in free

particle motion, plus the assumption that the starting and ending spin state must

be the same, constitutes the essential requirement for successful single particle

mass renormalization in our simple model. We then show that these requirements

suffice to determine finite series which uniquely correspond to the (truncated) series

. . solution of the corresponding free particle Dirac equation with the same boundary

conditions. We sketch how to extend the model to 3+1 dimensions. The connection

of oti model to the derivation of Maxwell’s equations from finite and discrete space-

time measurement accuracy is briefly discussed.

--

2



I .

1. Introduction

Relativistic quantum field theory can be interpreted as asserting that any at-

tempt to localize a fermion of mass m to better than +h/2mc requires the con-

sideration of fermion-antifermion pairs as relevant degrees of freedom. If the at-

tempted localization employs a probe with energy greater than 2mc2 and allows

3-momentum to be conserved in a process producing such a pair, experience shows

that the pair will appear in the laboratory with finite probability. This probabil-

ity can often be successfully computed. Renormalizes field theory also allows the

successful calculation of the indirect effects of these particle-antiparticle degrees of

freedom in the Lamb shift and related phenomena. But these calculations often

require the consideration of an infinite number of degrees “of freedom and heuristic

mathematical procedures to eliminate them, which are called “renormalization”.

- ~~-: In this paper we make a preliminary examination of the shape “mass renormal-

ization” could take for a single, free fermion of finite velocity in the context of a

new fundamental theory’] ‘6] within which infinities cannot arise. The stimulus for

this paper came from our success ‘7] in finding a rigorous mathematical context ‘8]

for the Feynman proof [g]of Maxwell’s equations starting from the non-relativistic

quantum mechanical commutation relations and Newton’s second law!’o] The ex-
. .

tension of.the proof to gravitation”] has also been justified in terms of the discrete
[12]

ordered calculus (DO C) by Kauffman.

The precise mathematical description of the Feynman-Dyson-Tanimura deriva-

tion was preceded by several preliminary studies of the underlying physics in the

context of discrete or “bit-string” physics using the concepts of scale invariance
[13]

[14-16]

and measurement accuracy. It is hoped that this current exploration will also

eventually lead to rigorous mathematical techniques that could properly be called

“finite and discrete fermion mass renormalization”.

Some of the exploratory work has already been reported!]7] This, in turn,

grew out of an attempt by V. A. Karmanov, D. O. McGoveran, I. Stein and this

author to convert the “random walk” derivation of the Dirac equation suggested
--
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by Feynman[l’] and carried through by Jacobson and Schulman ‘19],into a new type

of derivation valid in discrete physics. Unfortunately the four authors were never

able to reach a consensus on what would constitute validity in that context. The

problem which wrecked the collaboration was inability to agree on how to derive

the factors r~ /k! and 1~/k! which (see below) multiplied together give the core -

form needed to construct the solution of the free particle Dirac equation in 1+1

space-time dimensions.

Here we adopt a different strategy, which we take from Galileo (see Acknowl-

edgements). This is to start from the desired answer and the see if we can construct

an argument which will lead to it. This raises the suspicion that the argument we

develop below is heuristic rather than rigorous. We approach this difficulty by ex-

ploring some of the ingredients which might allow the replacement of this argument

by a rigorous proof.... .-.

The next chapter reviews our basic operational concepts which relate current

laboratory practice in high energy particle physics to the specific meaning we at-

tribute to “event”, “particle” and “conserved quantum number” in the new fun-

damental theory which provides the context for this paper. In Chapter 3 we apply

these ideas to our understanding of how the transition of a fermion over a finite

space interval with average velocity fixed by the boundary conditions and conserv-

ing spin can take place in the presence of background radiation which produces

a Ziiierbewegung with velocity +C and step length h/me. We derive in this way

what turns out to be the usual solution of the free particle Dirac equation in 1+1

dimensions. We argue that this derivation can be thought of as a “mass renormal-

ization”. In chapter 4 we show how the concepts already introduced lead to the

commutation relations needed to derive the Maxwell equations, and in Chapter 5,

we summarize the derivation itself. In future work we intend to put these ideas

together to make a finite and discrete theory of fermions and photons capable of

_generating at least some of the results achieved by renormalizes QED.

-.
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2. The Counter Paradigm and Measurement Accuracy

2.1 LABORATORY COUNTERS

The basic device used to collect data in a high energy particle physics labo-

ratory can be thought of as a “blackb ox” attached toa recording clock. We call

this device a “counter”. The clock ticks awayat auniform rate, established and

calibrated by standard techniques. We call the time interval between ticks At and

measure it in seconds or some other time unit which we know how to relate to

seconds. In addition to recording the time of each tick as the integer number of

ticks since some known and recorded time, at each tick the counter records whether

or not the black box “fired” during the interval +~At centered on that tick. For

example it may record a “l” if the box fires or a “0” if it does not fire. We call

. an. ardered sequence of zeros and ones a bit-string, and if additional identifying

information is provided with it a labeled bit-string.

The label for our counter data can, of course, itself be provided as a bit-string.

For example, the time label in the example above could simply be a sequence of

“l” ‘s with the same number of “l” ‘s as there have been ticks (sometime called

“stone age binary” ). More efficiently, we could record the integer number of ticks

as a binary number. Still more efficiently, we could adopt the convention that for

the. bit-string with elements bs E 0,1, s c 1,2,..., S, where “1” indicates that the

counter fired and “O” that it did not fire, that the number of bits in the string (i.e.

S) is simply the number of ticks of the clock since this record started.

If we go to that much compression of our data, one record will look just like

another, and we will have to supply additional label information which might, for

example, tell us where the recording counter is located. Explicitly> if one corner

of the laboratory is the corner of a rectangular parallelepipeds, we can give the

perpendicular distances from the counter to the floor and to the two walls which

form the vertical sides which start from that corner. Here our choice of units in

which to measure our spatial intervals is no longer free. The System International,
--
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employed universally by physicists in reporting the results of measurement and

establishing the meaning of “fundamental constants”, takes time measurement to

be primary and defines the unit of length: ’20]

“The meter is defined to be the length of path traveled by light in vacuum in

1/299 792458 s[econds]. See B. W. Petley, Nature, 303, 373 (1983 ).”

Thus, following current practice, if our counter size (or “active volume” as it is

sometimes called) is Ax in the three directions, and this is the minimum spatial

resolution we can achieve (see next section for further discussion of this point), we

must require that Ax = cAt. Then the position of the counter (x1, x2,z3) willbe

given by X2 = nzAx, i E 1,2,3 with ng integer. Our space resolution must be tied

to our time resolution by the scale invariant requirement

... --- Ax
—=1
cAt

(2.1)

valid in any system of time units in which the velocity standard c and the unit of

length are consistently derived from the S1 convention that

. .
c = 299 792 458 meter fsecond (2.2)

It should be obvious that our coordinates have been defined in such a way that

they correspond to the time it takes a light signal to go from the appropriate side

of the laboratory to the counter, divided by c. If we have two counters a and b

lined up at positions x: = n~Ax and x: = n~Ax and we wish to compare the times

at which they fire in a Lorentz invariant way, it is necessary for us to synchronize

their recording clocks using the Einstein convention. Then, if a particle is emitted

at time zero from a toward b at the same time that a light signal is sent toward

a mirror on wall i and arrives at counter b in coincidence with the light signal

reflected from the wall mirror, the velocity of the particle in direction i is measured
--
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Note that this rational fraction velocity in units

(2.3) ‘“

of c is always less than unity in

absolute value for anything that can (so far as we know empirically) be identified

as a particle with finite mass m. We have shown elsewhere ’21]that rational fraction

velocities so defined satisfy the relativistic velocity addition law and can be used

to define finite and discrete Lorentz boosts in 1+1 dimensions. This discussion is

reviewed below in Chapter 4, Section 2.

This description of laboratory practice is, of course, woefully inadequate for

the purposes of an experimental high energy particle physicist. His “counters” or

detectors are no longer simple black boxes which fire or don’t fire when a particle

goes through them, and record that fact. They consist of wire chambers, spark

-chambers, ‘drift chambers, Cerenkov counters, multi-ton magnets, tons of iron or

lead shielding, ... .. and other clever technical devices to assist in particle identifi-

cation. Building these detectors is a major engineering enterprise costing millions

of dollars, and collecting, storing and analysing the bit-string data they produce

costs millions more. Nevertheless I claim that, conceptually speaking, the active

ingredient in each of these millions and millions of “counter events” can be thought

of as a volume of size AY3 which does or does not fire during a time interval At. As

alrdy noted, we can record any ordered sequence of these events as a bit-string.

We emphasize that our “counter events” are a far cry from the “space-time

points” which are also called events in special relativity and from the happenings

which are often called events in everyday language. In the next section we will

put our definition of “event” on a more formal basis, but we have found that our

usage often requires an introductory discussion of actual laboratory practice such

as we have just given before the form it takes can be appreciated. In particular,

we emphasize that the non-firing of a counter — recorded, for example, as a zero

in

in

a bit-string — can be just as important as the firing of the counter. In fact,

any experiment where the efficiency of the counters and the evaluation of the
--
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“background” is significant, this will be the part of an experimental presentation

which evokes the strictest scrutiny and the liveliest discussion.

2.2 NO-YES EVENTS, PARTICLES, AND MEASUREMENT ACCURACY

My conceptual foundations for reconstructing relativistic quantum mechanics

and physical cosmology start from three inextricably entwined technical terms:

event, particle and conserved quantum number. I join them together in the following

way:

An event is a finite spatial region which particles enter and leave during a

finite time interval. Both the spatial dimensions and the time interval are fixed in

the context of a particular application oj the definition.

A particle is a conceptual carrier of conserved quantum numbers between

events. (Note that this definition is, in essence, due to Eddington.)

The algebraic sum of the numerical values associated with each type oj quantum

number carried into the (event) region by the entering particles is individually equal

to the algebraic sum oj the numerical values jor that type oj quantum number

carried out oj the region by the leaving particles. This statement defines a (set oj)

conserved quantum number(s). Note that the number oj particles entering the

region need not equal the number oj particles leaving the region; in other words,

particle number is not necessarily conserved.

N.B. In this paper we will usually consider the restricted case in

which only one particle enters and the “same” particle (i. e., carrying the

same quantum numbers) leaves the event. This allows us to talk about a “single

particle trajectory”, — a luxury usually denied to us in discussing relativistic

quantum mechanics.

As indicated in the less formal discussion of the last section, the paradigm for

an event we have in mind is a counter firing in which a counter of relevant spatial

size Ax at a specified location in the laboratory does not fire during a time interval
--
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At, which we call a NO-eveni, or does fire during that time interval, which we

call a YES-event. We further assume that these NO-YES events can be recorded,

using a clock at the counter (or calibrated in such a way that it can be thought

of as “in” the counter) which has been synchronized to the laboratory clock using

the Einstein convention in relation to spatial coordinates of the counter position

fized relative to the position of the laboratory clock (“origin”) and three fized,

independent (in particular, non-coplanar) directions. This allows us to represent

the record made by a single counter as an ordered sequence of two distinct symbols

such as “O” and “l”. When we have specified how two such ordered sequences of

symbols of the same length combine, we will call them bit-strings.

The term “event” as used in special relativity (SR) has quite a different mean-

ing than our usage spelled out above. Unfortunately, from our point of view,

the term as used in SR got frozen nearly three decades before the ‘(uncertainty
. ...-.
principle” was invented and some of the implications of the uncertainty principle

with regard to localization worked out in the context of the quantum theory of

fields?2] Consequently the meaning of the SR event ended up being practically

indistinguishable from a space-time point in Minkowski space and the operational

connotations of the term became lost along the way. This is one reason we have

introduced the term NO- YES event in order to clearly distinguish our meaning

from that- in SR. Our discussion should make it clear that NO-YES events are

amh~uous until the specific measurement accuracy context has been spelled out.

As the last section indicates, this can turn out to be quite a complicated matter in

practice. Here we abstract from that practice a concept of measurement accuracy

which will often serve in place of a full blown discussion of the actual apparatus

used. But the reader is warned that this abstraction is dangerous and should be

thought through once again whenever we push our measurements to a new level of

accuracy or into an unfamiliar application.

With this caveat understood, we take as our paradigm for measurement ac-

curacy the smallest counter

construct, or infer from the
--

size Ax and time resolution At which we can either

theory we are in the process of constructing. This is
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a very powerful and restrictive definition, because it prohibits us from consider-

ing fractional (indeed, more generally, all non-rational) space and time intervals.

Once we have developed the theory far enough to give meaning to interference,

as in optical interferometry, this assumption of a minimum distance also implies a

maximum distance and time, which we can call the event horizon.

3. Derivation of the Solution of the free

Particle Dirac Equation in 1+1 Dimensions

3.1 STATEMENT OF THE SPACE-TIME AND MOMENTUM BOUNDARY CONDI-

TIONS

The problem posed by this paper is to derive the solution of the free particle
... .-.
Dirac equation in 1+1 dimensions within the framework of finite and discrete

measurement accuracy presented in the last chapter and then show that this way

of deriving the solution can be viewed as a single fermion mass renormalization in

our finite and discrete context. Alt bough our derivation is carried out in space-

time, we can think of it as a momentum space mass renormalization if we think

of the two component solution V1 (z, t), V2(X, t) as the propagation of the fermion

from (O, O] to (x, t) with average velocity v = x/t. Further, we assume that the

parti~le enters and leaves the space-time region in question with this same average

velocity. Then, the unohservab~e processes which go on within the space-time

region traversed by trajectories which start at (O, O) and end at (z, t) with this

average velocity, and which are modeled in the course of our derivation, leave the

velocity (and, since this is a single free particle, its momentum) unaltered. We

argue in the last section of this chapter that this amounts to a “renormalization”

of the fermion mass in the presence of the radiation background we introduce in

order to account for the fact that the “trajectories” considered in the model are

not simply a single Newtonian (or Minkowskian) straight line, but a relativistic

Zitterbewegung at velocity &c and fixed step length h/me.
--
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The reason we are at liberty to make this interpretation is ,that we have shown

that in our discrete theory, once we have established a state with a rational frac-

tion average velocity using a an appropriately specified “counter telescope” and

fixed velocity resolution, subsequent measurement of the velocity will (over dis-

tances comparable to the length of the counter telescope or greater) yield the

‘231. In appropriate circumstances, the farther thesame velocity to good accuracy.

subsequent measurement is from the exit counter of the counter telescope, the

better the measurement of the velocity. Our model reproduces this feature of ex-

perimental velocity measurement correctly. This basic fact about measurement

accuracy distinguishes momentum space from space-time, and is the starting point

for both Heisenberg’s and Chew’s S-Matrix theories. For them, momentum space

is primary and the description of space-time at short distance is an artifact of

Fourier transformation; it should have no ontological significance. The bit-strings

- use’d in our derivation of this aspect of our model are Bernoulli sequences (“ran-

dom walks” ) concatenated to the sequences which model the initial action of the

counter telescope. As we discuss in more detail in Ref. 3, this calculation amounts

to a derivation of Newton’s First Law of Motion, appropriately restricted to our

finite and discrete context.

. . As we will discuss in the next chapter, the ingredients of our finite and discrete

theory so- far developed are sufficient to underpin the discrete ordered calculus

(DO~) we have used to derive the Maxwell equations from measurement accu-

racy. Here we need to go beyond the concept of scale invariance bounded from

below by some arbitrary choice of At (recall that this fixes Ax by Eq. 2.1) used

in underpinning the DOC to the absolute bound At = Atmin = h/mc2 for the

measurement of a single fermion trajectory. This absolute lower bound is imposed

by the experimental phenomenon of fermion-antifermion pair creation. Any rela-

tivistic quantum mechanics necessarily predicts that this phenomenon will occur

with finite probability (unless prohibited by an exact conservation law) whenever

we attempt to localize a fermion of mass m to better than +h/2mc. But the

fermion in the pair so produced is indistinguishable from the fermion we are trying
--
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to localize. Hence the very concept of a fermion trajectory breaks down below this

finite lower bound on space-time measurement. We therefor specify our finite and

discrete model for relativistic quantum mechanics by taking the minimum time

interval (and implied minimum space interval) for a single particle problem to be

h/tic2 (and h/me) respectively.

Returning to the problem posed, this means that we must relate the space-time

coordinates z, t in terms of which the Dirac equation is usually expressed to a scale

factor N and two integers r, 1 by the definitions

z ~ N(r – l)~; t = N(r+l)~
mc

r—1
*V= —c

r+l
(3.1)

Note that this is compatible with a space-time picture in which the fermion takes

Nr steps to the right (i.e. +x direction) of length h/me with velocity +C and NZ

- steps to the left of the same length with velocity —c. This is the Stein “random

walk” model ‘24-2’] which was incorporated into the discrete physics program at an
[28]

early stage.

3.2 SPIN CONSERVATION IN THE PRESENCE OF BACKGROUND RADIATION

. . We intend to derive a two-component wave function ( ~1[~~~~) in 1+1 space-

time whit-h can be interpreted in the usual way. For reasons that will become

app-a~ent, we will take these two amplitudes to be real (rather than complex or

imaginary) numbers representing non-normalized probability amplitudes. That is,

we assume that the probability of finding the fermion at (x, t) is proportional to

V?+ v;. Further, if we have a coherent superposition of positiveand negative spin

states and take the expect ation value of the spin operator o~ = ( ~_\), we find that

< az >= V: – v;. Then probability conservation (particle number conservation in

our case) requires that the first number be the same at (0, O) and (z, t) while spin

conservation requires that the second number be the same at (O, O) and (z, t). We

impose these boundary conditions in addition to our conserved average velocity

boundary condition.
--
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Our model for the Zitterbewegung attributed to interaction with some sort of

bosonic background radiation which flips the spin at each interaction goes beyond

the boundary condition to describe the sign of each amplitude as it evolves from

(O, O) to (z, t) in this unobserved region. We take the positive spin state to be in

the +s direction and the negative spin state to be in the –x direction. We wish to -

calculate the probability amplitude VI (z, t) that the spin will be in the positive x

direction. Since we will have an ensemble of both positively and negatively aligned

spins from which this amplitude is constructed, we take this amplitude to be the

number of positively aligned cases minus the number of negatively aligned cases.

Similarly we take Q2 to be constructed from a second ensemble in which we take

the number of negatively aligned cases minus the number of positively aligned

cases. Constructed in this way, a positive (negative) value for W1 means that

positively (negatively) aligned cases predominate, while a positive (negative) value

- for’V2 means that negatively (positively) aligned cases predominate. We must use

algebraically signed amplitudes, but do not need to uses complex or imaginary

values. We also go over from the space-time variables to the integer parameters

derived from measurement accuracy by writing any spin amplitude

V(x, t) = v(N(r – /)h/mc, N(T + l)h/mc2) = @(r, /)

‘The problem now posed is to construct a model which will allow

..
as

(3.2)

us to calculate

these amplitudes with these specific interpretations, and the coupling between

them. Clearly this requires us to provide some mechanism for flipping the spin back

and forth from one position to the other during the (0, O) ~ (z, t) and some way to

caiculaie the four case counts needed to construct the two probability amplitudes

described in the last paragraph. One obvious choice for a spin-flip mechanism is

to assume that there are background photons which flip the spin. In a quantum

field theory these would be “vacuum fluctuations”. We do not have space here to

develop the corresponding concept in discrete physics, but will not need any details

in this paper other than those provided by obvious symmetry considerations.
--

13



I .

Because our fundamental assumption is that weenterthe region at (0,0) and

emerge from it at (z, t) with the same average velocity tic, the effect of the

background photons must be such that they do not depend on r and 1 in such a

way that we can detect their presence. Further, once we introduce some way to

measure the spin direction, we must not allow the spin direction to be biased by

the values of r and 1, yet still have a way to fix the initial value of the spin (or

distribution of values) and find that the transition (O, O) + (x, t) leaves this value

conserved when the fermion emerges (though not necessarily at the unobserved

positions within the interval). We can accomplish this by a careful balancing of

the number of photons interacting with the fermion with the number of steps to

the right and left independent of where they occur, as we now show. We will also

have to include in the model the fact that we do not observe the initial and final

spin, but that our wave function would allow it to be conserved if we did do SO.

3.3 CASE COUNTS FOR SPIN FLIP AND No SPIN FLIP

In the Feynman derivation of the Dirac equation (Ref. 18) as articulated by

Jacobson and Schulman (Ref. 19) using a “random walk” model with imaginary

step lengths ich/mc, the discussion is first carried out as if the step-lengths were

real step-lengths with e = 1, and then the e ~ O limit taken to give the result.

Why this should give the usual result for a spin-~ remains part of Feynman’s magic

touch, to use Bethe’s characterization of Feynman’s physics. They note that the

trajectories connecting (O, O) to (x, t) can be separated into for classes: RR for

which the first and last steps are to the right, LL for which the first and last steps

are to the left, RL for which the first step is to the right and the second to the left,

and LR for which the reverse holds. They also note that any RR trajectory has

k + 1 right moving segments, k left moving segments and 2k bends, while LL has

the same number of bends but k + 1 left moving and k right moving segments. RL

and LR have k right and k left moving segments and 2k – 1 bends (cf. Ref. 19, p.

377, Fig. 1). Note that this requires k to be smaller than the lesser of r, 1, which

structures the way they take the limit e ~ O.
--
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For us, the parameters r, 1 are fixed by the constant velocity (and momentum)

boundary condition v = ~c, and hence by some fixed velocity resolution Au =

~. For the same reason that we cannot define position to better than many

compton wavelengths h/me without implying some (at least indirect) way to take

us o’ut of the one particle space via pair creation, Au will also be restricted. The

result is that our distance z = N(r – l)(h/mc) must be such that N >> 1. In the

next chapter we will show that the scale factor N in the constant velocity case be

interpreted as the number of repeating periods allowed between (O, O) and (z, t).

Here the most important fact about the scale factor is that it extends the allowed

range of the parameter k, and hence the number of left or right moving segments to

k < Nr or k < Nl, allowing us to have many more bends for a given, fixed r, Zthan

one might infer from the Jacobson-Schulman approach to counting trajectories.

A second difference in our calculation is that, as noted in the last section, we
. ...-.
attribute both the spin-flip possibilities and the bends in the trajectories to the

emission an-d absorption of photons. In our fundamental theory, we would invoke

an actual bit-string model for the photon-fermion-fermion vertex. Here we use only

general symmetry conditions, namely that we not be able to distinguish any asym-

metry in the background radiation interacting with a free fermion whose average

velocity is measurably constant to a velocity resolution Au = ~. Empirically,

this condition is violated when one has sufficient accuracy to measure the dipole

mo=nt in the cosmic background (2.701{) radiation.

Consider first. the case RR in which the first and last step are to the right,

with 2k bends, and hence an even number of photons emitted and/or absorbed.

Were we to include the radiation as a dynamical degree of freedom, as we would in

a calculation that resembled more closely a conventional “self-energy” calculation,

we would have to balance emission, absorption, momentum and energy. Here we

need only to flip the spin at each bend. Since this implies that there an even

number of spin-flips, we will end up with the same spin as that with which we

started. There will be k + 1 right-moving segments,

that, in contrast to the Jacobson-Schulman counting,
--
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steps) can start or end at any one of the r indistinguishable possibilities. Thus

the relative number of cases is the same as that for placing k + 1 indistinguishable

bosons into r indistinguishable cells and is given by &. Similarly, for the k left-

lkmoving segments we have p cases. Since the assignment of segment boundaries is

independent, we must multiply these two independent case counts to get the total -

and hence obtain the result [A] [$] for the RR cases, given k.

We now must note that this result does not distinguish between whether we

start with a spin to the right or to the left and hence does not provide enough

structure to serve as our spin amplitude. We adopt the convention that we nor-

malize to positive spin (as we discussed above) and to a first step to the right as

a positive amplitude. Then, to obtain negative amplitudes corresponding negative

spin, we make use of the fact that k can be even or odd, and subtract the odd

cases. Thk is our prescription for real amplitudes, replacing the imaginary step

length used by Feynman. Hence

Using the same normalization we can now write down the amplitude for RL as

*RL(r, ‘)= ‘k=0,2,4,...$: – ~k=l,3,5,...$:
k‘k lk

= ~k(–1) ~~ (3.4)
. . . .

Noting that c2t2 - z 2 = 4rl(h/mc)2 and (for (h/me) = 1) defining Z2 = 4rZ, we

have that

vRL(~,z) = ~O(z) = ~k(-l)k- (3.5)

where we have used a standard series expansion for the Bessel function of zero

order called Jo ~g] Similarly

rk+l /k

@RR(r, z)= ~k(-l)k – ~Jl(z)
(k+l)!~– 1

--

(3.6)
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and

We conclude that we can take 41 = @RR+ @RL while 42 = 4LL + @LR for the two

spin amplitudes generated in this way and hence that

(3.8)

It is straightforward to show that this representation is invariant under the com-

bined action of time reversal and parity inversion.

One mystery in the Feynman derivation is that it nowhere refers to “spin”.
. ...-.

Of course this was also true of the original Dirac equation, whose formal “factor-

ization” of- the relativistic (second order) Schroedinger equation was interpreted

as representing half-integral angular momentum components consistent with the

fine structure spectrum of hydrogen (a spectrum which to that level of accuracy

has alternative explanations) ’30]only after the equation was in hand. We see that

. . by introducing both spin and the background radiation explicitly, our derivation

dissolves that mystery. We will pursue the topic of why finite measurement accu-

racy:leads us to expect to find spin when we investigate lengths of order h/me on

another occasion. .

3.4 PROOF THAT WE HAVE A SOLUTION OF THE DIRAC EQUATION

Having derived a form for the spin amplitudes which meets the average velocity

boundary condition v = ~c, distinguishes the two spin states, and guarantees that

whatever distribution of spin states we start with at (O, O) will reappear at (x, t)

if we fit this distribution to the states in the usual way, our next step is to show

that this representation is in fact a solution of the free particle Dirac equation.
--
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The form of the Dirac Equation in 1+1 dimensions which Jacobson and Schul-

man derive (Ref. 19) is

–iuz8+/8x – moz~ = i8@/~t (3.9)

where h = 1 = c, Oz and OZ are the Pauli spin matrices and @ has two components.

Their derivation required the introduction of the imaginary “i”, which, following

Feynman (Ref. 18), they do by using an imaginary step length ich/mc. Their

procedure also requires that they take the c + O limit in order to achieve the

desired result.

However, as Karmanov has pointed out ‘3]], the equation can easily be written

as a real two-component equation simply by using a different representation for

the Pauli matrices. For example if we write (with m=l)

with ~ = az, ~ = –aY, i is a common factor which can be divided out and the

equation is real. With ~ = ($;), the real equation we wish to model is

WitE Z2 = t2 – X2 = 4rl, this equation is solved by

where Jo and

29)

- Further

@l = Jo(z)+ ;Jl(z); +2 = Jo(z) – :Jl(z) (3.12)

31 are the standard, real Bessel functions. As already noted (Ref.

Jo(z) = xj=o(–l)~(z/2)2~ /(j!)2 = xj=o(–l)~[;l[;l (3.13)
. .

J1 = –J; = EjA1j(–l)~+l(Z/2 )2~-1/(j!)2 (3.14)
--
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Hence

(3.15)

This series representation then has the property needed to make ($:) a solution of

the free particle Dirac equation in 1+1 dimensions, namely

J; = Jo – :JI (3.17)

This completes our proof that the derivation we have given in the last section by

requiring macroscopic spin and velocity conservation in the presence of (unobserv-

. able) background radiation does in fact lead to the solution of the free particle

Dirac equation in 1+1 dimensions.

TO extend the derivation to 3+1 dimensions, we need only consider a 4-component

wave function and use a reaz representation of the three az and the ~ matrices

which Dirac invented to factor the Klein-Gordon equation. We need only satisfy

the constraints

a:=+l, iEl,2,3; p2 = +1 (3.18)

We also need to extend our constant velocity boundary condition to three compo-

nents r, 1 ~ ri, /i where i E 1,2,3. These can obviously be interpreted as right-left,

forward-back, and up-down relative to the corner of the laboratory introduced

in the first section in

- presented elsewhere.

this chapter. Details are under investigation and will be
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3.5 ARGUMENT THAT THIS DERIVATION IS EQUIVALENT TO MASS RENORMAL-

IZATION

Why do we call this interpretation of the single, free particle Dirac equation a

“mass renormalization of the single free fermion propagator”? We fix the boundary

conditions on our solution of the Dirac equation by requiring spin conservation

between (O, O) and (z, t) and by requiring that the average velocity over this interval

~ = tic be the same as that with which the fermion enters and leaves the region.

Since we have a single free particle of mass m, fixing the velocity is the same as

fixing the momentum, whose square is given by

m2v2 (r - 1)2 22
~2=—=

1–$ 4rl m c
(3.19)

- Clearly these are the same boundary conditions imposed on the free fermion prop-

agator in quantum field theory.

In quantum field theory we start with a free particle Lagrangian with a ‘(bare

mass” m., calculate the effect of the vacuum fluctuations of the background radi-

ation as a power series in the constant coupling the radiation to the fermion and

require that the algebraic sum of the two terms yield the observed mass m. The

problem is that both m. and the correction are infinite. It took a decade and a half

before acceptable methods of performing the calculation were found by Tomonoga,

Schwinger and Feynman, and shown to be equivalent by Dyson~2’331

In our calculation, we have no Lagrangian. Our time evolution is provided

by Program Universe, as is explained in detail elsewhere (eg Refs. 3 and 6). All

we need know about this program is that the class of bit-strings it generates to

to represent the (O, O) ~ (z, t) transition are all Bernoulli sequences of length

S = N(r + 1) which fit the constraint z(mc/h) = N(T – l), i.e. which have Nr

ones and N/ zeros. We take the mass m, and hence the step-length h/me, to

be given by the experimental mass, and then show that we can invoke symmetry

constraints on the background radiation, which interacts by flipping the spin, in
--
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such a way that r, / and m are unaltered by the buffeting, and that the wave

function which results is indeed a solution of the free particle Dirac equation with

the experimental mass. However, if the symmetry conditions are destroyed, for

example by an external point charge, or a constant magnetic field, we anticipate

that’ there will be a finite change in the energy of the fermion. If this change can -

be shown to be equivalent to the Lamb shift in the first instance and tog – 2 in the

second, we will have proved our case. This problem is under active investigation,

using the developments sketched in the next

4. Derivation of the

two chapters.

Commutation

Relations from Measurement Accuracy

4.1 CONSTANT VELOCITY TRAJECTORIES
... .-.

As we will see in the next chapter, all we need to derive the Maxwell equations

are the postulates [Xi, Xj] = const . 6ij, that the acceleration of a single particle

testing the field is a function only of position, velocity and time, and the concept

of a unit time shift along the particle trajectory. In this chapter we derive the

commutation relation between position and velocity from our finite and discrete

model of measurement accuracy.

-Consider first the case when the velocity is the same whenever measured. Con-

sistent with our finite measurement accuracy postulate, and taking Ax and At

to be, respectively, the smallest space and time intervals we can measure between

events, either directly or indirectly, any distance will be an integral multiple of

Ax and any time an integral multiple of At. Then any velocity will be a rational

fraction.

Confining ourselves to velocities that can always be interpreted as particulate

velocities, these must then always be rational fractions less that unity. They must

also always be greater than zero because zero is not measurable. With this under-

stood, in the current context we can define r = n! Ax , d! > n: where n~ and
--

21



I .

d: > n! are integers with no common factor other than unity, and Ax = cAt.

Then the desired representation of a constant velocity in units of c can be taken

to be

(4.1) -

Note that in this context the minimum time interval between measurements which

can yield the velocity must be d; At and the minimum space interval between two

such measurements — attributed to the firings of two counters produced by a

particle of this velocity — must be npAx.

In order to make it possible to define larger space and time intervals we now

introduce the representation

(4.2)

This allows. us to introduce negative as well as positive distances from the implied

origin simply by keeping d! positive and allowing the ng to include negative integers

b Clearly this also extends our velocity space to negative rationalwith \n![ < dr.

fractions between –1 and O. We can now displace our origin by a phase defined by

~(n,hn)~ ~, 6nC–’n+ l,–n+2,...2, n21; –l; Nr + N, + dn (4.3)

In keeping with our finite and discrete measurement restriction, we must also

assign an event horizon for our counter array given by R~~Z = NrnaXAx and the

Prequirement NT ~ 6n < NmaZ. Note that we will always keep N?, the number of

spatial periods of the counters which can be used to measure ~, a positive integer.

We also assume that the largest time interval we can measure is TmaZ = 2~NmaxAt,

where “x” is for us a rational fraction known only to an accuracy consistent with

the measurement context considered!4] Ref. 34 includes a preliminary discussion

of how Stillman Drake’s

the “times squared law”
--

analysls. ’35]of the experiment by which Galileo arrived at

can be viewed as a dynamical measurement of r/2ti.
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We have

discussion of

can envisage

been at some pains to make this representation consistent with the

“measurement” in Ref. 7. For the constant velocity case at hand, we

a “particle” traversing a counter array with counters spaced a fixed

distance n?Ax apart which fire sequentially with a fixed time interval d?At between

firings. We symbolize this sequence of firings by the sequence R, R’, R“, R’”, .....

For definiteness we consider positive velocity and take the first firing to be

Here, consistent with Kauffman’s notation, we take the symbol “R” to stand for

the instruction measure R, and the symbol “:=” to indicate that the value on the

right is the numerical value obtained by the measurement. Then

... .-.

R’ := r(N# t 6n t l)n#Ax

R“ := r(N~ + 6n + 2)n~Ax

R’” := r(N~ t 6n + 3)n~Ax (4.4) ._

.....etc.

To measure velocity requires us to select two counter firings, measure the space

and time intervals between them, and calculate the ratio; velocity measurement

is intrinsically a more complicated process than the measurement of the spatial

interval from an origin to the position R of some identified counter. To conform to

Kauffman’s usage, we assume that the “ ‘ “ is an operator which shifts us forward

‘in the time sequence R, R’, R“, R’”... by one fixed time interval d~At. The symbol

~ is to be interpreted as the evaluation of the interval between R’ and R by first
--
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measuring R, then measuring R’ and finally by dividing the difference between the

two intervals by the (fixed) time interval for a single shift, namely d! At. Clearly

R :=
n~Ax
— = ~c; Ax = cAt
d~At

(4.5)

In contrast to the notation in the Feynman-Dyson-Tanimura papers, which

would seem to imply that position and velocity are measured at the same time, we

trust that our notation and explicit model make it clear that the two measurements

are made at diflerent times, and hence can yield different results when made in the

opposite order. Now let dfAt = 1; interpret R~ as the process — measure ~, then

measure R. We now have established in our context the fundamental relationship

R~ = R’(R – R) := r’(r’ – r) (4.6)

However, if we first measure R and then measure fi, we obtain

~R = (R’ – R) := (r’ – r)r (4.7)

In any theory with finite space and time shifts these two values are necessarily not

the same. In fact,

we have that

RR –

by forming R~ – ~R and adding and subtracting –R(R’ – R)

iR = (R’ – R)2 + [R, R’]; [R, R’] = RR’ - R’R (4.8)

Since for us, once -we have removed the velocity operation symbol ~, measuring R

and R’ corresponds to ascertaining the positions of two counters which are fixed

in the laboratory and can be measured as many times as we wish in any order

wit bout changing the result,

that

RR– RRs

we can take [R, R’] s RR’ — R’R = O and we have

[R, k] = (R’ - R)2 := (r’ - r)2 = K (4.9)

where ~ is an arbitrary constant scalar fixed by the measurement accuracy context.

This establishes the desired commutation relation for a single fixed velocity and a
--
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single spatial direction. The extension to two different velocities and to more than

one dimension will be pursued elsewhere. We examine the Lorentz invariance of

the one dimensional situation in the next section.

4.2- BOOSTS IN ONE DIRECTION

Consider three aligned counters O, 1,2 at distances s~ = noAx, a E O, 1,2,

from a mirror and define

nap
nmp = n. – np; dap = da +dD; V.O = —;a#p Eo, l,2

d.p
(4.10)

As we saw already, these velocities correspond to particles which leave one counter

and arrive at another in the time it takes to a light signal to go from the first

counter to the mirror and be reflected back to the second. But then the velocities

- iatjsfy the” usual SR velocity addition law, as we sketch below.

In Ref. 21, Sec. 1.3, we started from two positive integers no and nl and

defined position and time coordinates for the interval between two events by Xol =

no – nl = —zlo and tol = no + nl = ilo where the units are such that c = 1. Then

the velocity VO1= –vlo and square of the invariant interval Tol = ~lo are given by

and we find that we can define the usual Lorentz time dilation ~ by

(4.11)

(4.12)

If we now introduce a third integer n2 and generalize our definitions, ZO1 + x12 +

Z20 = O and a little algebra gives us the familiar result that

Vol + V12
V02 =

1 + V01V12
(4.13)

With the interpretation that V12 is the velocity of the Lorentz boost which takes
--
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(ZOI,~ol) to (z02,io2),a littlemore algebra suffices to show that

Z02 = 712(Z01+v12tol); io2 = 712(tol+ V12Z01) (4.14)

Having shown how a trajectory consisting of two line segments with different

constant velocities can be constructed in a Lorentz invariant way by Lorentz boosts,

we could consider the same trajectory as due to the emission or absorption of

radiation at counter 1. Then the same argument which produced a commutation

relation between position and velocity measurement can be used to show that

they do not commute in the more general case. Evaluating the minimal constant

(which will be proportional to Ax2/At on dimensional grounds) and, by extending

the discussion to finite rotations in 3 dimensions, evaluating this constant as K/2m

-requires a -more extended discussion than we have space for here. Many of the

ingredients which go into such a discussion have already been explored in Ref. 21.

5. Derivation of the Maxwell Equations

When I showed Ref. 7 to my colleague, M. Peskin, he noted that the “shift op-

erator J“ defined by Kauffman is, in our context of a single particle, isomorphic to

the “quantum mechanical operator U = ezp(–iHT) representing a finite time shift

in the Heisenberg. representation. Then the formal steps in Kauffman’s rigorous

version of the Feynman-Dyson-Tanimura ‘(proof” go through easily. The difficulty

with adopting Peskin’s approach is that what operational context the Heisenberg

formalism fits into is by no means obvious. In particular, the usual formalism

requires U to have an inverse, while this is not needed in the DOC derivation. So,

for mathematical and physical clarity, one needs to invoke the DOC and discuss

the relationship between measurement accuracy and the DOC. I am indebted to

Peskin[361 for allowing me to quote his shortened version of the Kauffman proof

below. --
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Define

2= XU– UX=[X, U] (5.1)

where U is the time shift operator from X to X’ in time At (eg U = e–iHAt).

Notice that

as required.

Postulate:

Rewrite 2 as. ....-.

(AB) = [AB, U] = [A, U]B t A[B, U] = AB + AB

l.[xi, xj] = o; 2. [Xi, Xj] = K6~j

[xi, [Xj, u]]= -[xj, [U, xi]] - [u, [xi> Xjll

and noting that [U, [Xz, Xj]] = [U, O] = O we find that

~~ij = [Xi, [Xj, U]] symmetric in i,j

Now define

‘ Then

VIH1 = ~cjk/[[xj, x~], XI]

But this cyclic sum vanishes by the Jacobi identity. Thus

VIH1 = O

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

which is one of the two Maxwell equations we set out to derive.
--
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Finally, define

E; = Xi – tijkHk (5.8) ~

We wish to prove that

8H~
— + ~zjkVjEk = O
at

(5.9)

First we need to define d/dt by

i=~H=~+(XV)H (5.10)

. ...-.
. 1 Cik/ .‘~ikl([xk,xi]).–xj;[~[xk>xl]>xj]

= 2K

(5.11)

(5.12)
--
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now

‘~ab [x’x~l[i”xbl=[x*’x’]‘X27X3]
(5.13)

+ [X’X21[X3X11+[xix31[ilx21
for i = 1, eg

= [X1X21[X3X11+[X1X31[X’X21‘o (5.14)

so

. .----

6. Conclusions

Once one accepts the idea that the random motion of a Dirac particle is due
..

to interactions with the background radiation, which will correspond to “vacuum

fluctuations” of the conventional theory at zero temperature, and models this by. .

Program Universe bit-strings, these additional degrees of freedom lead to a different

statktical counting than that envisaged by Feynman. Then a real, finite step-

length h/me leads directly to the known result. In spite of this background, which

requires an infinite renormalization in the conventional approach, the symmetries

of the problem keep the result finite in our case. This allows the mass in the Dirac

equation to be interpreted as the observed mass of a free particle.

To demonstrate the consistency of this result with known experimental results

conventionally explained by infinite renormalization will require a corresponding

treatment of electromagnetism. A start on this has been made. Whether we can

actually stitch these

for g – 2, the Lamb

two approaches together and succeed in getting a good value

shift, etc. remains to be seen. The continuing improvement
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of the fit between “bit-string physics” and conventional results in other contexts

might be taken as a harbinger of ultimate success, but only the uncertain future

could justify this optimism.
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