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With the switch to flat beam operation in the SLC
during the 1993 run [1], it has become necessary to develop
an algorithm that   is capable of measuring the beam spot
sizes at the Final Focus Interaction Point (IP). This
algorithm uses the correct beam-beam deflection formula
for the more general flat-beam case, since the round beam
approximation is no longer valid [2]. The application of this
formula to the IP spot size measurements in the SLC Final
Focus is the subject of this paper.

I. DERIVATION OF THE BEAM-BEAM
DEFLECTION FORMULA IN THE FLAT

BEAM CASE

The assumptions used in the theoretical
evaluation of the beam-beam deflection are:

(a) Gaussian and upright distributed beams with sigmas
in the three dimensions σz- , σx- , σy-  for electrons,
and σz+, σx+ , σy+  for positrons

(b) y = 0 (on plane colliding beams)
(c) α σ σmax × <<− −z x2  (no disruption )

It can be proved that the overall deflection angle is
proportional to the electric field generated by the
convolutions of the two beam space distributions [3].
Moreover, the Bassetti expression for the electric field E(x)
is valid for Gaussian distributed beam [4]. Hence, after
some algebra, the total deflection angle α(x)  in the x-plane
of the e- beam, due to the interaction with the e + beam, as a
function of their distance x is:

It can be proved that the overall deflection angle is
proportional to the electric field generated by the
convolutions of the two beam space distributions [3].
Moreover, the Bassetti expression for the electric field E(x)
[4] is valid for the Gaussian distributed beam. Hence, after
some algebra, the total deflection angle α(x)  in the x-plane
of the e - beam (due to the interaction with the e + beam) as
a function of their distance x is
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Ne+ is the number of particles in the positron bunch
 re  is the classical electron radius

γ is the beam energy over the electron mass,
and

Σ y = σ y−
2 + σ y+

2  ,   and   Σ x = σ x−
2 + σ x+

2   ,

with some further algebra, we can also express the
deflection in an integral form simpler than the one used in
[2]:
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Figure 1. Beam-beam deflection at different aspect ratios
(not in scale), a y x= Σ Σ/ .

It can be shown that in the limit Σx~Σy,  Eq.~(1)
becomes the “round beam-beam deflection” expression [2],
and in the limit Σy >> Σx it becomes the “error function” as
expected in the infinite flatness case (see Fig. 1). This

behavior is much more evident in the integral expressiomn
for α(x) , since in the case Σx = Σy,  the integral is solvable
in terms of elementary functions; whereas, in the case
Σy>>Σx, it is simply expressible as an error function.

II. MEASUREMENT OF BEAM SPOT SIZES
AT THE SLC INTERACTION POINT

The typical beam sigmas at the SLC-IP are: σz- , σz+ ~
600 µm, σx- , σx+  ~ 2.5 µ m, and σy- , σy+  ~ 0.8 µ m.
Furthermore, the maximum deflection angle αmax is of the
order of 300 µrad.

It can be shown that α(x)  is finite and real for any Σx
and Σy > 0.

Since conditions (b) and (c) are satisfied [condition (a)
is assumed to be correct], Eq.  (1) was applied to fit the
beam-beam deflection in the SLC 1993 run [1]. It is
possible to notice from (1) that the deflection in one plane
is a function of the distance between the two beams, and of
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Figure 2. Beam-beam scan fits in a typical SLC running conditions: (a) fit of the x-deflection using the
round beam-beam formula, (b) fit of the x-deflection using the flat beam-beam formula, (c) fit of Σx using

the Bhabha-counts, (d) fit of the y-deflection using the round beam-beam formula, (e) fit of the y-deflection
using the flat beam-beam formula, (f) it of Σy using the Bhahba-counts; where A = deflection offset, B =

scale factor, C = on plane beam spot size, D = position offset, F = other plane beam spot size.



both Σx and Σy, so that, in principle, the deflection in one
plane is able to give information on both spot sizes.
A further advantage of (1) is that the overall scale factor of
the deflection angle is a known quantity,  depending only
by the other-beam charge (measured elsewhere);
specifically:
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with the given SLC-beam energy ( 45.64 GeV ), and
expressing the deflection angle in µ rad, the sigmas in µm
and the number of e + in 1010 units.

The fitting of the beam-beam deflection therefore
involves only four free parameters: the two beam spot-
sizes, the absolute distance between the two beams, and the
overall offset of the measured deflection angle. The last
two parameters are mainly caused by the residual offsets of
the beam-position-monitor readings.

Figure 2 shows two typical beam-beam scans in the
two planes, fitted with the round-beam formula and with
the flat formula. Also shown in Fig. 2 are the beam sigmas,
as measured by using a signal proportional to the Bhabha
scattering at low angle. The measured spot sizes using the
two techniques are in good agreement.

The accuracy in determining both beam spot sizes with
a single beam-beam scan is typically better than 5%.

III. CONCLUSIONS

The use of the Eq. (1) to fit the beam-beam deflection
at the SLC IP gives us a very accurate spot-size monitor to
tune SLC Final Focus, and to optimize and estimate the
SLC luminosity. The agreement of the data with the theory
is excellent showing that the assumption (a) is also correct.
Furthermore, the disruption effect can be estimated to be
still small enough to affect the behavior of the beam-beam
scans at the typical 1993 running condition, leading to
anunderestimate of the real SLC luminosity of about 8%,
while it has been a more serious problem in the SLC 1994
where the Σy was of the order of 0.9 µm and condition (c)

was no longer valid, causing an appreciable difference in
the behavior of the measured beam-beam deflection with
respect to (1). Corrections of the flat beam-beam formula
(1) must be included to take this effect into account.
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