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Abstract

The ionization of residual gas by an electron beam in an accelerator generates

ions that can resonantly couple to the beam through a wave propagating in

the beam-ion system. A beam-ion instability is studied for a multi-bunch

train taking into account the decoherence of ion oscillations due to the ion

frequency spread. It is shown that while the decoherence does not completely

suppress the instability, it makes the growth rate appreciably smaller. A

comparison of analytical and numerical results indicates a good agreement

with direct macro-particle simulation of the instability.

I. INTRODUCTION

In this paper, we continue the study of a beam-ion instability started in Ref. [1]. The

instability arises during the passage of a single electron bunch train or a single positron

bunch; ions (or ionized electrons) created by the head of the train (bunch) perturb the tail.

The instability mechanism is the same in both linacs and storage rings where we assume that

the ions are not trapped from turn-to-turn. Here, for the sake of simplicity, we will focus on

the interaction of an electron beam with ions, although, as mentioned, similar effects apply

to a positron beam trapping free electrons.

The important element that we add to the model developed in Ref. [1] is the inclusion
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of the ion decoherence due to the frequency spread in the ion population. This introduces

the Landau damping mechanism in the beam-ion system which weakens the instability.

The variation of the ion frequency ωi is caused by several sources. One of them is due to

the horizontal beam density profile in a flat beam which causes the local ion frequency to

depend on the horizontal position. Another source of spread in ωi is the nonlinearity of the

ion oscillations inside the beam.

For analytical study we adopt a model that treats the bunch train as a continuous beam.

This model is applicable if the distance between the bunches lb is smaller than the betatron

wavelength, lb ¿ c/ωβ and the ion oscillation wavelength lb ¿ c/ωi. This condition is well

satisfied for multi-bunch machines such as the PEP-II High Energy Ring [2] or the NLC

Damping Ring [3]. As in Ref. 1, we assume a one-dimensional model that treats only

vertical linear oscillation of the centroids of the beam and the ions.

The paper is structured as follows. In Section 2, the differential equations of motion are

derived. Section 3 discusses averaging of the equations based on different time scales associ-

ated with oscillations and growth of the instability. The ion frequency spread and resulting

decoherence of ion oscillations are analyzed in Section 4. Analytical and numerical solutions

of the equations for the NLC Damping Ring and PEP-II High Energy Ring are presented

in Sections 5 and 6 respectively. They are compared with direct computer simulation of the

instability in Section 7 and the results are summarized in Section 8.

II. THE EQUATIONS OF MOTION

We will assume a rigid vertical motion of the beam and define the offset of the centroid at

time t and longitudinal position s as yb (s, t). The distance s is measured from the injection

point at t = 0. The equation for the beam centroid, including the interaction with the ion

background, is

(
∂

∂t
+

∂

∂s

)2

yb (s, t) + ω2
βyb (s, t) = κ · (t− s) (yi (s, t)− yb (s, t)) , (1)
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where we have set the speed of light c equal to 1 and then quote the distance in units of time.

The left hand side of this equation accounts for the free betatron oscillation of a moving

beam (we assume vbeam ≈ c ). On the right hand side, we included the force acting on the

beam from the ions whose centroid is offset by yi (s, t). In the linear theory, this force is

proportional to both the relative displacement between the beam and ions centroids and the

ion density. Assuming a continuous electron beam with a uniform density per unit length,

the ion density increases due to collisional ionization as t− s (it is equal to zero before the

beam head arrives at the point s at time t = s). After separating the factor t − s on the

right hand side of Eq. (1), the coefficient κ is (see Ref. 1 for details)

κ ≡ 4λ̇ionrec
2

3γσx (σx + σy)
, (2)

where γ denotes the relativistic factor for the beam, re is the classical electron radius, σx,y

denotes the horizontal and vertical rms-beam size respectively, and λ̇ion is the number of

ions per meter generated by the beam per unit time. Assuming a cross section for collisional

ionization of about 2 Mbarns (corresponding to carbon monoxide at 40 GeV), we have

λ̇ion[m
−1s−1] ≈ 1.8 · 109ne[m

−1]pgas[torr] , (3)

where ne is the number of electrons in the beam per meter, and pgas the residual gas pressure

in torr.

To find the equation for ions, we will assume that they perform linear oscillations inside

the beam with a frequency ωi. Furthermore, we will allow a continuous spectrum of ωi given

by a distribution function f (ωi) normalized so that

∫
f (ωi) dωi = 1 . (4)

The spread in ωi at a given position s (and for a given ion species) is caused by several

sources; they are discussed in more detail in Sec. 4. The distribution f (ωi) is peaked

around the frequency ωi = ωi0 corresponding to small vertical oscillations on the axis,

ωi0 ≡
[

2nerp
Aσy (σx + σy)

]1/2

, (5)
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where A designates the atomic mass number of the ions, ne the number of electrons in the

beam per unit length, and rp the classical proton radius (rp ≈ 1.5 · 10−16cm ). Typically,

the frequency spread ∆ωi is not large; we assume ∆ωi ¿ ωi0.

We also have to distinguish between the ions generated at different times t′ because

they will have an initial offset equal to the beam coordinate yb (s, t
′). Let us denote by

ỹi (s, t|t′, ωi) the displacement, at time t and position s, of the ions generated at t′ (t′ ≤ t )

and oscillating with the frequency ωi. We have an oscillator equation for ỹi

∂2

∂t2
ỹi (s, t|t′, ωi) + ω2

i [ỹi (s, t|t′, ωi)− yb (s, t)] = 0 , (6)

with initial condition

ỹi (s, t
′|t′, ωi) = yb (s, t

′) ,
∂ỹi
∂t

∣∣∣∣∣
t=t′

= 0 . (7)

Finally, averaging displacement of the ions produced at different times t′ and having different

frequencies ωi gives the ion centroid yi (s, t)

yi (s, t) =
1

t− s

t∫
s

dt′
∫
dωif (ωi)ỹi (s, t|t′, ωi) . (8)

Equations (1), (6)-(8) constitute a full set of equations governing the development of the

instability in the beam-ion interaction.

III. AVERAGING OF THE EQUATIONS

Equation (6) can be easily integrated with the initial conditions (7) yielding

ỹi (s, t|t′, ωi) = yb (s, t)−
t∫

t′

∂yb (s, t
′′)

∂t′′
cosωi (t− t′′) dt′′ . (9)

Now using Eq. (8), Eq. (1) reduces to an integro-differential equation

(
∂

∂t
+

∂

∂s

)2

yb (s, t) + ω2
βyb (s, t) = −κ

t∫
s

(t′ − s) ∂yb (s, t
′)

∂t′
D (t− t′) dt′ , (10)

where D (t− t′) denotes a decoherence function defined as
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D (t− t′) =
∫
dωi cosωi (t− t′)f (ωi) . (11)

This function represents the oscillation of the centroid of an ensemble of ions with a given

frequency distribution f (ωi) having an initial unit offset.

Instead of t and s, it is convenient to transform to new independent variables z and s,

where z = t− s. The variable z measures the distance from the head of the beam train and

for a fixed z the variable s plays a role of time. Denoting

y (s, z) ≡ yb (s, s+ z) , (12)

Eq. (10) takes the form

∂2

∂s2
y (s, z) + ω2

βy (s, z) = −κ
z∫

0

z′
∂y (s, z′)

∂z′
D (z − z′) dz′ . (13)

If D (z) = cosωiz (no frequency spread), Eq. (13) reduces to the equation derived in Ref. 1.

We will assume that the interaction between the beam and the ions is small,

κl

c
¿ ω2

i0, ω
2
β , (14)

where l denotes the length of the bunch train, so that the instability develops on a time

scale which is much larger than both the betatron period and the period of ion oscillations.

Typically this inequality is easily satisfied. In such a situation, the most unstable solution

of Eq. (13) can be represented as a wave propagating in the beam with a slowly varying

amplitude and phase,

y (s, z) = ReA (s, z) e−iωβs+iωi0z , (15)

where the complex amplitude A (s, z) is a ‘slow’ function of its variables,∣∣∣∣∣∂ lnA

∂s

∣∣∣∣∣¿ ωβ ,

∣∣∣∣∣∂ lnA

∂z

∣∣∣∣∣¿ ωi0 . (16)

For a fixed z, the s-dependence of Eq. (15) describes a pure betatron oscillation, while, for

a fixed s (that is in the ion frame of rest), the z-dependent part implies oscillations with the

frequency ωi0. Hence the wave resonantly couples the ions and the electrons.
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Substituting Eq. (15) into Eq. (13) and averaging it over the rapid oscillations with the

frequencies ωi0 and ωβ, one finds

∂A (s, z)

∂s
=
κωi0
4ωβ

z∫
0

z′A (s, z′)D̂ (z − z′) dz′ , (17)

where the function D̂ (z) is

D̂ (z) =
∫
dωif (ωi) e

i(ωi−ωi0)z . (18)

One of the advantages of the above approach is that it allows a simple scaling of the

instability with the vacuum pressure. Indeed, the only place where the pressure p enters

Eq. (17) is the parameter κ which is proportional to p (see Eqs. (2) and (3)). By introducing

a new variable sκ instead of s, we can eliminate κ from the equation. This means that

increasing the pressure n times is equivalent to the shrinking the s axis by the same factor.

Thus, having solved Eq. (17) for one particular value of pressure, we can use the result for

various p by simply rescaling the s variable, s ∝ p−1.

IV. ION DECOHERENCE

The frequency spread of the ions at a given longitudinal coordinate s stems from several

sources. One of them is a variation of the electron density in the beam along the horizontal

axis. Since the ion frequency scales as the square root of the electron density, ωi ∝
√
ne,

ions located at different coordinates x in a flat beam will have different ωi. For a Gaussian

distribution of electrons in x, ne ∝ exp (−x2/2σ2
x), and we obtain ωi (x) ∝ exp (−x2/4σ2

x) .

Hence,

ωi (x)− ωi0 = ωi0
[
exp

(
−x2

/
4σ2

x

)
− 1

]
, (19)

where ωi0 is the frequency at x = 0.

To find the decoherence function D̂, we will utilize a simple one-dimensional model that

assumes that the ion frequency of horizontal oscillations is much smaller than the vertical
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frequency ωi, and neglects the horizontal ion motion on the time scale of the decoherence.

In this model, the ion distribution in x is the same as the electron distribution (because the

rate of ionization is proportional to ne),

fi (x) =
1√

2πσx
exp

(
−x2

/
2σ2

x

)
, (20)

and Eq. (18) takes the form

D̂ (t) =

∞∫
−∞

dxfi (x) exp
{
−iωi0t

[
1− exp

(
−x2

/
4σ2

x

)]}
. (21)

Note that in this model we overestimate the effect of the decoherence. For flat beams, a

typical ratio of the horizontal and vertical oscillation frequencies is roughly 3. Thus, the

horizontal motion of the ions modulates the vertical oscillation frequency ωi between ωi0

and ωi (x) making the average ωi smaller than ωi (x). To fully account for this effect, one

has to deal with the two-dimensional ion motion which would make the consideration much

more involved.

At this point, we note that Eq. (21) has been defined as the average offset of the ions at

a given s. However, the quantity relevant to the electron-ion coupling is the average force

that acts on the electron beam. The force differs from the average displacement because the

ion density decreases with x and thus the ion electric field at the beam edges is suppressed

relative to that at the bunch center. To account for this effect, we correct D̂ (t) by including

the electron density ne in the integrand of Eq. (21)

D̂ (t) = const

∞∫
−∞

dxfi (x)ne (x) exp
[
−iωi0t

(
1− e−x2/4σ2

x

)]
, (22)

where the constant in Eq. (22) must be chosen such that D̂ (0) = 1. This gives

D̂ (t) =
1√
πσx

∞∫
−∞

dx exp
[
−iωi0t

(
1− e−x2/4σ2

x

)
− x2

/
σ2
x

]
. (23)

The plots of the real and imaginary parts of this function are shown in Fig. 1. Asymptoti-

cally, for large values of ωi0t,

D̂ (t) ≈ (1 + iαωi0t)
−1/2 , (24)
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where the numerical factor α = 1/4.

Another source of ion decoherence is the nonlinearity of the electron potential. It results

in a dependence of ωi on the amplitude of the oscillation and causes an additional spread in

the oscillation frequencies ωi. We have numerically computed the decoherence function due

to nonlinearity in a manner similar to the approach of Ref. 4 ; it is also plotted in Fig. 1.

One can show that the decoherence due to nonlinearity has the same asymptotes as Eq. (24)

with a somewhat smaller α. In what follows, we will use the simple form given by Eq. (24)

for D̂ (t) in which we put α = 3/8 to account for the additional decoherence due to the

nonlinearity.

Finally, concluding this section, we mention a simple model of decoherence which assumes

an exponential behavior of D̂ (t),

D̂ (t) = e−ωi0t/2Qi , (25)

where Qi is the quality factor of ion oscillations. Choosing Qi so that Eq. (25) fits the
∣∣∣D̂ (t)

∣∣∣
given by Eq. (23) for 0 < ωi0t < 50, we find Qi ≈ 16. This model strongly overestimates

damping for large t, but it allows an analytical solution for the instability as we will show

in the next section.

V. ANALYSIS

Let us for a moment ignore the ion decoherence in Eq. (17) and put D̂ (z) ≡ 1. In

this case, the equation can easily be solved analytically. Differentiation with respect to z,

reduces Eq. (17) to the differential equation

∂2A (s, z)

∂s∂z
=
κωi0
4ωβ

zA (s, z) . (26)

For the initial condition A (0, z) = 1, the solution is

A (s, z) = I0

(
z

√
κωi0
2ωβ

s

)
, (27)
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where I0 is the zeroth order Bessel function of imaginary argument. This solution was

found in Ref. 1 using a different method. For large values of the argument the asymptotic

expansion of the Bessel function yields

A (s, z) ≈
(
2πz

√
κωi0s/2ωβ

)−1/2

exp
(
z
√
κωi0s/2ωβ

)
, (28)

which indicates an instability with a characteristic time τ ≈ 2c2ωβ/κωi0l
2, where l is the

length of the bunch train. Note that since A (s, z) ∝ exp
(
z/l
√
s/τ

)
, the characteristic time

τ does not represent an e-folding time, and the instability develops much slower than it

would be in the case of normal exponential growth ∝ exp (s/τ).

Eq. (17) can be also solved analytically using the decoherence function given by Eq. (25).

In this case differentiating Eq. (17) with respect to z yields

∂2A (s, z)

∂s∂z
=

1

2τ l2
zA (s, z)− γ ∂A (s, z)

∂s
, (29)

where γ = ωi0/2Qic. A solution to this equation with initial condition A (0, z) = 1 is

A (s, z) = exp
(
−γz
l

)
I0

(
z

l

√
s

τ

)
+
γ

l

z∫
0

dz′I0

[s (z2 − z′2)
τ l2

]1/2
 exp

[
−γ (z − z′)

l

]
. (30)

Using the asymptotic form for the Bessel function, one can show that for large s

A (s, z) ≈
(
2π
z

l

√
s

τ

)−1/2

exp
(
z

l

√
s

τ
− γz

)
×
1 +

(
πzlγ2

2

√
τ

s

)1/2

exp
(

1

2
zlγ2

√
τ

s

) .

(31)

Eq. (31) indicates that while the strong exponential damping due to decoherence does not

suppress the instability, it makes the effect much weaker at the tail of a long bunch train.

For very large times s, Eq. (31) approaches Eq. (28), except for an s-independent amplitude

reduction by exp(−γz). In this model, the ultimate growth is unchanged by the decoherence,

but this is only valid after exceedingly long times and is not interesting for practical cases.

VI. NUMERICAL RESULTS

To study the effect of the decoherence in more realistic cases, we wrote a computer code

that numerically integrates Eq. (17) with D̂ (t) given by Eq. (24). The two input parameters
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for the code are the characteristic time τ = 2c2ωβ/κωi0l
2, and the train length ωi0l/c.

Simulations have been performed for the NLC Damping Ring and the PEP-II HER. In

the NLC Damping Ring (see relevant parameters in Ref. [1]), we assumed a residual gas

with a vacuum pressure of p = 10−8 Torr and an atomic number of A=28. This corresponds

to a characteristic time of τ = 45 ns and a bunch length of ωi0l/c = 150. The results are

depicted in Fig. 2 for the initial condition A (0, z) = 1; for comparison, in Fig. 3, we

plot the solution of Eq. (27) for the same parameters but without the decoherence. The

plots show the growth of the beam centroid at 10 positions evenly spaced along the bunch

train. Comparing Fig. 2 and 3, shows the decoherence slowing down the instability. To

characterize the growth rate of the instability, we defined τgrowth as an e-folding time for the

last bunch in the train. Since the instability is not exponential, τgrowth varies with time. For

the time interval 1 µs < t < 2 µs, we find that τgrowth ≈ 0.5 µs without decoherence and

τgrowth ≈ 1 µs with ion decoherence; the decoherence decreases the growth rate by a factor

of two.

Figures 2 and 3 illustrate the growth of the instability from an initial condition Eq.

(15) which is the most unstable perturbation. In reality, the initial noise in the beam will

contain different harmonics of which only one or two, having a spatial period 2πc/ωi0, are

very unstable. Assuming that the number of bunches in the train equals Nb and their

displacements are uncorrelated with the rms value of δ, a simple statistical argument shows

that the amplitude of harmonics in the bunch will be of the order of δ
/√

Nb. To illustrate

the effect of random initial positions, we integrated Eq. (17) including the effect of the ion

decoherence with the initial condition corresponding to uncorrelated displacement with δ = 1

for 90 bunches in the NLC Damping Ring. The result is shown in Fig. 4 for p = 10−9 and

p = 10−8 (as noted in Section III, variation of the pressure simply re-scales the horizontal

axis in the plot). The figure shows that the development of the instability is somewhat

delayed until the amplitude of the unstable mode with an initial value δ
/√

90 ≈ 0.1 reaches

the value comparable to 1; for p = 10−8, this occurs after roughly 5µs. After this point, the

growth proceeds at about the same rate as in Fig. 2.
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For the PEP-II High Energy Ring, we assumed a vacuum pressure of p = 10−9 Torr and

A=28. This corresponds to a characteristic time τ = 5.5µs and a bunch length ωi0l/c = 220.

The bunch offsets at 10 positions in the train are shown in Fig. 5 as a function of s for the

initial condition A (0, z) = 1. From this figure, we estimate that the e- folding growth time,

on the time interval 200 µs < t < 400 µs, is roughly τgrowth ≈ 150 µs. As noted before, this

growth time depends on the interval considered.

VII. COMPUTER SIMULATIONS

We also performed direct macro-particle simulations of the instability using a computer

code described in Ref. 1. In the simulations, each of the bunches is represented by 10,000

macro-particles and they interact with the ions which are represented by roughly 50,000

macro-particles. In this manner, the beam and ion distributions evolve self-consistently as

the beam is tracked through the magnet lattice.

The results of a simulation for the NLC Damping Ring with a vacuum pressure of p =

10−8 Torr are shown in Fig. 6 where we have plotted the oscillation amplitude, normalized

by
√
Nmacro/σy; this allows for a direct comparison with Fig. 4. Comparing Fig. 6 with

Fig. 4 shows a good agreement for the growth rate of the instability during the initial

stage (t < 6 µs ). At later times, the macro-particle simulation exhibits saturation which is

presumably due to the nonlinearity of the beam-ion force as the amplitude of the oscillations

become comparable to the rms beam size σy; this occurs at a value of 100 in the normalized

units of the plot.

VIII. DISCUSSION

In this paper, we have studied the effect of the ion frequency spread on the development

of the beam-ion instability. We have considered variations of the ion frequency due to the

nonlinearity of the beam-ion force in both the x and y planes. In general, the dependence

of ωi on the horizontal motion is the more important effect and strictly should be described
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with a two-dimensional treatment of the ion motion. There are other sources of ion frequency

spread that we have not considered although they can be included in our formalism in a

straightforward manner. In particular, the ion frequency will change as the beta functions

and beam sizes in the optical lattice vary through a cell. This is not a very important effect

in a FODO lattice, but it could prove to be much more significant in other lattices such as

the TBA or Chasman-Green structures used in many synchrotron light sources.

In all cases, the variation of the ion frequency causes Landau damping and slows the

instability growth rate. In the two examples that we studied, the growth rate was reduced

by roughly a factor of 2. We should also note that we have characterized the instability

with an approximate e-folding time τgrowth. While this differs from the characteristic time τ

that more accurately describes the instability which grows as exp(
√
t/τ), it provides a more

intuitive estimate of the impact of the instability. For example in the PEP-II HER, τgrowth

is roughly 150 µs while τ ≈ 6 µs. This growth rate could be decreased further by adding

additional clearing gaps in the bunch train [1]. For example, a second gap will increase

the instability rise time to roughly τgrowth ≈ 0.6 ms which is inside the bandwidth of the

feedback system.

Finally, our analytical model is confirmed by comparison with a macro-particle computer

simulation and shows a good agreement. An important effect which is not included in the

model but will also suppress the instability is the tune spread in the electron beam. The

tune spread can arise from the beam energy spread and the chromaticity of the optical

lattice, the nonlinearity of the lattice, the space charge force due to the ions or the electrons

themselves, or the beam-beam collision in a colliding beam storage ring. For example, in the

PEP-II High Energy Ring with a beam-beam collision parameter ξ = 0.03, the estimated

decoherence time for the betatron oscillations is 200 µs and it is comparable with the growth

rate of the instability.
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