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Abstract

We find the real part of the longitudinal impedance for both
a small hole and a long slot in a beam vacuum chamber
with a circular cross section. The slot can be arbitrarily
long; the only requirement on the dimensions of the slots
is that its width be much smaller than c/ω. Regular array
of N slots periodically distributed along the pipe is also
considered.

I. INTRODUCTION

Existing theory for the impedance produced by small
holes in the wall of a vacuum chamber of an accelerator has
been developed in papers by Kurennoy [1] and Gluckstern
[2]. Bethe’s approach, developed to study diffraction of
an electromagnetic wave on a perfectly conducting plane
screen with a small hole [3], was applied to the problem of
radiation of the beam propagating in a circular pipe with a
hole in its wall. The method is based on utilization of small
parameters, αel

/
b3 and αmg

/
b3, where αel is the electric

and αmg is the magnetic polarizabilities of the hole, and b
is the beam-pipe radius. For circular holes, αmg ∼ |αel| ∼
w3, where w is the radius of the hole, and these ratios
are of the order of (w/b)

3
. This theory also assumes that

the wavelength of the electromagnetic waves radiated by
the hole is much larger than the dimensions of the hole.
In the first approximation of the perturbation theory, the
impedance is expressed in terms of polarizabilities αel and
αmg and turns out to be purely imaginary: 1

Z = − Z0iω

2πcb2
(αel + αmg) . (1)

In many cases it is necessary to know the real part of the
impedance. In this paper we find ReZ for small holes and
slots of arbitrary length l, assuming only that the width of
the slot w is much smaller than b and c/ω. We also find
the impedance of a regular array of N slots. A more de-
tailed study of relevant issues, including the effect of ran-
domization of the slot positions in the array, can be found
in Ref. [4].

II. REAL PART OF THE IMPEDANCE FOR
A HOLE

To calculate the longitudinal impedance of a circular
beam pipe with a hole, it is convenient to consider an os-

1Our definitions of αel and αmg agree with Bethe’s paper [3]; they
are two times larger than those used by Kurennoy [1].

cillating current traveling with the velocity of light along
the axis of the pipe,

I (z, t) = I0 exp(−iωt+ iκz) , (2)

where κ = ω/c. The pipe is assumed to have a small hole
located at z = 0 with characteristic dimensions much less
than pipe radius b. Perturbation of the electromagnetic
field caused by the hole can be represented as a superpo-
sition of the waveguide modes propagating away from the
hole.

We choose normalization of the eigenmodes in a circular
pipe such that for E modes

E(n,m)
z =

µ2
n,m

b2
Jn

(
µm

r

b

)
cos(nθ)exp(σiκn,mz), (3)

and for H modes

H(n,m)
z =

µ′2n,m
b2

Jn

(
µ′n,m

r

b

)
cos(nθ)exp(σiκ′n,mz), (4)

where Jn is the Bessel functions of the nth order, µn,m is
the mth root of Jn, µ

′
n,m is the mth root of the deriva-

tive J ′n, κn,m =
√
ω2 − ω2

n,m

/
c, κ′n,m =

√
ω2 − ω′2n,m

/
c,

ωn,m = cµn,m/b, ω′n,m = cµ′n,m
/
b, and b is the radius of

the waveguide. The variable σ denotes the direction of the
propagation of the wave; σ = +1 corresponds to the waves
propagating in the positive direction along the z-axes, and
σ = −1 marks the waves traveling in the opposite direction.

In the first order of the perturbation theory, the electro-
magnetic field scattered by the hole into the waveguide is
characterized by the amplitudes an,m (σ) such that

F = h(z)
∑
E,H

∑
n,m

an,m (σ = 1)F (n,m) (r, z, σ = 1)

+h(−z)
∑
E,H

∑
n,m

an,m (σ = −1)F (n,m) (r, z, σ = −1), (5)

where h (z) is the step function and F denotes any of the
components Ez, Er, or Hϑ. The factors an,m can be ex-
pressed in terms of the electric αel and magnetic αmg po-
larizabilities of the hole [1]

a(E)
n,m =

4I0 (καmg + σκn,mαel)

cb2κn,mµn,mJ ′n (µm,n) (1 + δn,0)
, (6)

for an E mode, and

a(H)
n,m = −

4nI0
(
σκ′n,mαmg + καel

)
cb2κ′n,m

(
µ′2n,m − n2

)
Jn
(
µ′m,n

) , (7)



   

for an H mode. Calculating Z using Eqs. (5)–(7) with the
help of the following relation,

Z = − 1

I0

∞∫
−∞

dz Ez (z, r = 0) exp (−iωz/c) , (8)

gives Eq. (1).
The real part of the impedance of a hole arises in the sec-

ond order of the perturbation theory based on the small-
ness of the parameters αmg/b

3
and αel/b

3
. It turns out,

however, that we can find the real part of the impedance
without going to higher orders if use is made of the follow-
ing relation between the ReZ and the energy P radiated
per unit time by the hole (see Ref. [5]):

P =
1

2
I2
0 ReZ (ω) . (9)

The energy flux P in Eq. (9) should include all the waves
radiated by the hole, both inside and outside of the wave-
guide. The outside radiation will depend on the geometry
and location of the conducting surfaces in that region and
cannot be computed without knowing particular details of
the specific design. Here we neglect its contribution, as-
suming that the thickness of the pipe wall is large enough so
that the electromagnetic field does not penetrate through
the hole.

Inside the waveguide, we have to take into account the
radiation going into all E and H modes. The energy flow
in the mode of unit amplitude is equal to

P (E)
n,m =

1 + δ0,n
16

ωκn,m µ
2
n,m J ′2n (µn,m) , (10)

and

P (H)
n,m =

1 + δn,0
16

ωκ′n,m
(
µ′2n,m − n2

)
J2
n

(
µ′n,m

)
, (11)

respectively. The energy flux in each mode radi-
ated by the hole is given by |an,m (σ = 1)|2 Pn,m and

|an,m (σ = −1)|2 Pn,m in the forward and backward direc-
tions, respectively. It is evident that this radiation occurs
only if the frequency ω is larger than the cutoff frequency
ωn,m (or ω′n,m).

The total energy flux P is

P =
∑
E,H

∑
n,m

∑
σ=±1

Pn,m
∣∣an,m∣∣2 , (12)

where the summation is carried out over both directions of
propagation, σ = ±1, all possible values of n and m, and
over E and H modes. Combining Eqs. (9)–(12) yields the
following equation for the contribution of E and H modes
into the real part of the impedance:

ReZ(E) =
Z0

π

ω2

c2b4

∑
n,m

1

(1 + δn,0)
F (E)

(
ω

ωn,m

)
, (13)

where

F (E) (x) =
α2
mgx

2 + α2
el

(
x2 − 1

)
x
√
x2 − 1

(14)

for x > 1, and F (E) (x) = 0 for x < 1. For the H modes

ReZ(H) =
Z0

π

ω2

c2b4

∑
n,m

n2

µ′2n,m − n2
F (H)

(
ω

ω′n,m

)
, (15)

where

F (H) (x) =
α2
elx

2 + α2
mg

(
x2 − 1

)
x
√
x2 − 1

(16)

for x > 1, and F (H) (x) = 0 for x < 1.
Equations (13) and (15) apply also for short slots such

that l ¿ b and lκ ¿ 1. For a large aspect ratio, l À w
, we have αmg ≈ −αel, and F (E) (x) = F (H) (x). In this

case, the plot of the Re
(
Z(E) + Z(H)

)
measured in units

α2
mgZ0

/
πb6 as a function of ωb/c is shown in Fig. 1.
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Figure 1. Real part of the impedance of a short large-
aspect ratio slot as a function of the frequency (solid curve),
and a high-frequency approximation given by Eq. (17) (dot-
ted curve).

Because the functions F (E) (x) and F (H) (x) go to infin-
ity when x → 1, ReZ has singularities at the cutoff fre-
quencies ωn,m and ω′n,m. Formally, this happens because
the amplitude of the radiated waves given by Eqs. (6) and
(7) scales as κ−1

n,m when ω approaches a cutoff frequency.
The actual height of the cutoff peaks will be determined by
higher order corrections of the theory and finite conductiv-
ity of the walls.

In the limit ω À c/b, a large number of harmonics is
involved in the sums (13) and (15). By considering them
to be continuous variables, it is possible to integrate over
n and m instead of summing. This integration yields

ReZ =
2

3π
Z0

ω4α2
mg

c4b2
. (17)

This function is also plotted in Fig. 1; it gives a good ap-
proximation of the averaged dependence of the ReZ, even
for small frequencies.

III. REAL PART OF THE IMPEDANCE FOR
A LONG SLOT

To find the real part of the impedance of a long slot for
which l is comparable or larger than b and/or κ−1, we con-
sider the long slot as a distributed system of magnetic and

2



     

electric dipoles. The field radiated by the slot consists of
the waves coming from different elements of the slots with
a relative phase advance between them. For two infinites-
imal elements located at distance z, the phase advance is
composed of two parts. The first part is due to the change
of phase of the driving field of the beam, and is equal to
κz. The second part is caused by the relative phase shift
of the two radiated waves, and is equal to −σκn,mz, where
σ = ±1 for the forward and backward propagating waves.
The total phase exponent, exp(iκz − iσκn,mz) should be
integrated over the length of the slot, yielding the factor

fn,m (σ) =
1

l

l∫
0

exp(i (κ− σκn,m) z) dz =

1

il (κ− σκn,m)
[exp (i(κ− σκn,m)l)− 1] (18)

for the E modes, and a similar factor f ′n,m (σ), for which
κn,m → κ′n,m in Eq. (18), for the H modes. These factors

multiply the amplitudes a
(E)
n,m and a

(H)
n,m in Eqs. (6) and

(7). Combining all these changes, and taking into account
that for a long slot, αel = −αmg, results in the following

modifications of the functions F (E) and F (H) in Eqs. (13)
and (15):

F (E) (x) =
2b2

µ2
n,m

(αmg
l

)2 1

x
√
x2 − 1

{
sin2

[
lµn,m

2b

×
(
x−

√
x2 − 1

)]
+ sin2

[
lµn,m

2b

(
x+

√
x2 − 1

)]}
, (19)

and F (H) given by the same expression with µn,m substi-

tuted by µ′n,m. In the limit l À |κ− σκn,m|−1
, the ef-

fective length of the slot that contributes to the real part
of the impedance turns out to be equal to |κ− σκn,m|−1

,
which means that ReZ (ω) does not depend on l in the limit
lÀ κ−1 (but κ−1 À w ).

IV. REGULAR ARRAY OF SLOTS

Consider an array of N identical slots distributed along
the beam pipe such that the distance between the slots is
equal to d1. The system has a period d = l + d1. The
electromagnetic field scattered by the array is the sum of
the fields of individual slots. In the first approximation of
the perturbation theory, the impedance is equal to NZ,
where Z is given by Eq. (1). However, since the energy
radiated by the array of slots is a quadratic function of
the amplitude of the waves, it will be shown below that,
at resonant frequencies, there is a strong amplification in
ReZ that scales as N2.

To find the radiation from N slots, it is necessary to sum
their fields, taking into account the relative phase advance
between the fields of different slots. As shown in the previ-
ous section, the phase advance between two adjacent slots
is equal to exp (iκd− iσκn,md). For N slots, the amplitude
of (n,m) E mode should be multiplied by the following fac-
tor:

gn,m (σ) =
N−1∑
j=0

exp [idj (κ− σκn,m)]

=
1− exp [idN (κ− σκn,m)]

1− exp [id (κ− σκn,m)]
. (20)

The square of the absolute value of gn,m (σ), multiplies each

sine term in Eq. (19) modifying the function F (E) into the
following expression:

F (E) (x) =
2b2

µ2
n,m

(αmg
l

)2 1

x
√
x2 − 1

{
sin2

[
lµn,m

2b

×
(
x−

√
x2 − 1

)] sin2
[
dNµn,m

2b

(
x−
√
x2 − 1

)]
sin2

[
dµn,m

2b

(
x−
√
x2 − 1

)] +

sin2
[
lµn,m

2b

(
x+
√
x2 − 1

)]
sin2

[
dNµn,m

2b

(
x+
√
x2 − 1

)]
sin2

[
dµn,m

2b

(
x+
√
x2 − 1

)]
 .

For the H modes, the function F (H) (x) contains µ′n,m in-
stead of µn,m.

The maximum value of |gn,m|2 in Eq. (20) is equal to N2

and is attained when the following condition holds:

d (κ− σκn,m) = 2qπ, (21)

where q is an integer. For large N , Eq. (20) represents
narrow peaks with a width at half height ∆ω/ω ≈ 1/(2qN)
at the resonant frequencies. This implies that the Q factor
for these resonances can be estimated as Q ≈ qN .

If d/b = 2πq/µn,m (or d/b = 2πq
/
µ′n,m), Eq. (21) is sat-

isfied by the cutoff frequency ωn,m (or ω′n,m). In this case,
the height of the resonant peaks will be strongly amplified
because of the superposition of the cutoff singularity for a
single peak with a maximum of the |gn,m|2 function.

In the limit of very large N , N → ∞, the width of the
resonances becomes so narrow that it will actually be de-
termined by the finite conductivity of the walls σ. The
transition to this regime occurs when Q becomes compa-
rable to b/δ, where δ is the skin depth at the resonant fre-
quency. Previously, this regime has been studied in detail
for an infinitely long periodic bellow in Ref. [6], where the
resonance conditions (21) have also been found.
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