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Abstract

A method is presented for calculating the high-frequency
longitudinal and transverse coupling impedances in a
periodic array of diaphragms in a circular perfectly
conducting pipe. The method is based on Weinstein’s
theory of diffraction of a plane electromagnetic wave on a
stack of halfplanes. Using Weinstein’s solution, it is shown
_that the problem of finding the beam field in the pipe

equations with this boundary condition leads to simple
_ formulae for Zjn, and Z,,. A good agreement with a
numerical solution of the problem found by other authors
is demonstrated.

I. INTRODUCTION

Studies of the impedance at frequencies much higher
than the cutoff frequency have a long history with many
theoretical and numerical results obtained for different
types of accelerator structures (see a special issue of
Particle Accelerators devoted exclusively to this subject
[1]). One of the major problems addressed by several
authors is the high-frequency impedance of multiple
cavities or a periodic system of diaphragms [2-5]. The
general consensus is that, for large w, the longitudinal
impedance in this system scales asymptotically as w=3/2,
Specifically, for a periodic array of thin diaphragms, in the
limit w — oo, therealpartonx,m, per one cell can be
approximated by the following function:

ReZiong (0)/ Z0 =~ f (g/a)® (kg)™¥/2, (1)

where k = w/c, Zg = 4nfc = 377Q, g is the distance
between the diaphragm opening, @ is the radius of the
diaphragms, and f is a numerical factor. However, various
authors find different factors f, which deviate almost by
the order of magnitude: f =7~1/2 in Ref. [3}; f = 8x~1/2
in Ref. [4]; and according to the Sessler-Weinstein model
[2), f =0.672"1/2,

Apart from differing values for f, Eq. (1) itself gives
a rather poor approximation in the region kg ~ 10 = 20
typical for practical applications in accelerator physics.
The reason that Eq. (1) is relatively inaccurate is that the
actual parameter in asymptotic expansion (1) is (kg)*/? (or
even (kg/x)'/? ) rather than kg. This makes it necessary to
seek better asymptotes than the leading term represented
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by Eq. (1). References [2-3] indeed provide more accurate
expressions that reduce to Eq. (1) in the limit (kg)l/ ’>1.

In this paper an attempt is made to revise the impedance
of the periodic system of diaphragms using a more adequate
physical description of the beam interaction with the
diaphragms. On a qualitative level, the physics involved
has been outlined in Ref. [6]. Two basic elements are: a
small angle diffraction of the beam field at the edges of the
diaphragms, and depletion of the amplitude of the field in
the region close to the edges due to repeated trapping of
the field energy into the space between the diaphragms. We
will show that this qualitative argument can be cast into
a quantitative consideration applying a rigorous solution
to the diffraction of a plane electromagnetic wave on an
infinite stack of conducting halfplanes.

II. BASIC ASSUMPTIONS

Consider a relativistic beam with a factor of 7 much
larger than unity, 7 > 1, propagating along the axis of a
circular pipe with infinitely thin periodic diaphragms. The
azimuthal magnetic field of such a beam is almost equal to
its radial electric field, and both propagate with the speed
= ¢. In that respect, excluding the vicinity of the axis of the
pipe occupied by the beam, the electromagnetic field can
be considered as a free electromagnetic wave propagating in
the pipe. Accepting this point of view, we intend to apply
to the beam field the results derived from the diffraction of
the wave on the edges of the diaphragms.

The analysis of the diffraction is greatly simplified by
the fact that we are only interested in the high-frequency
band. From the Fresnel theory of diffraction, it is known
that the area involved in the diffraction extends from the
edges by the distance ~ \/g/k, and occupies an annulus
from r ~ a~d+/g/k to r ~ a +d\/g/k, where d is a factor
of the order of unity. As soon as /g/k is much smaller than
the radius a, we can neglect the cylindrical geometry of the
problem and consider the diffraction in plane geometry. We
will also assume that /g/k < b — a, where b is the pipe
radius; in this case the pipe wall does not interfere with the
diffraction process, and we can further simplify the problem
eliminating the pipe walls and allowing the field to freely
propagate in the radial direction to infinity (5].

As a result of these approximations we essentially reduce
the problem to the diffraction of a plane electromagnetic
wave on an infinite periodic array of halfplanes. This
solution can be found in Ref. [7].

Presented at the 16th IEEE Particle Accelerator Conference (PAC 95) and
International Conference on High-Energy Accelerators, Dallas, Tezas, May 1-5, 1995



III. WEINSTEIN’S THEORY

This section briefly summarizes Weinstein's results for
the diffraction of a plane wave for an arbitrary incidence
angle o, (po is measured from the vertical axis so that the
grazing incidence corresponds to wp = 7/2). In our case,
the beam field propagates horizontally, which corresponds
to the limit cosyg — 0 in the diffraction solution.

Let the position of mth halfplane be given by z = myg,
y < 0. Consider a plane wave propagating in the halfspace
y > 0 at an angle o with the vertical axis (0 < po < 7/2)
and polarized so that the only component of the magnetic
field is directed along the z-axis,

H, = Aexp [ik (zsin o — y cos o)) . 2)

Here and below we assume the time dependence
exp (—iwt).

The solution to the diffraction problem for the incident
wave (2) [7, Chapter 7] represents the field at y <0 as a
sum of eigenmodes propagating between the plates:

).

where &, = \/kz - (m/g)z, and Imx,, > 0. Equation (3)
is valid for 0 < z < g; the field between the mth and
(m + 1)th plates has an additional factor exp (ikmgsin o)
on the right-hand side. Complex values of x, imply
that the corresponding eigenmode is an evanescent one; it
exponentially decays when y — —co.

The field in the upper halfspace, y > 0, is given by

H,= Aetk(zsinpo—ycos o)

o0
H. =A (Toe""‘” + Z T, sin n—;fe

n=1

Q0
+A Z R,etk(zsingntycosgn)

n=-=00

(4)

: 1/2
where cosn, = [l—(n+qsinsao)2/q2] ", q = g/k/2m;
it is assumed that Im (cosp,) = 0. The first term on the
right-hand side of Eq. (4) is the incident wave, and the sum
represents the diffracted waves generated by the periodic
structure. One of these waves, having n = 0, is a mirror
image of the incident field; it has the amplitude ARo.
The expressions for T, and R, can be found in Ref. {7].
For our purposes, we will only need Ry as a function of ¢
and o,

- _1l=cos 4i In2
RO (q’ (ms(po) = ——ﬂe iq cos(ywo) In
x H 14-(cos o /c08¢n) 1+(c0s wo/00S ¥—n)
1—56085906008!#..} loseoswo;oosw_..i
xl_-fs_seel_l
1+{(gcoswo/Kn) °

IV. BOUNDARY CONDITION

To consider the case of horizontal propagation of the
wave, we need first to find the limit cos pg — 0 in Eq. (5).
Using analysis of Ref. (7], after straightforward though
cumbersome a.lgebra, one can show that in this limit, for
kg>1,

6

(5)

Ro = —1 + 25 (kg) cos wo,

where the complex function S(g) is given by

S(o:)—-[1+(1 ’)\/— 1)F(2z)+a)] (7)
where
P = [ (e (§-i)-1)"

a=—2/

-0

8)

and

1=/ 482

()

The function F(z) is a periodic function of its argument
with the period equal to 2r. It has singularities
iz — 2mn|~Y? at the points z = 2mw, where m is an
integer.

Turning now to the physical interpretation of the
solution, note that in the limit cos@e — O, both
the incident wave given by Eq. (2) and the mirror
reflected wave ARg exp (ik (zsin g + ycospo)) in Eq. (4)
propagate parallel to the horizontal axis. This observation
tells us that their sum has to be identified with the
electromagnetic field of the beam at the edge of the
diaphragms. Using Eq. (6) we find for the magnetic
component of this field:

Hz = Aeszsingoo (e-ikycoswo + Roeikymw) ~
Ae*® (—2isin (ky cos o) + 28 (kg) cos poe*¥ ) ~
24 cos poe™* (S (kg) — iky). (10)

In order to obtain a nonzero result when cos po — 0, we
have to assume that A goes to infinity so that 2Acospp —

E and
H, = Ee™* (S (kg) — iky), (1)

where E is a constant. We see that our solution requsres
the magnetic field to be a linear function of y; in other
words, for ywp = =/2 the diffraction process imposes a
certain constraint on the behavior of the electromagnetic
field near the edge of the diaphragms. This constraint can
be expressed as a boundary condition at ¥ = 0 if one notices
that Maxwell’s equation 8H./0y = ikE, combined with
Eq. (11) allows us to express E in terms of the electric
field: E, = —E exp (ikz). Substituting this relation in Eq.
(12) yields

=3658.  (9)

E; = -7 H|

y=0"

2
-5 2

Equation (12) represents our main result. It relates
the longitudinal component of the electric field to the
transverse component of the magnetic field at the
diaphragms.

Note a close resemblance of Eq. (12) to the boundary
condition at a conducting wall in the case of high
conductivity o, E; = (i — 1) \/w/8no Hz|,_o, (8], This
allows us to assign the diaphragms an effective (complex)
conductivity ges, such that

[2ros _ (i—1)

(13)
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Figure. 1. Real part of the longitudinal impedance.
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Figure. 2. Imaginary part of the longitudinal impedance.

Using Eq. (13), for a given solution of an electromagnetic
problem in a smooth pipe with finite conductivity o (w),
one can find the solution of the corresponding problem in
the pipe with periodic diaphragms by substitution ¢ —
Oeg-

V. IMPEDANCE

Having found the boundary condition (12) we can now
return to the cylindrical geometry of the pipe with the
beam and solve for the beam field in the region 0 <r <a.
In a polar coordinate system, the z-component of the
magnetic field H, should be identified with the azimuthal
component Hy, so that Eq. (12) takes the form,

1
E.= —S—(m Ht’l,—-._—_a . (14)

With this boundary condition, a standard derivation
(see, eg, [9]) of the longitudinal and transverse
impedances, Zi,n, and Z,,, yields:

B
Zions = e S (hg) = thal3’ (15)
Z 1 )

Zp = :
" wha® § (kg) - Lika + 1 (ka)~L

Figures 1 and 2 show ‘the real and imaginary parts of
Ziong for the case when a = g. In addition to general fall off

with the frequency, Z;,n, it demonstrates peaks and jumps
at ka = mm, where m is an integer. This behavior can be
explained as due to a strong coupling through diffraction
of the beam field with the modes between the diaphragms
having a small radial wave number. The mode frequencies
are close to mm/a; they represent standing waves between
two adjacent diaphragms.

In the limit of very high frequency, w — oo, the
asymptotic dependence of Zjong () is given by

2Z Z
ReZiong ”kzzsReS(kg), ImZjong = F;z 7
Note that on the average ReZiong scales asymptotically as
w=%/? in agreement with Eq. (1).
Similar to longitudinal impedance, Z,, has sharp peaks
at ka = mm, however, it decays more rapidly than
Ziong (w). Asymptotically, for w — 00,

47y 2Z,
ReZg,. =~ WRBS (kg) N ImZ,,. ~ m. (18)

V1. DISCUSSION

We compared our result with a numerical solution of a
similar problem in Ref. [5], where a repeated structure of
thin irises has been studied. A close inspection of the plot
of ReZjong in this reference shows a very good agreement
with our Fig. 1, including the positions and the heights
of each peak even for ke as small as 5. This agreement
indicates that using a plane geometry for solution of
the diffraction problem turns out to be a very accurate
appoximation even for relatively small values of ka.

In the limit of very large frequencies, our result agrees
with Eq. (1) with f = 0.26 which is below both
Gluckstern’s result (f = 0.56) and the Sessler-Weinstein
model (f = 0.37).
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