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Abstract

Mutually driven transverse oscillations of an electron
beam and residual gas ions may result in a fast transverse
instability. This effect arises either during a single pass
of a train of electron bunches or it is caused by ioniza-
tion electrons oscillating within a single positron bunch. In
both cases, the beam oscillations grow exponentially with
an exponent proportional to the square root of time. In
this report, instability rise times are calculated analyti-
cally and compared with computer simulations. The effect
considered could be a significant limitation in many future
designs.

I. INTRODUCTION

The effect we describe arises during the passage of a sin-
gle electron bunch train or a single positron bunch; ions (or
ionized electrons) created by the head of the train (bunch),
via ionization of the residual gas, perturb the tail. Under
certain conditions a fast transverse beam-ion instability can
develop. The instability mechanism is the same in linacs
and storage rings where we assume that the ions are not
trapped from turn to turn. It differs from instabilities pre-
viously studied [4], where the ions, usually treated as being
in equilibrium and trapped over many turns, interact with
a circulating electron or antiproton beam. By contrast,
the instability discussed in this report occurs in a trans-
port line, linac, or a storage ring with a clearing gap to
prevent ion trapping. In this paper we outline the basic
ideas. For more details we refer to Refs. [1] and [2].

In Section II, instability rise times are calculated an-
alytically. Section III compares the results of computer
simulations with the analytical prediction. In Section IV
rise times are evaluated for several operating or proposed
storage rings and linear accelerators. Section V is devoted
to a brief discussion of possible remedies. A summary is
given in Section VI.

II. ANALYTICAL TREATMENT

The vertical motion of the beam and the ions or elec-
trons that are generated during the beam passage via ion-
ization may, in linear approximation, be described by two
equations of motion. The first equation reads:(

d2

ds2
+ ω2

β

)
yb(s, z) = KΓ(z) (yi(s, s+z)−yb(s, z)) . (1)
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The coordinate s denotes the longitudinal position along
the beam line or storage ring. Equation (1) represents the
vertical motion of the beam centroid yb(s, z) at a distance z
from the bunch (or bunch train) center. In our convention
positive values of z refer to trailing particles. The motion
is a combination of: a betatron oscillation due to external
focusing, represented by a harmonic oscillator of frequency
ωβ ≈ 1/βy; and a driving force that is proportional to
the distance of beam and ion centroids, and also to the
number of generated ions and thus to an integral over the
beam density, Γ(z) ≡

∫ z
−∞ ρ(z′)dz′, normalized such that

Γ(∞) = 1. Here, and in the following, the term “ions”
is understood as “ions or electrons, respectively.” Finally,
the coefficient K is

K ≡ 2λion(pgas)re
γΣy(Σy + Σx)

≈ 4λion(pgas)re
γ3σy(σx + σy)

, (2)

where γ denotes the relativistic factor γ = E/(mc2) for the
beam, re is the classical electron radius, and Σ2

x,y ≈ 3
2σ

2
x,y

is the sum of the squares of rms ion-cloud size and beam
size σx,y. Assuming a cross section for collisional ionization
of about 2 Mbarns (corresponding to carbon monoxide at
50 GeV) the density λion of ions per meter at the end of
the bunch (or bunch train) is λion ≈ 6Npgas[torr], where
N is the total number of particles in the beam and pgas the
residual gas pressure in torr. The second equation,

d2ỹt(s, t)

dt2
+ ω2

i (t− s)ỹt(s, t) = ω2
i (z)yb(s, t− s) , (3)

describes the oscillation of a transverse slice of ions inside
the beam. It is here written as an equation in time t for
a fixed position s. The variable ỹt(s, t) is the vertical cen-
troid of the transverse slice of ions.. For convenience, here
and in the following, the time t is quoted in units of length
obtained from the actual time by multiplication with the
velocity of light c. At a certain time t, beam particles at
a distance z = t− s from the bunch center reach the loca-
tion s. Their centroid position is therefore yb(s, t−s). The
oscillation frequency ωi(t − s) = ωi(z) is proportional to
the square root of the beam density ρ. In the case of elec-
trons oscillating inside a single positron bunch, ωi is given

by (4Nρ(z)re/(3σy(σx + σy)))
1
2 . For ions and an electron

bunch train we have ωi ≡ ((4Nbrp/(3Lsepσy(σx + σy)A))
1
2

where A designates the atomic mass number of the ions, Nb
the number of particles per bunch, Lsep the bunch spacing,
and rp the classical proton radius.

The solution to Eq. (3) for a slice of ions generated at
time t′ = s + z′ is denoted as ỹt(s, t|s + z′). The centroid



    

of the ions yi(s, t) (or electrons) used in Eq. (1) is obtained
by averaging ỹt(s, s+ z′) over all possible creation times:

yi(s, t) =

∫ z
−∞ dz′ρ(z′)ỹt(s, t|s+ z′)∫ z

−∞ ρ(z′)dz′
. (4)

Several approximations have been made so far. For in-
stance, the force between beam and ions is assumed to be
linear. Any Landau damping caused by the lattice is ig-
nored. It is supposed that inside a bunch train the ions
are not overfocused, but that they are lost between dif-
ferent trains. Ions generated by synchrotron radiation are
ignored. To further simplify the calculations, we will now
approximate the longitudinal bunch density ρ(z) by a ho-
mogeneous rectangular distribution of length 2z0. The os-
cillation frequency ωi is then constant inside the bunch (or
along the bunch train). Equations (1), (3), and (4), can
be combined into a single integral equation for the beam
centroid yb(s, z) alone. The latter can be solved either as a
perturbation series in K/ωβ [1] or by an averaging method
[2]. The asymptotic solution for large distances s is

yb(s, z) ≈ ŷ
1

4
√
π

1

η
1
4

e2
√
η sin(ωiz − ωβs+ θ) , (5)

where ŷ is the initial Fourier component at fre-
quency ωi in the longitudinal beam distribution, and
η(s, z) denotes the dimensionless function η(s, z) ≡(
Kωi(z + z0)2s/(ωβ16z0)

)
. Asymptotically, the oscillation

amplitude grows roughly as exp(
√
s/τasym), where τasym

is the time at which the exponent 2
√
η in Eq. (5) equals

one. Note that τasym is not an e-folding time because the
exponent is proportional to the square root of time. In
the multi-bunch case, the asymptotic rise time τasym for
trailing bunches can be expressed in terms of more basic
parameters as [1]

τasym,e−[s] ≈
[

6p[torr] N
3
2

b n
2
brer

1
2
p L

1
2
sepc

γσ
3
2
y (σx + σy)

3
2A

1
2ωβ

]−1

, (6)

where Nb denotes the number of particles per bunch and
nb is the number of bunches. All quantities, except for the
pressure, are given in SI units. A similar expression can
be found for a single positron bunch. [1] In the asymptotic
limit, ion and beam motion are of similar amplitude and
in phase.

III. COMPUTER SIMULATIONS

To study this instability, we have written a computer
simulation. The simulation treats the beam, the ions, and
the ionized electrons as collections of macroparticles whose
distributions are allowed to evolve self-consistently. Each
bunch in the beam is divided into slices in z. Each slice is
then represented by macroparticles whose number is cho-
sen to reflect a Gaussian distribution between ±3σz. The
initial macroparticle coordinates are random with Gaus-
sian distributions. At four locations in each FODO cell,
calculations are performed using a grid in x and y centered
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Figure. 1. Action of the vertical centroid as a function of
distance for every twentieth bunch of a train of 90 bunches
in the NLC-DR with a pressure of 10−8 torr.

at the bunch train centroid. As each beam slice passes,
macroparticles are created at the grid points representing
the ions and ionized electrons generated by collisional ion-
ization. The beam and ion fields are mapped onto the grid
and then interpolated to the macroparticle positions. Ref.
[1] presents details of the simulations.

Simulations have been performed for the PEP-II HER,
the SLC Positron Arc and the NLC Damping Ring, typi-
cally using about 160 000 macroparticles. The results are
consistent with the analytical calculation, and confirm the
expected scaling of the amplitude growth with time, pres-
sure, ion mass, and longitudinal position z. The absolute
rise times found in the simulations agree with the analyti-
cal result to within a factor 2 or 3, which is smaller than the
spread of values obtained for different random seeds. The
analytical solution, Eq. (5), does not include the filamen-
tation of ions: due, for instance, to the variation of the ion
oscillation frequency with horizontal position. An approxi-
mative analytical solution which takes this ion-decoherence
into account [2] predicts a rise time which is about a factor
2 or 3 larger than that of Eq. (6).

Figure 1 shows a simulation result for the NLC Damp-
ing Ring (DR). The average action < Jy(s, z) > is de-
picted as a function of the distance s for every twentieth
bunch in the train of 90 bunches and a pressure of 10−8

torr. The initial amplitudes are due to the finite number of
macroparticles. From this figure, the rise time for the trail-
ing bunches is about 170 ns; within the uncertainty of the
simulation this is close to the estimate of 47 ns obtained
from Eq. (6). In the NLC-DR an average vacuum pressure
of or below 10−9 torr has to be maintained, in order to suf-
ficiently reduce the growth rate of the beam-ion instability;
emittance dilutions due to other gas or ion effects do not
require a pressure below 10−8 torr.
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IV. RISE TIMES FOR SOME
ACCELERATORS

Table I shows basic parameters and the asymptotic rise
times for several accelerators proposed or under construc-
tion at SLAC and KEK: namely for the NLC Electron
Damping Ring, the NLC main linac, the PEP-II HER, and
for the ATF Damping Ring. Due to its much higher vac-
uum pressure, the smallest rise time is expected for the
ATF Damping Ring. Values for the NLC systems vary be-
tween 40 ns and 1 µs. If the initial perturbation is purely
due to Schottky noise, it takes about 200 rise times un-
til the bunches oscillate at an amplitude comparable to the
beam size. Even with the additional factor 200, the growth
times are still very short.

A similar evaluation indicates that the beam-ion in-
stability is not expected to occur in most of the existing
accelerators [1]. For instance, the estimated rise time for
the SLC e+ Damping Ring, is much larger than the syn-
chrotron period, in which case the instability cannot de-
velop, while the predicted rise time in the HERA electron
ring at DESY is about a factor 1–2 larger than the damping
time of the transverse multi-bunch feedback. From all the
existing machines considered, only the ALS at LBL should
show a significant fast beam-ion instability with a rise time
of about 2 µs for an average pressure of 10−9 torr. Experi-
ence so far is unclear. Transverse instabilities are observed,
but these are not necessarily caused by ions.

accelerator NLC e− DR NLC ML HER ATF

nb 90 90 1658 60
Nb 1.5 · 1010 1.5 · 1010 3 · 1010 1010

βx,y [m] 0.5, 5 8 15 0.5, 5
σx [µm] 62 35 1,060 22
σy [µm] 4 3.5 169 7
z0 19 m 19 m 1000 m 25 m

E [GeV] 2 10 9 1.54
p [torr] 10−9 10−8 10−9 6 · 10−8

τasym 465 ns 46 ns 6 µs 29 ns

Table I

Parameters and rise times for some future accelerators.

V. POSSIBLE CURES

If the oscillation amplitude of the trailing electron
bunches, or positrons, saturates at about 1 σy due to the
nonlinear character of the coupling force—not included in
the analytical treatment—a reduction of the design vertical
emittance by a factor of 2 results in about the desired pro-
jected final emittance after filamentation [8]. However, it is
not yet known if the beam will continue to blow-up (though
with decreasing growth rate) after partial filamentation. A
second possibility is to use an optical lattice in which the
product of the horizontal and vertical beta functions, and
thus ωi, vary substantially. Third, if additional gaps are
introduced in the bunch train, the ions are over-focused
between the shorter trains [9]. As an example, 10 addi-
tional bunch gaps in PEP-II increase the instability rise
time from 5 µs to 0.5 ms, which is inside the bandwidth

of the feedback system. Finally, in linear accelerators the
trailing bunches might be realigned by use of fast kickers
and feed-forward.

VI. SUMMARY AND ACKNOWLEDGMENT

The interaction of an electron bunch train or a single
positron bunch with ions or ionization electrons can cause
a fast transverse instability, which is characterized by an
exponential growth of the vertical amplitude. The expo-
nent is proportional to the position along the bunch train
(or bunch) and to the square root of time, and is inversely
proportional to the 3/4th power of the beam sizes.

The expected rise time of the instability is exceedingly
short. For instance, for the various NLC rings and linacs,
it varies between 40 ns and 800 ns, while, for the PEP-II
HER, it is estimated at 5 µs.

The analytical model used is a linearized approxima-
tion and does not include nonlinearities of the ion-beam
force or the lattice. However, these nonlinearities are in-
cluded in the simulations which, for the parameter regimes
compared, yield rise times that are in good agreement with
the analytical model. In Ref. [2] the linear model is ex-
tended to include Landau damping due to the nonlinearity
of the beam-ion force; this decreases the growth rate by
a factor of two. A large number of questions remain to
be answered; among them are the emittance growth due
to filamentation and detuning as the oscillation saturates,
the effect of synchrotron motion on the growth rate, the
rise time in the presence of different ion species, the pos-
sible damping due to the nonlinearity of the beam-beam
interaction in circular colliders, and the study of coherent
oscillation modes of higher order.

We thank A. Chao and S. Heifets for helpful discus-
sions.
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