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I. INTRODUCTION

A collimator is often used to clean a beam of its exces-
sive tail particles. If the beam intensity is high enough or
if the beam is brought too close to the collimator, however,
the wakefields generated by the beam-collimator interac-
tion can cause additional beam tails to grow, thus defeat-
ing, or even worsening, the beam-tail cleaning process.

The wakefield generated by a sheet beam moving past
a conducting wedge has been obtained in closed form by
Henke using the method of conformal mapping [1]. This re-
sult is applied in the present work to obtain the wake force
and the transverse kick received by a test charge moving
with the beam. For the beam to be approximated as sheet
beams, it is assumed to be flat and the collimator is as-
sumed to have an infinite extent in the flat dimention. We
derive an exact expression for the transverse wake force
delivered to particles in the beam bunch. Implication of
emittance growth as a beam passes closely by a collimator
is discussed.

We consider two idealized wedge geometries: In Section
2, when the wedge has the geometry as a disrupted beam
pipe, and in Section 3, when it is like a semi-infinite screen.
Unfortunately, we do not have solutions for more realistic
collimator geometrie, such as when it is tapered to mini-
mize the wakefield effects. However, our results should still
serve as pessimistic limiting cases.

An interesting opportunity is offered by our exact cal-
culation of the wakefields: it can be used to confront
the diffraction model [2,3,4] used to estimate the high-
frequency impedance of a cavity structure. It is shown
that the field pattern, as well as the impedance, agrees
with those obtained by the diffraction model in appropri-
ate limits.

We would like to thank K. Bane, R. Warnock, and P.
Wilson for their help.

II. DISRUPTED PIPE

Consider a metal wedge and a rod beam as shown in
Fig. 1(a). Both the wedge and the beam are considerd to
be infinitely long in the z-direction. The beam has a line
charge density λ0 and is assumed to move with the speed
of light in the x-direction. Following [1], we define

λ =
π

2π − θ and R =
[(
ct−

√
c2t2 − r2

)/
r
]λ

. (1)

The parameters have the ranges 0 < φ < 2π−θ , 1 > R > 0,
π > θ > 0, and 1 > λ > 1

2 . We have shown the coordinates
in Fig. 1(a).
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In the region r < ct (inside the “light cylinder”), the
electromagnetic field components are found by an extension
of the analysis of [1] to be

Er = −8λλ0 sinπλ sinλφ
{[

(1/R)−R
]
/rQ

}
,

Eφ = 8λλ0 sinπλ
ct
r [2 cosπλ− ( 1

R +R) cosλφ]

Q
√
c2t2 − r2

,

Bz =
r

ct
Eφ , Ex = −Er cosφ+ Eφ sinφ ,

Ey = −Er sinφ− Eφ cosφ , (2)

where Q = ( 1
R −R)2 sin2 πλ+ [( 1

R +R) cosπλ− 2 cosλφ]2.
The fields are independent of the y-separation between the
rod beam and the wedge.

Consider a test charge e which follows behind the rod
beam at a distanceD (D > 0) and has a vertical distance Y
from the edge of the wedge (Y > 0), as shown in Fig. 1(b).
Let the test charge move with the beam at the speed of
light. The Lorentz force seen by the test charge has the
components

Fx = eEx , Fy = eEy − eBz , and Fz = 0 . (3)

We want to calculate the integrated longitudinal and trans-
verse impulses received by the test charge as it passes by
the wedge.

When ct → ∞, the test charge sees Ex → 1/
√
ct. It

follows that the longitudinal impulse received by the test
charge is infinite. This means the beam loses an infinite
amount of energy to generate the wakefield. The infinity
does not go away with a finite wedge angle θ, or with a
finite bunch length in x; it comes from the infinite bunch
width in z.

The total transverse impulse, on the other hand, con-
verges and gives the surprisingly simple result

c∆py(Y,D) =

∫ ∞
(Y 2+D2)/2D

Fyd(ct) = 2πeλ0 . (4)

The transverse impulse is independent of Y or D. It is even
independent of the wedge angle θ.

If the beam has a surface charge density Σ(x), its wake
effects can be obtained from the rod beam result by super-
position. Consider a beam particle at location x relative
to the beam center. It receives a transverse impulse from
all particles in front of it. Thus,

c∆py(x) = 2πe

∫ ∞
x

dx′Σ(x′) . (5)
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The previous results become simpler for the case of an
infinitely thin wedge when θ = 0 (or λ = 1

2 ):

Bz = − 4λ0 cos φ2

r
√

2( ctr − 1)( ctr + cosφ)
,

Ex = − 4λ0 sin φ
2

r
√

2( ctr − 1)
, Ey =

4λ0 cos φ2 ( ctr − 1 + cosφ)

r
√

2( ctr − 1)( ctr + cosφ)
,

Er =
ct

r
Bz , Eφ = − 4λ0

r
√

2( ctr − 1)
sin

φ

2

ct
r − 1

ct
r + cosφ

,

Fx = − 4eλ0 sin φ
2

r
√

2( ctr − 1)
, Fy =

4eλ0 cos φ2

r
√

2( ctr − 1)
. (6)

The sign of the Lorentz force is such that the test charge
always sees a retarding force (Fx < 0). Also, it is de-
flected toward the plate (Fy > 0) by the transverse deflect-
ing force.

III. SEMI-INFINITE SCREEN

The arrangement of the wedge and a rod beam is now
shown in Fig 2. We have θ < π

2 and 1
2 ≤ λ ≤ 2

3 . For a
rod beam, inside the light cylinder, the field components
are found by an extention of [1] to be

Er = −4λ0λ sin
λπ

2

1

r
[2f(λφ) + f(λφ− λπ) + f(λφ+ λπ)] ,

Eφ = −4λ0λ sin
λπ

2

ct

r
√
c2t2 − r2

(7)

×[2g(λφ) + g(λφ− λπ) + g(λφ+ λπ)] ,

Bz =
r

ct
Eφ , Ex = −Er sinφ− Eφ cosφ ,

Ey = Er cosφ− Eφ sinφ ,

where

f(u) =
( 1
R −R) sinu

( 1
R −R)2 sin2 πλ

2 + [( 1
R +R) cos λπ2 − 2 cosu]2

,

g(u) =
( 1
R +R) cosu− 2 cos λπ2

( 1
R −R)2 sin2 λπ

2 + [( 1
R +R) cos λπ2 − 2 cosu]2

. (8)

The transverse impulse as seen by a test charge shown
in Fig. 2(b) is found to be

c∆py(Y,D) =

∫ ∞
(Y 2+D2)/2D

Fyd(ct) = πeλ0 . (9)

Again, this is independent of Y , D, and θ. Notice that
Eq. (9) is exactly half of Eq. (4). It also follows that for a
beam with surface charge density Σ(x), a particle at posi-
tion x receives a transverse kick which is half of Eq. (5).

IV. GENERAL WAKE CONSIDERATIONS

The fact that the integrated transverse wake force is in-
dependent of the transverse and the longitudinal locations
of the test charge has its origin in the Maxwell equations.
By our assumptions, we know that (a) the beam current

density ~j and the charge density ρ are related by ~j = cρx̂,

(b) the only nonvanishing field and force components are
Bz, Ex, Ey, Fx, and Fy, (c) all quantities do not depend
on z, and (d) the integrated field and force components
~E , ~B, ~F ≡

∫
( ~E, ~B, ~F ) d(ct) depend on x and t only through

x − ct. By linearly combining the Maxwell equations into
equations in terms of eBx, Fx, Fy, and Fz, we find

(∂/y)Fx = (∂/x)Fy = (∂/y)Fy = 0 . (10)

This means Fy cannot depend on x or y; i.e., it has to
be constant. Also, Fx does not depend on y, although
it can depend on x. This conclusion is valid independent
of the boundary conditions, as long as the boundary is
independent of the z-coordinate.

It can also be shown from a general wake consideration
[5] that the wake function does not depend on Y . Observ-
ing that the wake integral scales with the ratio of Y and D,
it can be concluded that the wake integral must also not
depend on D. The specific value of the wake integral then
follows easily by setting Y = 0 and φ = π.

V. THE DIFFRACTION MODEL

A diffraction model has been proposed and used to esti-
mate the high frequency impedance of a cavity structure in
the beam pipe [2,3,4]. Consider a cylindrical beam pipe of
radius b and a cavity structure of total gap length g, and
a beam current ∼ eik(x−ct). This model suggests: (a) The
wake field created as the beam passes the entrance edge of
the cavity populates mainly the region in the forward direc-
tion into the open cavity space. By the time the wakefield
reaches the exit edge of the cavity, the radial spread of the
region is ∆y ∼

√
g/k ; (11)

(b) Longitudinal impedance at high frequencies is given by

Z
‖
0 (k) =

Z0

2π3/2b
[1 + sgn(k)i]

√
g/|k| , (12)

where Z0 = 4π
c = 377 Ω.

Our results offer an opportunity to check the diffrac-
tion model with exact Maxwell solutions. (Our result is
not a rigorous proof of the diffraction model because we
do not have a cylindrical geometry.) Consider a surface
charge beam with Σ(x, t) = Σ0e

ik(x−ct), which moves with
the speed of light c. The wakefields can be obtained from
the rod-beam results by superposition. Take the disrupted
beam case with θ = 0, for example. We have

Bz = −4 cos φ2√
2r

Σ0e
ik(r−ct)

∫ ∞
0

du
eiku√

u(ur + 1 + cosφ)
,

Ey =
4 cos φ2√

2r
Σ0e

ik(r−ct)
∫ ∞

0

du
eiku(ur + cosφ)√
u(ur + 1 + cosφ)

. (13)

Significant contributions to the integrals (13) come from
the region u < 1

|k| . This in turn means that the components

Bz and Ey are strong when φ is close to π with

|π − φ| <
√

2

|k|r . (14)

Equation (14) in turn gives the diffraction pattern (11).
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The component Ex, however, is somewhat different. It
does not have the diffraction pattern (11). In fact,

Ex = −4 sin φ
2√

2r
Σ0e

ik(r−ct)
∫ ∞

0

du
eiku√
u

= −4 sin φ
2√

2r
Σ0e

ik(r−ct)
√

π

2|k| [1 + sgn(k)i] . (15)

The magnitude of Ex however is smaller than those of Bz
and Ey by a factor of |k|r À 1.

One can estimate the high-frequency impedance as fol-
lows. Consider a test charge which passes position x = −D
at time t = 0 with a vertical separation Y from the wedge.
Assume the test charge moves in the x-direction at the
speed of light. The energy loss of the test charge as it tra-
verses the cavity can be estimated (assume g À D, g À
Y, |k|g À 1) to be

∆E ≈
∫ g

0

d(ct)eEx ≈ −4

√
πg

|k| [1 + sgn(k)i]eΣ0e
−ikD . (16)

Although (16) is for a geometry with infinite z-dimension,
the impedance of a cylindrical cavity can be estimated by

Z
‖
0 (k) =

∆E/e
2πbcΣ0e−ikD

, (17)

which is identical to (12). One can show that (12) ap-
plies also to arbitrary θ. The diffraction model is therefore
re-established. Further exploring of more details of the
diffraction model should be possible using the exact solu-
tions given in the previous sections.

VI. EMITTANCE GROWTH

We now estimate the emittance growth when a flat beam
is being collimated by a metal collimator. Let the horizon-
tal distribution of the beam be uniform with a total width
Lz. We assume the vertical beam dimension is ¿ Lz, and
it is the vertical dimension which is being collimated. The
vertical separation between the flat beam and the edge of
the collimator is assumed to be ¿ Lz. We ignore the re-
sistive wall effect here [6,7].

Consider the case of a semi-infinite screen wedge. Let the
surface charge density of the beam be written as Σ(x) =
Ne
Lz
ρ(x), where N is the total number of particles in the

beam bunch, and
∫∞
−∞ dxρ(x) = 1. The kick angle received

by a particle in the beam located at longitudinal position
x is, according to Eq. (9),

∆y′(x) =
πNr0
Lzγ

∫ ∞
x

dx′ρ(x′) , (18)

where r0 is the classical radius of the particle, γ is the
Lorentz energy factor.

The maximum kick is received by particles in the trailing
tail x = −∞. Independent of the details of the longitudinal
distribution ρ(x), this kick is given by

Φ ≡ ∆y′(−∞) =
πNr0
Lz .γ

(19)
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Figure. 1. A rod beam passing a disrupted pipe wedge.
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Figure. 2. A rod beam passing a semi-infinite screen
wedge.

The growth in the effective emittance of the beam is also
independent of the details of ρ(x):

∆ε =

∫ ∞
−∞

dxρ(x)β∆y′
2
(x) =

1

3
βΦ2 , (20)

where β is the β-function at the collimator.
As a numerical example, take an electron beam bunch

with N = 5× 1010, Lz = 1 mm, and γ = 105. We assume
that the vertical beam height and the vertical distance of
the beam from the collimator are ¿ 1 mm. If we further
assume the collimator has a semi-infinite screen geometry,
then the wakefield kick delivered to a trailing particle in
the bunch is 4 µrad. If β = 10 m, the effective emittance
growth is found to be 0.6×10−10 m-rad, which corresponds
to a growth of normalized emittance of 0.6 × 10−5 m-rad.
As mentioned in Section 1, this can be detrimental for a
high-quality, low-emittance beam.
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