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Abstract

Lie algebraic methods are described which were used to
optimize the d~ign of the PEP-II lattices. These meth-
ods include calculation of the nonlinear Hamiltonian for
lattice modules, dimensionless normalized representation
of resonance basis coefficients, correlation of coefficients
with dynamic aperture determination, and techniques for
coefficient control and compensation.

1 ~TRODUCTION

Simple lattice tracking for dynamic aperture determina-
tion is -ential but limited by the fact that information
is obtained at only -one work~ngpoint and one set of lat-
tice parameters. Furthermore, inadvertent errors in the
lattice and control fil- can remain undetected. To supple-
ment tracking and to enhance-our understanding we have
used-Liealgebraicmapping methods for the designof PEP-
11 lattices.. Computer codes have been developed, which
guarantee a faithful correspondence between tracking and
mapping [1]. There exists a unique polynomial Lie gen-
erator for each map. The coefficients of the polynomials
determrner=onance and tun~shift strength, and uniquely
specify tle lattice. Since most of these coefficientsdepend
only weakly on operating tunes, very general information
is obtained.

Comparisonof trackingresultswith map coefficientsh=
been used to facilitate PEP-II lattice design process. The
methods are described in the following sections.

2 THE ONE-TURN MAP

To obtain global information for a lattice we first extract a
on~turn map at a suitable observation position as a Tay-
lor expansion about the on-momentum closed orbit. In
general, we include all lattice nonlinearities. However, we
can concentrateon a particular lattice module by inserting
a linear lattice for the rest of the ring. We usually con-
sider 2-dimensionalmaps with a parameter 6 representing
the off-momentum alp/p. Thus, the Taylor map can be
expressed as

E=ti(2,6)+0(N +*), - (1)

where O(N + 1) indicates that the Taylor map is trun-
cated at an order of N, Z = (z, p=, y, PY) is the global or
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initial phase-space coordinates and ~ = (X, P=, Y, PY) is

the phasespace coordinates after one turn.

Once the one-turn Taylor map is obtained, we make a
Floquet transformation such that

where R(z7 is one-turn pure rotational map in the 4-

dimensional transverse canonical ph~e-space, d(;, 6) and
its inverse d-l (Z, 6) are the 4by-5 matrices that generate
the Floquet transformation. The dispersion, q, and the

Courant-Snyder parameters, a, ~, and 7 are all included
in d(;, b) and d-1(2, 6). Making the Floquet transforma-
tion ZF = d-l (;, 6); and then dropping the subscript F

for convenience, one obtains a one-turn map

E = ~(~e:f(z’$):;. (3)

The polynomial ~(?, 6) of the Lie transformation in Eq. 3
can be decomposed in a complete bmis consists of the r~
tational eigen-modes, i+ = z + ip= = ~e*io=, ~k =

*ieV, where J=, JY, 0=, and ey are action-z+ipy=@e
angle variables. One may obtain

f(z, 6) =

~ afifip(2J.)+(2Jg) +6pcos(m.e. + myey + +fifi,),
Afip

(4)
where the terms with m= = my = O are the tune shift

terms. For convenience, all these tune shift terms are

grouped together and represented by h~(J., JY,6). The
remaining terms, all with angular variable dependence,
are also grouped and represented by hR(~z, JY, es, eY, 6).

Thus, the oneturn map given by Eq. 3 can be written a

where we have replaced the rotation R(z7 with its Lie rep-
resentation e:-p. J. –~YJY:, where p= and py are the work-

ing tunes of the lattice.

By inserting the unit transformation e:-h~ ‘e:hT: into

Eq. 5 and using the Baker-Campbell-Hausdorf (BCH) the-
orem, we obtain

~ = e:-HT(J=,J,,6): e:-hL(e=,J=,e,, J,,6):;
! (6)

where the resonance terms, h~, are slightly modified from

hR and H~(J~,Jy,6) = P.J. + PYJY+ h~(J=,JY,6) is
still a pure rotation but with tune advance dependent on
momentum and transverse amplitudes.
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3 DIMENSIONLESS SCALING

It should be noted that HT and h~, and the action coor-
dinates, J= and JY in Eq. 6 have a dimension of the emit-
t anc},while 0., Ov, and 6 are dimensionless. Therefore,
the cowcients in the polynomials, HT and hi, have dif-
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ferent d ensions. For convenience in directly using these
coefficie ts for calculating and comparing the tune shift
and resonance strength of different orde~s, we introduce.
a scale transformation so that HT = EZHT, hi = ~zhR,

J. = eZ~Z, and Jv = C=jy to obtain the dimensionless one-
turn map which, after dropping the symbol “is again given
by Eq. 6 except with modified coefficient values. Note that
~Z is the horizontal emittance which in PEP-II equals to 48
nm-rad and 64 nm-rad for the High-Energy Ring (HER)
and the Low-Energy Ring (LER) respectively.

In our numerical studies, we set Cy = +Cz to obtain
the required vertical injection aperture and sufficient aper-
ture for vertical blow-up from the beam-beam interaction.
Most often we calculate the resonance strength and tune
shift along the ellipse r: + ~rz = N2 with ~ = 2 andCv Y
N = 10, where r= = ~, and ry = G are radius in
the tw~dimensional phwe-space planes.

. ... . ..

4 TUNE SHIFT

Use of the Hamilton’s Equation and the effective dimen-
sionless tune Hamiltonian, ~T, in Eq. 6, one can ob-
tain both horizontal (x) and vertical (y) tunes m ex-
plicit polynomials of the dimensionlessgeometric invari-
ants, Jz and Jy and the chromatic amplitude, 6 given by

v~(J~,Jy,6) = &8~T(~., Jy, 6)/dJ= and VY(JC, Jy, 6) =
~8K~(Jc, Jy , ~)/dJy.

In Table 1, maximum tune shifts along the ellipse
r2 + r; = 10 (10 times the nominal beam size) may bez
compared for two HER bare (error free) lattices. In one
lattice, ~~ = 2.Ocm, ‘in the other, ~~ = 1.5cm. We also
typically make a plot of the tune footprint on a tune space.

The transverse dynamic aperture of the HER @~ = 2cm
lattice is well above 10 at (transverse beam size) with an
amplitude of 10 al (longitudinal beam size) synchrotron
oscillation and is not sensitive to the nonlinear errors. The
dynamic aperture of the ~~ = 1.5cm lattice is very good if
there are no nonlinear errors (it is still a nonlinear lattice
due to the chromaticity sextupole correctors). However, it

is sensitive to the nonlinear errors once the amplitude of
the synchrotron oscillation is over 8U1. Nevertheless, the
dynamic aperture with a full set of errors is above 10at if

the the synchrotron oscillation amplitude is under 8ul.

As shown in Table 1, for the lattice with ~~ = 2cm, the
chromatic tune shifts are pretty good while the geometri-
cal tune shifts are typical except the ~rossing terms (bold
faced) are larger.

On the other hand, for the lattice with ~~ = 1.5cm, the
geometric tune shift property is superior compared to the
~~ = 2cm one. In fact it is too good. Since the varia-
tion of the tune with energy through the 63 term causes

the tune footprint to move across resonance lines, a small

Table 1: HER Tune Shifts at 10u, 2JZ +2(2JV) = 102 and
= 10U. = 10* 0.000(
J:J~6L

i, j,k

o, 0, 0
0, 0, 1
1, 0, 0
0, 1, 0
2, 0, 0
1, 1, 0
0, 2, 0
1, 0, 1
0, 1, 1
1, 0, 2

0, 1, 2
0, 0, 1
0, 0, 2
0, 0, 3*
0, 0, 4

. ..-
2cm

.572-00

.40E06
-.20E03
-.47E-02
.15E-04
-.88E-04
-.80E-05
.42E-03
.62E05
.92E03
-.28E-03
.40E06
-.53E03
-.49E-03
.92E04

.
1.5cm

.57V:00

.23E-06
-.1OEO2
-.18E-02
-.llE-05
-.35E-05
.15E05
-.34E-03
-.30E-04
.1OEO4
-.1OEO3
.23E06
.40E03
-.61E02
.19E02

2cm

.64v~00
-.56E06

-.94E-02
-.13E-05

.35E03
-.80E-05
-.37E-04
.12E-04

.77E03
-.55E03
.83E03

-.56E06
-.58E-03
-.14E02

-.61E-04

1.5cm

.64V;00

.28E06
-.36E-02
-.38E03
-.14E-04
.15E05

-.90E-06
-.60E-04
-.49E-03
-.20E-03

.43E-04

.28E-06
-.40E-02
-.67E-02
.47E03

tune shift with amplitude will result in broad resonance
islands. Indeed, when Octupole were introduced in the
lattice to increwe the tune shift with amplitude terms to
similar values of the 2.Ocm lattice, the dynamic aperture
ww acceptable for 10ul synchrotron oscillation with a com-
plete standard set of errors.

5 RESONANCES -,—

We wish to find a lattice whose dynamic aperture does
not depend strongly on the choice of the workingtunes, so
long w they are not on or near low order resonance lines.
If the observationposition for obtaining the one-turn map
does not break any symmetric property, such w the “-I”
betweentwo chromaticitysextupoles, the resonancecoeffi-
cientsaagiven by the polynomial h&(OZ, Jr, Oy, Jy ) will not
be changed much if one simply chooses a different work-

ing tune. This is not true for the resonance coefficients
in a normal-form Hamiltonian, which hw resonance d-
nominators depending strongly on working tune location.
Therefore, we prefer to study the resonance coefficients of
Eq. 6. Since the tune shift information ~ given in the
lmt Section can be e~ily plotted in a tune diagram for
a chosen pair of working tunes, one could concentrate on

analyzing a few resonances suggested by the diagram and
investigate how harmful each resonance is to the lattice
performance.

Since resonance terms (in h~) of higher orders have
larger derivatives, thereby causing larger step-sizes in
phme space, we prefer to me~ure the strength of a res~
nance term by taking its Poisson bracket (PB) with respect
to ph~e space coordinates Jo, Jy, Oc, and Oy. From these
PBs we compute the ph~e-space step

/
lA~ = [(r= AOZ)2 + (Ar=)2] + ~[(ryAOy)2 + (Ary)2].

The ratio $ is essential to weight the y step-sizes accord-
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Table 2: Normrdizedbnance Coefficients for HER
? = 1.5cm Lattices
m=
r
3
3
3
1
1
1
1
4

g
-1
2
2
2
-4
-4
-4
-4
-2

n= ~
T
3
5
3
1

3
1
1
4

—
y

2
2
2
4.
4

6
4
2—

4P2
o’
0
1
0
0
0
1

0—

Bare
0.0

0.33E06
0.11E06
0.22E05
0.21E04
0.14E06
0.58E07
0.88E05
0.26E06

with Errors
.16E03
.20E3
.11E3
.14E3
.14E3
.75E4
.14E3
.15E3
.32E4

inx to the vertical emittance. We then compute the maxi-
m~m value of lA~ for all possible valu- of OS,fly,J*~and
Jv with the constraint r: + ~r~ = ~2. This maximum
is what we cdl the normalized resonance b=is coefficient.
For any fi, ti, p, there is a positive number ~(fi, fi, P) such

-that
NORM

aafip = B(fi, ti, p)lafifipl.

NORM
afifip = 1 memi that this resonance can at the maxi-
mum cause a phas~space motion of lut in one turn for a
particle on the 10at boundary,

Table 2 compares.th- normalized coefficients for two
HER 1.5 cm lattice, one bare and the other with complete
errors. Here we only print the r=onances specifically ch~
sen by reading the tune diagram with the nominal pair
of working tunes, v= = 0.57 and vg = 0.64. The large
chromatic tune shifts of this lattice (U discussed in the
lazt Section) causes those resonancesin Table 2 to be en-
countered. Resonances with strengths less than 10-3 are
expected to be of no significancebecause even on this res
onance the mtimum total movement in 103 turns would
be la. It h= been our expectation that if a particle is not
lost in 103turns without damping, then it will surviveun-
doubtfully with damping present. For example, the sum
resonance 3vC+ 2VYlisted in Table 2 could cause at most
an approximatedeviation of .2u in 1000turns of a particle
initially at _lOa.

In our regularstudies, we normally print out all normal-
ized resonancecoefficients. We can also plot the resonance
basis coefficients in a histogram. A sample plot is shown
in Figure 1.

6 NON-LINEAR COMPENSATION

To thoroughly probe the effects of a single resonance it is
possible to introduce at the end of t&e lattice a symplec-
tic map which changes the strength of a fingle resonance
while leaving the rest of the map unchanged. The lattice
is tracked with the map appended to it. We have prac-
ticed this compensation technique primarily with tune
shift terms and have found optimal valuesfor these terms.
Studies for varying resonance strengths are in process.
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Figure 1. Histogramfor normalized resonance b=is coef-
ficients. -,—

7 SUMMARY

By tabulating normalized tune shift and resonance coef-
ficients of the Lie generator of on+turn maps, we have
been able to i) identify resonant terms needing improve
ment, ii) locate inadvertent lattice preparation errors, iii)
determine optimal values for tune shift parameters, and
iv) direct lattice development efforts. We have been al-
tering th-e coefficients using numerical methods and/or
introducing lattice modifications. Th-e methods are also
being used to study the impact of lattice parameterson
beam-beam tails.
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