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Abstract

Supersymmetry breaking in the early universe induces scalar soft potentials
with curvature of order the Hubble constant. This has a dramatic effect on the

coherent production of scalar fields along flat directions. For the moduli problem it
generically gives a concrete realization of the problem by determining the field value
subsequent to inflation. However it might suggest a solution if the minimum of
the induced potential coincides with the true minimum. The induced Hubble scale

mass also has important implications for the Affleck-Dine mechanism of baryogene-
sis. This mechanism requires large squark or slepton expectation values to develop
along flat directions in the early universe. This is generally not the case if the
induced mass squared is positive, but does occur if it is negative. The resulting

baryon to entropy ratio depends mainly on the dimension of the nonrenormalizable
operator in the superpotential which stabilizes the flat direction, and the reheat
temperature after inflation. Unlike the original scenario, it is possible to obtain an

acceptable baryon asymmetry without subsequent entropy releases.
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1. Introduction

Low energy supersymmetry, if it exists in nature, is likely to have dramatic

consequences for the early universe. One of the most striking stems from the

existence of flat directions in the scalar potential. Such directions are a generic

feature of supersymmetric theories, unfamiliar in conventional field theories. In

string theory, for example, there are often moduli which label degenerate classical

vacuum states of the string. These states remain degenerate to all orders in per-

turbation theory. In the minimal supersymmetric standard model (MSSM) there

exist, at the level of renormalizable operators and ignoring supersymmetry break-

ing, a large number of flat directions along which some combination of squark,

slepton, and Higgs fields have expectation values. In the early universe if the fields

parameterizing a flat direction start displaced from the true minimum, coherent

oscillations result when the Hubble constant becomes smaller than the effective

mass. The energy stored in these oscillations amounts to a condensate of nonrela-

tivistic particles. The production of such condensates should be a generic feature

of supersymmetric theories. In this paper we discuss the effect of supersymmetry

breaking in the early universe on coherent field production, with emphasis on the

cosmological moduli problem [1-3] and Affleck-Dine scenario for baryogenesis [4].

Most discussions of the coherent production of scalar fields assume the po-

tential along flat directions arises from the same SUSY breaking responsible for

the mass splitting among the standard model fields in the present universe. The

curvature of the potential would then be set by the gravitino mass, V ′′ ∼ m2
3/2.

If this where the case the field would be highly overdamped for H � m3/2, and

only begin to oscillate when H ∼ m3/2. Here we observe that the finite energy

density in the early universe induces a soft potential with curvature of order the

Hubble constant, V ′′ ∼ H2. The flat directions are then always parametrically

near critically damped, and efficiently evolve to an instantaneous minimum of the

potential. For both the moduli problem and AD mechanism, this leads to a precise

way of understanding the “initial conditions” for the amplitude of the fields when

they begin to oscillate freely at H ∼ m3/2. In the case of the moduli problem,

this suggests a possible solution if the minimum of the induced potential coincides

with the true minimum. For the AD mechanism, it gives a much more complete

understanding of the conditions for baryogenesis, namely a negative mass squared
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from the finite energy breaking. This permits an estimate of the asymmetry which

systematically includes the effects of nonrenormalizable terms in the superpoten-

tial. The resulting asymmetry is largely independent of any assumptions about

initial conditions.

2. Supersymmetry Breaking

The finite energy density in the early universe breaks supersymmetry. In

a thermal phase this is manifest through the disparate occupation numbers for

bosons and fermions. In an inflationary phase in which a positive vacuum en-

ergy dominates, the inflaton F or D component is necessarily nonzero, implying

supersymmetry breaking. The same is true in the post-inflationary phase before

reheating, when the inflaton oscillations dominate, and the time averaged vacuum

energy is positive. In principle, SUSY breaking can be transmitted to flat direc-

tions by both renormalizable and nonrenormalizable interactions. However, for

large field values all fields which couple through renormalizable interactions gain

a mass larger than any relevant scale of excitation. These states then effectively

decouple and do not lift the flat directions.

Nonrenormalizable interactions can have important effects though. To illus-

trate this consider a term in the Kahler potential of the form

δK =
1

M2
p
χ†χφ†φ (1)

where χ is a field which dominates the energy density of the universe, φ is a

canonically normalized flat direction, and Mp = mp/
√

8π is the reduced Planck

mass. No symmetry prevents such a term, which can be present directly at the

Planck scale, or be generated by running to a lower scale. If χ dominates the energy

density, then ρ ' 〈
∫
d2θχ†χ〉. In a thermal phase the expectation value arises

from kinetic terms over the χ component thermal distributions. In an inflaton

dominated era it is given by the inflaton F components and kinetic energy. The

interaction (1) gives an effective mass for φ of δL = (ρ/M2
p )φ†φ (note that a positive

contribution in the Kahler potential gives a negative contribution to m2). In a flat

expanding background, ρ = 3H2M2
p , so that m2 ∼ H2. This is a generic result,

independent of what specifically dominates the energy density. For H >∼ m3/2, this

source for the soft mass is more important than any hidden sector breaking.
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In order to be concrete about the evolution along flat directions, we will as-

sume an inflationary anzatz. In most models the correct magnitude of density and

temperature fluctuations in the present universe is obtained for H ∼ 1013−14 GeV

during inflation. In order to avoid the gravitino problem the reheat temperature

after inflation can not (conservatively) be larger than about 109 GeV [5]. This

implies that by the era of reheating H � m3/2. With this restriction the induced

potential discussed above is only important (ignoring an pre-inflationary evolution)

during inflation and in the pre-reheating era dominated by inflaton oscillations. We

therefore only need to consider the couplings of the inflaton to the flat directions.

Since the important couplings between the inflaton and flat directions arise

from Planck scale operators, supergravity interactions should be included. The

supergravity scalar potential is

V = eK/M
2
p

(
DiWKij̄Dj̄W

∗ − 1

3M2
p

|W |2
)

+
1

8
f−1
ab D

aDb (2)

where DiW ≡ Wi + KiW/M2
p , Wi ≡ ∂W/∂ϕi, Kij̄ ≡ (Kij̄)

−1, fab is the gauge

kinetic function. W (ϕ) and K(ϕ†, ϕ) and the superpotential and Kahler poten-

tial, Da ≡ KϕT aϕ, where ϕ includes in general the flat directions, inflaton(s), and

hidden sector. If the inflaton potential arises from F terms, the term in parenthe-

sis has positive expectation value and a nontrivial potential along flat directions

arises. Even if D terms dominate the inflaton potential, with nontrivial Kahler po-

tential couplings (such as (1)) a potential results. The general form for the induced

potential from (2) along an exact flat direction is of the form

V (φ) = H2M2
p f(φ/Mp) (3)

where f is some function. Notice that the curvature is set by the Hubble constant,

V ′′ ∼ H2, and the scale for variations in the potential is Mp. The general lesson

is that in the early universe, when H � m3/2, the characteristic scale for soft

parameters is of order the Hubble constant [6].

In the rest of this letter we describe some of the consequences of this observa-

tion for the moduli problem and AD mechanism of baryogenesis. In a forthcoming

paper, we will present a much more detailed discussion of these issues, with par-

ticular attention to the computation of the baryon asymmetry [7].
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3. Moduli

The coherent production of string moduli leads to the string version [2,3] of

the Polonyi problem [1]. The late decay of such a condensate can lead to a number

of cosmological problems, including modification of the light element abundances.

During inflation the moduli evolve in the potential (3) with H ∼ constant. Since

the fields are parametrically close to critically damped, within a few e-foldings

they are driven to a local minimum of the potential (up to quantum deSitter

fluctuations) [8,9]. This is in contrast to the usual assumption that “scalars are not

diluted during inflation.” However, the form of the potential does not necessarily

coincide with that after inflation, or from hidden sector SUSY breaking. In general

the minima are separated by O(Mp). Once H ∼ m3/2 the moduli then start to

oscillate freely about a true minimum with amplitude of O(Mp) [7]. This just gives

a concrete realization of the initial conditions for the moduli problem by specifying

the field for H >∼ m3/2.

The present discussion suggests a possible solution of the moduli problem [6].

If the minima coincide at early and late times the moduli are driven to the true

minimum during inflation. One possibility under which the minima can coincide

occurs if there are no Kahler potential couplings between the moduli and either the

inflaton or hidden sectors. If there is no SUSY preserving nonperturbative super-

potential generated on moduli space, then the potential arises from supergravity

interactions coupling the moduli to F components in the inflaton or hidden sectors.

Every minimum of the moduli Kahler potential then coincides with a minimum of

the potential at both early and late times [10].

A less restrictive circumstance under which the minima might coincide is if

there is a point of enhanced symmetry on moduli space [11]. The potential is

necessarily an extremum about such points since the moduli transform under some

symmetry. Such enhanced symmetry points are familiar in string theory. In many

string compactifications, there are points in the moduli space where all of the

moduli, with the notable exception of the dilaton, transform non-trivially under

some enhanced symmetry.

An example of this phenomenon is provided by the Z orbifold [12]. This orb-

ifold is usually described by taking a product of three two dimensional tori. In this

construction, the resulting theory has a variety of symmetries including an SU(3)

4



gauge symmetry and two Z3 R symmetries. All the moduli are charged under some

of these symmetries except those which describe the three two-dimensional tori.

At special points in the moduli space there are further enhanced symmetries under

which these remaining moduli, with the exception of the dilaton, are charged.

It might be that the true ground state of string theory is near such a point of

enhanced symmetry. Alternately, some or all of these symmetries might be broken

by small O(m3/2) vev’s of other fields. The main problem with this idea is the

dilaton. It is not known if such an enhanced symmetry exists for this field, and

even if it does, it is likely to lie at a point where the gauge coupling is extremely

large. So if symmetries are the solution of the moduli problem, the dilaton must be

on a different footing than the other moduli. For example, the dilaton mass might

arise from dynamics which does not break supersymmetry. The serious difficulties

which such an idea must face have been discussed in ref. [3]. The possibility

also exists to solve the moduli problem with a late inflation [10]. However unless

H � m3/2 the minimum may be shifted as for standard inflation.

4. Baryogenesis

In the MSSM, at the level of renormalizable operators, there are numerous flat

directions in the space of scalar fields. Most of these involve squarks or sleptons

and carry B and/or L. A simple example is the direction [13]

Hu =

(
φ

0

)
L =

(
0

φ

)
(4)

where φ parameterizes the flat direction. In the original discussion of ref. [4] it

was assumed that directions such as this were exactly flat in the supersymmetric

limit [14] and that φ was initially O(MGUT ) or O(Mp). For H <∼ m3/2 the field

would begin to oscillate about the true minimum at φ = 0. In addition to the B

and L conserving terms, the soft potential was assumed to contain B and/or L

violating dimension four terms suppressed by m2
3/2/M

2
p . As a result, the coherently

oscillating field develops a large baryon number. The subsequent decay of the

condensate then gives a substantial (even enormous) baryon asymmetry [4,13,15].

With the inclusion of nonrenormalizable terms in the superpotential, and the

induced soft potential, the scenario for AD baryogenesis is very different. Non-

renormalizable terms in the superpotential, if present, will lift flat directions even
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in the supersymmetric limit. These can take the form

δW =
λ

nMn−3
φn (5)

where M is some large mass scale such as the GUT or Planck scale. For the LHu

example given above the lowest order term of this form, assuming R parity, is
λ
M (LHu)2. The power law growth in the potential from these terms limits the

fields to be parametrically less than Mp (even for M ∼Mp). In addition, A terms,

proportional to φn, can result from cross terms in (2) and higher order terms in

the Kahler potential. In light of our discussion of early universe SUSY breaking,

the scalar potential for H � m3/2 then has the form [6]

V (φ) ' cH2|φ|2 +
aλHφn

nMn−3
+ |λ|2 |φ|

2n−2

M2n−6
. (6)

where c and a are constants of O(1). The A term has the important effect of

violating B or L and has a definite CP violating phase relative to φ.

With minimal Kahler potential, the coefficient c arising from (2) is positive

(c = 3 during inflation for F type inflaton breaking). The flat direction is then

driven exponentially quickly to the origin during inflation. Quantum deSitter fluc-

tuations give 〈δφ2〉 ∼ H2, but with a correlation length of O(H−1) [17]. Any

resulting baryon number then averages to zero over the present universe [18]. In

addition the relative magnitude of the B violating term in (6) is small for H �M .

A non-negligible baryon number can result if the B violating term in (6) has

the same magnitude as the B conserving terms. This will occur if c < 0. This

is perfectly possible for suitable choices of the Kahler potential; no fine-tuning is

required. In this case the minimum of the potential, ignoring for the moment the

A term, is given by

|φ0| =
(√
−cHMn−3

(n− 1)λ

) 1
n−2

. (7)

Inclusion of the contribution of the A term does not substantially change the

magnitude of the minimum, but does give n discrete minima for the phase of φ.

During inflation if |c| is not too small, the system quickly settles into one of the

minima. The observable universe is then left with a single value of the intial phase

of φ. After inflation, H changes with time as in a matter dominated universe
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and φ0 decreases. A straightforward analysis of the equations of motion in this

era indicates that for n ≥ 4, the field oscillates about a point slightly larger than

φ0(t) where V ′′(φ) ∼ H2. Thus when H ∼ m3/2, 〈φ〉 ∼ φ0. At this time the soft

potential from hidden sector SUSY breaking becomes important. The A term from

this source is comparable in magnitude to the other terms in the potential (as may

be seen by simply plugging φ0 into eq. (6)) and in general has a different phase than

any arising from coupling to the inflaton. The B or L violation is therefore maximal

during the epoch at which the field begins to oscillate freely, thereby imparting

a substantial asymmetry to the condensate. The resulting baryon number per

condensate particle is near maximal, nb/nφ ∼ O(10−1) (if the relative phases are

O(1)). Notice that this is independent of λ/M . Once H � m3/2 the field value

decreases and the relative importance of the A term is reduced. The baryon number

imparted to the condensate is therefore conserved in this epoch. This scenario has

been checked by numerical integration of the equations of motion [7].

The baryon to entropy ratio depends on the total density in the condensate,

and the inflaton reheat temperature , TR. The flat direction φ begins to oscillate

freely when the coherent oscillations of the inflaton still dominate the total energy

density, ρI . Since ρφ ∼ m2
3/2φ

2
0, the fractional energy in the condensate is

ρφ
ρI
≈
(
m3/2M

n−3

λMn−2
p

)2/(n−2)

. (8)

Notice that ρφ is larger for smaller (λ/Mn−3). After the inflaton decays the baryon

to entropy ratio is then

nb
s
≈ nb
nφ

TR
mφ

ρφ
ρI
. (9)

This estimate is insensitive to the details of the decay of the AD flat direction, as

long as it has nonzero B − L. The baryon to entropy ratio depends mainly on TR

and the order at which the flat direction is lifted. For TR just below the gravitino

bound and M ∼ Mp, nb/s is too large for n ≥ 6. However for the LHu direction

with n = 4, after sphaleron processing of the resulting lepton number, nb/s ∼
10−10(TR/109GeV)(M/λMp). This is a quite reasonable range. At low energies

the operator λ
M (LHu)2 which lifts this flat direction gives rise to neutrino masses.

In this scenario nb/s can therefore be related to the lightest neutrino mass since the
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field moves out furthest along the eigenvector of LiLj corresponding to the smallest

eigenvalue of the neutrino mass matrix, nb/s ∼ 10−10(TR/109GeV)(10−5eV/mν).

The total baryon density in the condensate grows rapidly with n; only the LHu

direction gives a reasonable result without additional entropy releases after inflaton

decay.

5. Conclusions

In summary the large supersymmetry breaking in the early universe gives a

precise realization of the “initial conditions” (whenH ∼ m3/2) along flat directions.

It seems quite difficult to solve the moduli problem unless there are symmetries

which ensure that the high energy and low energy potentials possess the same

minimum. We have seen that (much to the suprise of some of the authors) the

AD mechanism is quite robust. Provided that the curvature of the induced φ

potential at the origin is negative for H � m3/2, a desirable value for nb/s results

for the LHu direction when account is taken of higher dimension operators. More

detail about the evolution of the fields, other standard model flat directions, the

possible sources of supersymmetry breaking, and the decay of the condensate will

be presented in ref. [7].
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