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1 Introduction

The quantum gravity (QG) is a mysterious world in modern physics. We do not

know yethowto quantize thetheory ofgravity correctly. Three decades havepassed

since Feynman [l],in 1963, tried to quantize gravity in an analogous way to QED. In

the last ten years, however, the understanding of QG has been greatly improved both

in conceptually and technically, especially for lower-dimensional Euclidean models.

One of important achievement is the result of the 2 dimensional Euclidean quan-

tum gravity, where some exact or non-perturbative features are obtained by using

the conformal field theory. We already know,for the ordinary 2d QG, the form of

the partition function Z[A] for A ~ +W [2, 3, 4]. It is also known that quantizing

the 2d Euclidean manifold leads to the fractal structure of a surface in the confor-

mal limit. Having in mind this recently accumulated precious knowledge, we aim

at clarifying some basic problems of 2d QG field theory, such as renormalization,

regularization (infra-red and ultra-violet) and the treatment of the global topology.. .
For the analysis we use the standard method of the semiclassical quantization[5].

In 2 dimensions, -the Einstein action gives a purely topological quantity and

does not give the local dynamics. Therefore the lowest (derivative) order term that

describes the local interaction and can play the role of ‘kinetic’ term is the R2-term.

This term controls the value of the scalar curvature R. It can be expected that

adding this term (with a proper sign) makes the 2d manifold smooth.

The R2-gravity has been studied recently by several people. It was first care-

fully treated by T. Yoneya[6] for the Lorezian (not Euclidean) metric. He took the

Hamilton-Jacobi formalism and solved the Wheeler-DeWitt equation. In lattice

simulations, R2-gravity was studied by [7] in the early stage of the lattice gravity.

They regarded R2-term as an irrelevant term and expected it does not influence the

final critical behaviors. Ref. [8] recently examined the higher-derivative model in

the samernethod with high-statistics. They have clearly found a cross-over phe-

nomenon in the measurement of < f d2Z~R2 > . Ref. [5] has given a theoretical

explanation for this at- the lowest-order of the semiclassical quantization. (Present

paper gives the next-order analysis). The importance of R2-term as the ultravio-

let regularization was implied in [2]. The renormalizability was shown in [9] using

the background-field method. The R2-gravity was treated as a conformal theory by

Kawai and Nakayama(KN) [10] and the partition function is obtained for the region

~ ~ m. In [5] the comparison between the semiclassical result and KN’s is made.

Various approaches are taken ,at present, to clarify the dynamics of 2d QG.

Using analytical approaches, we have the method of 2 + c dim gravity [11, 12, 13]

th6 semiclmsical method[14, 15, 5] and the matrix model[16, 17, 18]. They have

~mall perturbation parameters E (the deviation of dimension number from 2), h

(Planck constant) and l/N (the inverse of the matrix size) respectively. As for the--
numerical approach, we have the lattice simulation[18, 19, 20]. It has no perturbation

—.
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parameter and is a completely non-perturbative approach. Each approach tries to

clarify the dynamical meaning of the conformal limit provided by the conformal field

theory approach, which is ,by itself, a nonperturbative analytical approach but does

not clarify the dynamics very much.

The analysis of renormalization properties is very important to understand the

dynamics. It was formally done using the background-field method in [21, 9]. But

the connection with the conformal result is not very obvious. The renormalization

analysis is obscure in 2 + c dim gravity [22], and is partially successful in the ma-

trix model[23]. It is still at the primitive stage in the lattice simulation[24]. The

corresponding procedure in the conformal approach is essentially the so-called grav-

itational dressing[2] or e’~-term in [3, 4]. They introduce an additional parameter

,without the dynamical explanation, in order to find a non-trivial conformal solu-

tion. The present paper clarifies the renormalization properties in the semiclassical

approach, where we take the formalism of [5].

2 Semiclassical Quantization

In-this section we explain the semiclassical quantization of the R2-gravity[5].

2.1 General Formalism

Let us take the Euclidean action,

Stot= Sg,a + Sm , sgra[gab;G,~,P] = Sd2Xti(&R – bR2 – P) ,

sm[g.b, @;cm] = –Sd2x~(~x~g1~a@i gab . ~b@i) , ( a,~= 1,2 ) , (1)

under the fixed area condition A = S d2z~ . Here G is the gravitational coupling

constant, p is the cosmological constant, ~ is the coupling strength for R2-term and

@ is the c;- components scalar matter fields.

By taking the conformal-flat gauge, gab = ew Jab , the action ( 1) gives us, after

integrating out the matter fields and Faddeev-Popov ghost, the following partition

function[25]:

2[A] z S w{exp~S~.t} 6(S~xfi– A) = exp~(w – PA) x Z[A] ,

Z[A] s SD~ e+isO[91 6(SZX e9 – A) , (2)

SO[~] = s~z (~q~2W – ~ e-w(~2p)2 + $~.(~~aw) ) , $ = *(26 – cm) ,(3)

wherg we have used the following relations for the Einstein term and the cosmological

term: S d2x~R = 8m(l – h), h = number of handles, s~x~ = A 1. V~C is the

gauge volume due to the general coordinate invariance. ( is a free parameter. The

—

lThe sign for the action fi diff;rent from the usual convention u seen in (2).
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total derivative term (we call it topological term) generally appears when integrating

out the anomaly equation 6San~[p] /6~ = $~2p . This term controls the global

condition and turns out to be very important 2. We consider the manifold with the

fixed topology of a sphere ,h = O, and with a finite area A. Furthermore we consider

the case ~ >0 (cm < 26). h is the Planck constant. 3

The Laplace transform of Z[A] ,(2), is written as

Conversely, Z[A]( the micro-canonical partiton function) can be obtained from 2[A]

(the grand-canonical partition function) by the inverse Laplace transformation,

The -int@gral should be carried out along an appropriate contour parallel to the

imaginary axis in the complex ~-plane.

Here we need the renormalization procedure, but we ignore it, for simplicity, in

this subsection. We will consider the procedure in detail in the improved formal-

ism of sec.4.2. The integral 2[A] can be calculated loop-wise by the semiclassical —

expansion around a solution of the classical field equation.

w(x) = 9.(X; ~)+ ti +(x) ,

COND.1 &sA[y] 9C= o . (6)

Then we-have

where the quantum effect up to l-loop is explicitly written in the last expression.

The stationary point ACdefined by

2The uniqueness of this term, among all possible total derivatives, is shown in [5].
31n this subsection only,we explicitly write h (Planck constant) in order to show the perturbation

structure clearly.
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will give the dominant contribution to the contour integral (5).

In the following, we will evaluate re~~[A, ~.] up to the l-loop order (order of h’ ).

2.2 Classical Configuration of R2-Gravity

In this subsection we discuss the lowest order (ho). The classical equation ,w =

O , is explicitly written as

(lo)

We take the constant curvature solution(Liouville solution). 4

where..o.is a dimensionless constant which should satisfy

as the consequence of classical field equation (10).

In this paper we consider only the case of the positive curvature: a >0. The

spherically symmetric 5 solution of (11) is known to be (cf. [28, 29, 15]),

It gives ~-d2xfiR = –Jd2x 32pC = 8X ,
Vc

scribed by the solution- (13) has the topology

r2 = (X)2 + (y)2 . (13)

which implies that the manifold de-

of a sphere. The area, f d2x@ ~e =

s@x ev. = &A , can be interpreted as the effective area covered by the classical

solution. Theaequations (12 -13) constitute a solution of (10).

S~ [PC] is then given as

S~[~C] = (1 + ()$ ln~ – 16Ta~’ + C(A) ,

C(A)=w+~ { in(l + L2/A) - (L2/A)/(1 + (L2/A)) } , (14)

—.

4~e importance of the constant-curvature configuration in 2d QG h= been pointed out by

[26, 27].
5in the (z, y)-plane

--
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where C(A) does not depend on ~ and a , while L is the infrared cut-off (r2 s L2)

introduced for the divergent volume intgral of the total derivative term. See Fig. 1.

The eq. (8) at the cl~sical level is written as,

(15)

where we have used a relation : 1 = ~~ = *( 2~@’ – $)5 , which is derived
from (12). This equation fixes the stationary point which dominates in the contour

integral (5):

COND.2 2~’a2 – (16m~’+ ;)a+ (1 +()$ = O , (16)

when the condition D z (16 T@’)2 + $ – (~ = (16n@’– $)2+* ~ O is satisfied.

The relation (12) then determines A$ (~) s A(P, a~(~)). Note that the determinant

of the above quadratic equation is positive definite for all real ~ if we take ~ to be

in theregion : “—1 < ~ s +1 . In the following,we consider this case and use

w= 16r~’7 instead of ~ or ~’. We depict the graphs of the above solutions in

Fig.2a and Fig.2b. For the choice ~ = 1, we have

(18)

In summary two unknown parameters a and ACare fixed by two conditions

= COND. 1 and 2; they are expressed by three physical parameters ~ ,Y ,A and

one free parameter (. In [5] the behaviors of the above solutions are analysed

closely. a; -solution explain the simulation data very well. In particular three phases

appear foi w ~ 16r~’T << – 1, IWI << 1, and w >> 1. The behaviour of Q~-

solution contradicts the results of numerical simulation [5]. Therefore we consider

quantization only around a;-solution in the following. ( ~$-solution is discussed in

[5] in relation to the result of [10]). In [5], the free parameter f was chosen to be

~ = 1 in order to adjust the classical prediction of Z[A] with the known conformal

result for cm ~ – M. In the present paper the meaning of ( = 1 will be clarified in

the standpoint of the renormalization group.

3 Quantization on the Sphere
- Regularization

Let us evaluate the (l-loop) quantum correction.
--

2[A]1-l””P = J D@exp Sz

6

and Ultra-Violet

It is given,from (7), as
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where a = a; (~’) , A = ~; (~’) (eqs. (12,17)). The last relation (20) comes from

(12). In order to evaluate (19) we change the coordinate from plane coordinates

(x, y) to polar coordinates (8, ~).(See Fig.3).

X=as , y=na ,
2

(~=tan~ , r2=x2+y2=A;ot2~ ,)

ds2 = e9”((dx)2 + (dY)2) = :(1+2)2 (dx2 + dy2) = ~(d62 + sin20d#2) . (21)
A

By use of the relations

where ~2 is the square of the angular momentum operator. The topological term is

I dropped because we will soon see the term does really vanish. Now let us define the

path-integral. As the general quantum variation @ ,we take the series expanded by

the complete and orthonormal set { Y,m } on the sphere.

where Y1,~(e, +) are spherical harmonics. We can confirm the topological term in

(19), S d2z{ f~a(+~a+)},does vanish for the above general variation. This fact

m-ust be compared with the fact that the topological term at the classical level,

s ~~{$aa(wc~a~c)},which appeared in the evaluation (14), gives a divergent value.

We notice the Liouville solution ~c = /n{ ~ szn4~} cannot be expressed as (24) with

convergent coefficients. The path-integral (19) is defined by

(25)

—
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where the relation: 8@ + E + ~~ = O is used. In the summation of (25), we

may omit the modes 1 = O and 1 = 1. The 1 = O mode is a constant term in

(24) which can be absorbed into the freedom of the global Weyl transformation of

the background metric (gel).~ = &abe~c (the eq. ( 10) is invariant under the constant

translation: ~ ~ ~ + ~,. , @ ~ ~e~’o , A + Ae-@’o ). The 1 = 1 mode does

identically vanish in the sum of (25) due to the relation: &l = 8@ + = + ;O = O .

If the classical solution is stable against the quantum fluctuation, the energy

eigenvalues &l should satisfy c1 > 0 for all 1 ~ 2. In this case our semiclassical

approximation is valid. It will soon be verified for an appropriate range of w. Thus
~7e have

2[~]1-~O”p = f &z~~es2 = ~l>,(fi)2~+l

= const x exp [–~ ~~2(21 + 1) Zn Cl] . (26)

Now we introduce the ultra-violet cui-ofi length: a ,or equivalently the cut-ofl number

N for the sum in the exponent of the above equation. Then the summation in the

exponent of (26) may be regularized as
., ...-.

Z[i]~-~oOp= e+Q(N) , Q(N)~ –~ZL2(2~ + 1) in El ,

ELO(2Z+ 1)= N2+2N+ 1=* , (27)

where ~~o (21 + 1) is the degree of freedom of the regularized system. a2 is re-

garded as the unit area of a triagle when the 2d manifold is approximated by the

triangulated surface.

4 Renormalization

The quantity Q(N) of (27) is divergent as N ~ +00 (a ~ +0) (ultra-violet

divergence). Following the famous calculation by ‘t Hooft [30], where the l-loop

quantum effect around the instanton is skillfully and beautifully

dim) QCD, we perform two procedures to define a finite quantity

Normalization of i[~]~-~oop , ii) Renormalization of the theory.

4.1 Normalization

We normalize 2[A]~-~OOpas

evaluated in (4

meaningfully: i)

(28)

—

Here we normalize the-partition function in such a way that the quantum effect

vanishes at the asymptotic region ~’ = +m . (This procedure corresponds to,in

8



ordinary field theory, the removal of vacuum bubble diagrams: ~[~] = Z[J]/ZIO],

where J is the external source in Schwinger’s formalism). The normalization factor

is obtained by considering the extreme case: ~’ ~ +m in (20).

E(+m) = –: , Q(+m) = -+ , @(+m) = += ,

el(+~) = *{(1 +~)i(i+ 1)+2(1 –C)}(1+2)(1– 1) >0 for 1 Z 2 ,

Z[A]\-z””’ = exp O(N) , Q(N) = –~~~z(21 + 1) ln* . (29)

The normalization factor 1< = exp[– $ ~~z(21 + 1) /n el(+m) ] depends only on

~ and ~ and does not affect the dynamics. 1< can be essentially regarded as an

(infinite) constant.

4.2 Renormalization

The l-loop effective action Q(N), (29),is still divergent at N ~ +m (or a + +0).

We must therefore renormalizes the theory.

We present ,in this paragraph(between eq. (30) and eq. (33)), the formalism for

the renormalization. Collecting the contents of sect .2.1 up to eq. (7), we already have., .,---
the following formula before renormalization.

COND.1 $sA[y; p] = o ,
w.

where ~-dependence is explicitly written for the immediate use. Generally the quan-

~ turn effect 2100Pis divergent. We absorb those divergences into the ambiguity of the

bare cosmological constant Pb = p + Ap and the bare higher-derivative coupling

~b = @ ~ A~ . (We will soon see renormalization for G , ~ , ( and Pc is not

necessary. )

KI is the normalization factor which is, by itself, a divergent constant and is defined

below. The ~-integral is approximated by the saddle point ~~ defined below.

—
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Ap and A~ can be fixed perturbatively (with respect to h) in such a way that the

quantity (32) becomes finite.

We now obtain the explicit forms of AN and A~.

i)w>O

We consider first the case w >0. Using the Euler-Maclaurin formula,

we can evaluate Q(N) as

Q(N)= –;{(/n*) x $ + (–$: -~) x ln$}

+FiniteTerm + 0(~) , (35)

where the relation (N + 1)2 = A/a2 is used.

In the above formalism of renormalization, we have considered the general order..
case. At the lowest order, Ap and AD can be obtained in a simple way: First shift

the parameters p and ~ ( p ~ p + Ap, ~ ~ ~ + A~ ) in the lowest-order ‘total’

effective action: “~ef~[p, ~] = ~ – pA + re~~[ho = ~ – pA + $(1 + ~) in * –

~a;(w) + ~~xT~(o; (W))2 + C(A) and then fix Ap and A~ in such a way that the

v~riation due to the shift cancelles the divergent parts of Q(N) .

: We need not do renormalization for the Einstein coupling G , the matter-parameter

~ , the topological coupling ~ and the gravitational field PC. 6 The renormalization

group beta-function, B W , for the R2-coupling is given as

~b(a) = w + Aw ,

‘BW ‘= limt++o ‘b(ae-’/-Wb(a) = 27W(W, f) . (37)

Fig.4 shows the behaviour of W(w, ~) . We see the negative (semi )definiteness of

BW , which means the R2-coupling is asymptotically free for w >0 ‘. (Note that

we consider the case ~ > 0 (cm < 26) ). The ~ymptotic behaviour, for the general

{

_Lx
W(w, () = 47 (l+~)z + 0(:) )

W>>l

~(l+o(w)) , O<w<l—7(1+< )2(3–<) w

(38)

—

6N0 wave-function renormalization means we need not introduce the s~called gravitational

dressing: e~ - eKV ,at lemt in the perturbative approach.
7This means the surface b~omes smoother as we ‘average’ the small-scale Configurations because

the R2-coupling controls the smoothness of the surface[5]. This outcome is natural.
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For the special case ~ = 1, we obtain

W>l , lim~+l_O W(w, t) = O ,

O<w<l , liq+~_~ W(w, f) = –~(~ – 1) . (39)

This clearly shows the choice ( = 1 guarantees the conformal symmetry

for w ~ 1-8.

The renormalization group behaviour of the cosmological constant is given as

pb(a) = p + Ap ,

BP=2 = limt++o ‘b(ae-~-fib(a~ x a2 = 2~(w, f) . (40)

Fig.5 shows the behaviour of M(w, f). We see the positive (semi) definiteness of BPa2

, which means the cosmological constant is asymptotically non-free for w >0. This

fact implies the cosmological constant decreases as the scale-size becomes larger.

The asymptotic behaviour of M(w, f) ,for the general ~ (– 1 ~ f ~ 1), is given as

{

wl+~(~) ,
M(w, () =

W>>l
–4+1; w+ VW+ 0(W2) , O<w<l

For the -~ecial ease: ( = 1 ,we see

(41)

W>l , liq-~-o M(w, () = O ,

O<w<l , limt-1-0 M(w,t) = –$ln w >0 . (42)

This result again shows the choice ( = 1 guarantees the conformal symmetry for
W>l.

: ii)w=O

~(~) is evaluated as

Although the second and third term of the last expression can be renormalizes into

@ and p as in the case (i), the first term cannot be. We conclude, for the case

w = O ,the system is stable against the quantum excitation (Cl > 0 for 1 z 2)

but the ultra-violet divergence cannot be renormalizes. This is simply because the

higher-derivative term R2 does not contribute in this case.

—

8This result reminds us of the similar situation in the combined system of chiral-model+ Wess-
Zumin&term . In this c-e the system becomes conformal(WZNW-model) for the special choice
of the coupling of WZ-term~ 1]. The topological term in the present paper plays the similar role
to the WZ-term.
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iii) w <0

In this case ,the situation is worse than (ii). Cl(w) becomes negative for 1 ~ 1*

where 1*(~*+ 1) x O/(32@) = 2 – 16m/(aw). The system is unstable against the

quantum fluctuation.

5 Discussions

We have presented the quantum analysis of 2d R2-gravity with the topology of a

sphere. As far as the R2-coupling is positive (~ > O) ,the quantum theory is well-

defined in a perturbative way. The infrared regularization L and the ultra-violet

regularization a are introduced in order to treat those divergences unambiguously.

The topological term is carefully treated and its importance in the quantum level is

confirmed as in the classical analysis of [5]. The general renormalization procedure is

presented for the present model of quantum gravity. The l-loop explicit calculation

is done and the renormalization group beta-functions for the R2-coupling ( BW ) and

for the cosmological term ( BP02 ) are obtained. Generally they are asymptotically

free and asymptotically non-free respectively. The topological term controls the

conforrnal behaviour. The special choice ~ = 1 guarantees Bw = O and BPa2 = O

for w ~ 1. This clearly shows the choice makes the theory conformal for w z 1.

The case BP.2 >0 means that the cosmological constant decreases as the scale-size

becomes larger. This fact suggests that ,in the real world, the origin of the vanishing

cosmological constant could come from such a renormalization effect.

For w s O , the quantum effect cannot be evaluated using this method. Since

the classical vacuum explains the simulation data very well including the negative

~ (or w)[5] , the quantum effect should be small. For the region Iwl <1 the surface

is strongl~ fluctuating (fractal surface) [5], so the simple separation of quantum and

classical, as in the semiclassical approach, might not be valid. For the region w < – 1

,the instability due to the term ~R2 is not be controled by the present approach.

The evaluation of the quantum effect for the case w ~ O is an open question at

present.

Acknowledgement

The author thanks Prof. T. Yukawa , Dr. A. Fujitsu and Dr. N. Tsuda for stim-

ulating discussions and for sharing the latest knowledge of the present problem,

espe~ially their original data of the numerical simulation. He thanks all members

at KEK, Theory Group, for kind hospitality during his stays and visits. Especially

the discussion and

able. This work is

com_ment by Prof. H. Kawai and Prof. N .Ishibashi were valu-

completed during the stay at SLAC. The author thanks its all

12



I

members for hospitality. Especially he thanks Prof. M .Peskin for discussions and

Dr. D. Atwood for carefully reading the manuscript. Finally the author thanks the

financial support by KEK.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

R. P. Feynman,Acta Phys. Polonica24(1963 )697

V. G. Knizhnik,A.M.Polyakov

A. B. Zamolodchikov,Mod. Phys. Lett.A3(1988)819

and

J. Distler and H. Kawai,Nucl.Phys. B321(1989)509

F. David, Mod. Phys. Lett.A3(1988)1651

S.Ichinose,N.Tsuda and T. Yukawa,Preprint of Univ. of Shizuoka, US-94-

03(1994), ‘Classical Solution of Two Dimensional R2-Gravity and Cross-Over

Phenomenon’

‘T.~oneya,Phys. Lett.B149(1984)lll

D. V. Boulatov and V. A. Kazakov,Phys.Lett. B184(1987)247

N. Tsuda and T. Yukawa,Phys.Lett. B305(1993)223
—

S.Ichinose,Proc.of Workshop on ‘Study of su-

perstring’ (Ott.19-21,1992,YITP,Kyoto Univ., Japan),page D24-D33. “Roleof

R2-term in 2 Dimensional Quantum Gravity”

H. Kawai and R. Nakayama,Phys.Lett.306 B(1993)224

S.Weinbergjin General Relativity:An Einstein Centenary Survey, eds.

S.W. Hawking -and- W. Israel(Cambridge University Press,l979), ‘Ultraviolet di-

vergences in quantum theories of gravitation’

H. Kawai and M. Ninomiya,Nucl.Phys. B336(1990)l15

H. Kawai,Y.Kitazawa and M. Ninomiya,Nucl.Phys. B393(1993)280;

Nucl. Phys. B404(1993)684

E. D’Hoker and R. Jackiw,Phys.Rev. D26(1982)3517

N. Seiberg,Prog.Theor. Phys. Suppl.102(1990)319

F. David, Nucl. Phys,B311(1985) 45,543

13



[17] V. Kazakov,Phys.Lett. B150(1985)28

[18] J. Ambj@rn,B.Durhuus and J. Frohlich,Nucl.Phys. B257[FS13] (l985)433

[19] F. David, Nucl. Phys. B257[FS14](1985 )543

[20] V. A.Kazakov,I.K.Kostov and A. A. Migdal,Phys.Lett. Bl57(l985)295

[21] S.Ichinose,Int.Jour. Mod. Phys. A8(1993)2735

[22] 1.Jackand D. R. T. Jones, Nucl. Phys. B358(1991)695

[23] Brezinand Zinn-Justin,Phys. Lett.B288(1992)54

[24] J. Nishimura,N.Tsuda and T. Yukawa,Prog.Theor. Phys. Supp.ll4(l993)l9

[25] A. M. Polyakov,Phys.Lett.103 B(1981)207

[26] R. Jackiw, in Quantum theory of gravity,ed. S. Christensen (Adam

Hilger,Bristol,1984 )p.403

[27] A. H. Chamseddine,Phys. Lett.256B(1991) 379;

Phys. Lett.258B(1991) 97; Nucl. Phys. B368(1992)98

[28] E. Onofriand M. Virasoro,preprint TH3233
—

[29] A. B. Zamolodchikov,Phys. Lett.l17B(1982)87

[30] G. ’tHooft,Phys.Rev. Dl4(l976)3432

[31] E.Witten,Comm.Math. Phys.92(1984)455

-.

14



Figure Captions

Fig.1 Infra-red cut-off Lin the flat coordinates andthe sphere manifold. For

simplicity, the picture is for a = 8. For general a, (z, y,r, ~, L) is substituted by

@x (x,v,r,fi>L)

Fig.2a

Fig.2b

Fig.3

*– Ax R* for~=O. w=16~~’~.Curvature for the solutions OC –

● – A x R* for [ = 0.99. w = 16r@’7.Curvature for the solutions aC –

Plane coordinate and polar coordinate for a sphere. The same note as in

the caption of Fig. 1.

Fig.4 Behaviour of BW/(27) = W(w, ().

Fig.5 Behaviour of BU.z/2 = M(w, ~).
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