
ar
X

iv
:h

ep
-p

h/
95

03
26

1 
  0

7 
M

ar
 1

99
5

SLAC–PUB–95–6771
hep-ph/9503261

EFFICIENT ANALYTIC COMPUTATION OF
HIGHER-ORDER QCD AMPLITUDES∗

ZVI BERN, GORDON CHALMERS
Department of Physics, UCLA, Los Angeles, CA 90024, USA

E-mail: bern@physics.ucla.edu

LANCE DIXON
Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309, USA

E-mail: lance@slac.stanford.edu

DAVID C. DUNBAR
University College of Swansea, UK
E-mail: D.C.Dunbar@swansea.ac.uk

and

DAVID A. KOSOWER
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ABSTRACT

We review techniques simplifying the analytic calculation of one-loop QCD am-
plitudes with many external legs, for use in next-to-leading-order corrections to
multi-jet processes. Particularly useful are the constraints imposed by perturba-
tive unitarity, collinear singularities and a supersymmetry-inspired organization
of helicity amplitudes. Certain sequences of one-loop helicity amplitudes with an
arbitrary number of external gluons have been obtained using these constraints.

1. Total Quantum-number Management

The calculation of one-loop QCD amplitudes with many external quarks and glu-
ons is a bottleneck that must be navigated in order to obtain next-to-leading-order
(NLO) corrections to multijet processes, for precision comparison with collider ex-
periments. The full correction has a real (bremsstrahlung) part as well as a virtual
part. Efficient techniques for computing the tree amplitudes entering the real part
have been available for several years2; however, significant numerical work is required
to combine these parts into a finite answer. In this talk we ignore the numerical sub-
tletiesa, and focus on techniques for computing analytically the one-loop amplitudes
entering the virtual part.
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AC03-76SF00515, by the Alfred P. Sloan Foundation under grant BR-3222, by the National Science
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aSuch subtleties have recently been discussed for the energy-energy correlation in e+e− annihilation1.
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In principle it is straightforward to compute one-loop amplitudes by drawing all
Feynman diagrams and evaluating them using standard reduction techniques for the
loop integrals. In practice this method becomes extremely inefficient and cumbersome
as the number of external legs grows, because there are:
1. too many diagrams — many diagrams are related by gauge invariance, and
2. too many terms in each diagram — nonabelian gauge boson self-interactions
are complicated.
Consequently, intermediate expressions tend to be vastly more complicated than the
final results, when the latter are represented in an appropriate way.

A useful organizational framework, that helps tame the size of intermediate ex-
pressions, is Total Quantum-number Management (TQM), which suggests to:
• Keep track of all possible information about external particles — namely, helicity
and color information.
• Keep track of quantum phases by computing the transition amplitude rather than
the cross-section.
• Use the helicity/color information to decompose the amplitude into simpler, gauge-
invariant pieces, called sub-amplitudes or partial amplitudes.
• Square amplitudes to get probabilities, and sum over helicities and colors to obtain
unpolarized cross-sections, only at the very end of the calculation.
Carrying out the last step explicitly would generate a large analytic expression; how-
ever, at this stage one would typically make the transition to numerical evaluation,
in order to combine the virtual and real corrections. The use of TQM is hardly new,
particularly in tree-level applications2 — but it is especially useful at loop level.

As an example, consider the one-loop amplitude for n external gluons, all taken
to be outgoing. We generalize the SU(3) color group to SU(Nc), and label the gluons
i = 1, 2, . . . , n by their adjoint color indices ai = 1, 2, . . . , N2

c−1, and helicities λi = ±.
The helicity decomposition uses gluon circular polarization vectors expressed in terms
of massless Weyl spinors3. The color decomposition4 is performed in terms of traces
of SU(Nc) generators T a in the fundamental representation, with Tr(T aT b) = δab,

A1−loop
n ({ki, λi, ai}) = gn

[ ∑
σ∈Sn/Zn

Nc Tr (T aσ(1) · · ·T aσ(n)) An;1(σ(1λ1), . . . , σ(nλn))

+
bn/2c+1∑
c=2

∑
σ∈Sn/Sn;c

Tr (T aσ(1) · · · T aσ(c−1)) Tr (T aσ(c) · · ·T aσ(n)) An;c(σ(1λ1), . . . , σ(nλn))

]
,

where An;c are the partial amplitudes, g is the gauge coupling, Sn is the set of all
permutations of n objects, while Zn and Sn;c are the subsets of Sn that leave the
corresponding single and double trace structures invariant.

The An;1 are more basic, and are called primitive amplitudes, because:
a. They only receive contributions from diagrams with a particular cyclic ordering of
the gluons around the loop, which greatly simplifies their analytic structure.
b. The remaining An;c>1 can be generated4,5 as sums of permutations of the An;1.b

bFor amplitudes with external quarks as well as gluons, the primitive amplitudes are not a subset of



Even the An;1 are not all independent, due to parity and cyclic invariance. For ex-
ample, for n = 5 only four are independent,A5;1(1

+, 2+, 3+, 4+, 5+), A5;1(1
−, 2+, 3+, 4+, 5+),

A5;1(1−, 2−, 3+, 4+, 5+), and A5;1(1−, 2+, 3−, 4+, 5+). The first two of these are not re-
quired at NLO because the corresponding tree helicity amplitudes vanish, and are
very simple for the same reason. For nf quark flavors, they are given by7

A5;1(1
+, 2+, 3+, 4+, 5+) =

iC

48π2

〈1 2〉 [1 2] 〈2 3〉 [2 3] + 〈4 5〉 [4 5] 〈5 1〉 [5 1] + 〈2 3〉 〈4 5〉 [2 5] [3 4]

〈1 2〉 〈2 3〉 〈3 4〉 〈4 5〉 〈5 1〉 ,

A5;1(1
−, 2+, 3+, 4+, 5+) =

iC

48π2

1

〈3 4〉2
[
− [2 5]3

[1 2] [5 1]
+
〈1 4〉3 [4 5] 〈3 5〉
〈1 2〉 〈2 3〉 〈4 5〉2

− 〈1 3〉3 [3 2] 〈4 2〉
〈1 5〉 〈5 4〉 〈3 2〉2

]
,

where C = 1− nf
Nc

and 〈j l〉, [j l] are spinor inner products3,2. Analytic expressions for

the other two primitive amplitudes are more complex but still “fit on a page”7. In
contrast, the color- and helicity-summed virtual correction to the cross-section, built
from permutation sums of the two primitive amplitudes, would fill hundreds of pages.

2. Analytic Properties (and Supersymmetry)

There are at least five different ways to compute the partial/primitive amplitudes:
1. Traditional Feynman diagrams (in the helicity, color-ordered basis).
2. Rules derived from superstring theory8.
3. Rules inspired by superstring theory9.
4. Recursive construction10 (see also the talk by Mahlon11 in these proceedings).
5. Exploitation of their analytic properties (and supersymmetry).
Here we just discuss route 5, which can be the most efficient route to the answer.

The analytic behavior of loop amplitudes includes both cuts and poles. Since
primitive amplitudes are “color-ordered” (property a), they have cuts and poles only
in channels formed by the sum of cyclically adjacent momenta, (ki + · · · + ki+r−1)2.
In a (massless) supersymmetric theory, because of the improved ultraviolet behavior,
the cuts alone are enough to reconstruct the full one-loop amplitude13. The cuts
are computable in closed form in many cases. For example, the infinite sequence of
maximal helicity-violating amplitudes in N = 4 super-Yang-Mills theory are given5

(in 4−2ε dimensions, through O(ε0)) by a sum of known scalar box integral functions
Fn:r;i (j and k are the only gluons with negative helicity):

AN=4
n;1 (1+, . . . , j−, . . . , k−, . . . , n+) = i

(4πµ2)ε

16π2

Γ(1 + ε)Γ2(1− ε)
Γ(1− 2ε)

〈j k〉4

〈1 2〉 〈2 3〉 · · · 〈n 1〉 Vn ,

where

V2m+1 =
m−1∑
r=2

n∑
i=1

F 2me
n:r;i +

n∑
i=1

F 1m
n:i ,

V2m =
m−2∑
r=2

n∑
i=1

F 2me
n:r;i +

n∑
i=1

F 1m
n:i +

n/2∑
i=1

F 2me
n:m−1;i .

the partial amplitudes; new color-ordered objects have to be defined6.



Supersymmetric results can be used to trade QCD calculations with internal glu-
ons for somewhat easier calculations where scalars replace the gluons. For an ampli-
tude with all external gluons, we rewrite the internal gluon loop g (and fermion loop
f) as a supersymmetric contribution plus a complex scalar loop s,

g = (g + 4f + 3s) − 4(f + s) + s = [N = 4] − 4 [N = 1] + s,

f = (f + s) − s = [N = 1] − s,

where [N = 1] represents the contribution of an N = 1 chiral supermultiplet. The
scalar contribution cannot be reconstructed directly from its cuts because of an addi-
tive “polynomial” ambiguity. It seems possible to fix this ambiguity by inspecting the
factorization (pole) behavior of the amplitude, namely the limits where two (or more)
adjacent momenta become collinear. The general form of these limits for one-loop
amplitudes has recently been proven15. For the special case of identical gluon helic-
ities, (1+, . . . , n+), the limits were successfully used to construct an ansatz14 which
was subsequently confirmed by recursive techniques10. If one can show that polyno-
mial ambiguities for arbitrary helicity configurations can be determined uniquely and
efficiently from factorization limits, then one would have a general technique for con-
structing one-loop QCD amplitudes without ever evaluating genuine loop diagrams.
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