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Abstract 

We construct the class of integer-sided triangles and tetrahedra that respec- 

tively correspond to two or three discriminately independent bit-strings. In order 

to specify integer coordinates in this space, we take one vertex of a regular tetra- 

hedron whose common edge length is an even integer as the origin of a line of 

integer length to the “point” and three integer distances to this “point” from the 

three remaining vertices of the reference tetrahedron. This - usually chiral - 

integer coordinate description of bit-string geometry is possible because three dis- 

criminately independent bit-strings generate four more; the Hamming measures 

of these seven strings always allow this geometrical interpretation. On another 

occasion we intend to prove the rotational invariance of this coordinate descrip- 

tion. By identifying the corners of these figures with the positions of recording 

counters whose clocks are synchronized using the Einstein convention, we define 

velocities in this space. This suggests that it may be possible to define boosts 

and discrete Lorentz transformations in a space of integer coordinates. We relate 

this description to our previous work on measurement accuracy and the discrete 

ordered calculus of Etter and Kauffman (DOC). 

1. INTRODUCTION 

The successful derivation of the Maxwell equations“] from a discrete ordered 

has prompted a re-examination of the somewhat heuristic discussion of 

the Lorentz invariance of bit-string physics presented at this meeting three years 

ago!’ We discuss here some of the problems which arise, but do not resolve all of 

them. 
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2. BIT-STRING GEOMETRY 

2.1 BIT-STRING BASICS 

Specify a bit-string a(S) by its S ordered elements a,: 

(2.1) a , ~ O , l ;  s E 1 , 2 , 3 ,  ..... S 

If we interpret the symbols “0” and “1” in the strings as integers, we can calculate 

the norm, or Hamming measure, a ( S )  by the formula 

(2.2) 
a Cs=las S = la(S)l= a(S) 

Because we interpret the symbols “0” and “1” as integers rather than bits, we 

can define the operator XOR, which combines two strings to form a third and is 

symbolized by “e”, in terms of the elements of the resulting string: 

This is isomorphic to the usual meaning of XOR, addition mod 2 or boolean sym- 

metric difference in the sense that the element is 1 if a, and b, differ, and 0 if they 

are the same. 

We introduce the null string O(S) with elements 0, = 0, the anti-null string 

I @ a; clearly I(S) with elements Is = 1, and the complement to a defined by B 
this string is a with the “0” ’s and “1” ’s interchanged. We note that 

a@a=O; a @ S @ I = O  (2.4) 

When n bit-strings do not combine under XOR to yield the null string when taken 

two, three, four up to and including n at a time, we say that they are discriminately 

independent, or d.i. 
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We introduce a second bit-string operation called concatenation, symbolized 

by "II" and defined by 

e;11b E a), k E 1,2, ..., Sa; .;I1* E bj ,  j E 1,2,  ..., Sb, k = Sa + j (2.5) 

2.2 TRIANGLES 

If we now consider three non-null strings which are not independent under 

XOR, but any pair of which are independent: 

a @ b @ c = O(S);  a # b # c # a 

and note that, necessarily 

it follows that the Hamming measures a ,  b, c satisfy the triangle inequalities 

la - b( 5 c 5 a + b; cyclic and anticyclic on a ,  b, c (2-8)  

If we now take any three arbitrary integers a,  b, c which satisfy the triangle 

inequalities, we can define three numbers n,, i E 1,2 ,3  indirectly by the equations 

This definition automatically insures that the triangle inequalities are satisfied 

because 

la - bl = In1 - n31 _< nl + n3 = c _< nl + n3 + 2n2 = a + b Q.E.D. (2.10) 

Unfortunately for simplicity (but fortunately when it comes to modeling quantized 
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angular momenta) the inverse equations 

1 
nl = 2(a - b +  c )  

1 
n2 = Z ( b - c + a )  (2.11) 

1 
n3 = 2(” - a + b)  

show that the three numbers can be either integer or half-integer even when a ,  b, c 

are integer. In particular we see that if the three Hamming measures a,  b, c contain 

one or three odd integers, the ni are half-integer. Thus, although any three bit- 

strings which discriminate to the null string specify an integer sided triangle, not 

all integer sided triangles can be specified by three independent integers using Eq. 

2.9; half-integers may be required. 

We also note that the square of the area A(a, b, c )  is given by 

1 
16 

A2 = -(a + b + C ) ( U  - b + c)(b - c + U ) ( C  - u + b)  

= - [ (a 1 + b)2 - c 2 2  ] [ c  - ( a  - b)2]  
16 

cyclic and anticyclic on a,  b, c (2.12) 

Although A2 is an integer when all three ni are integer, it is not necessarily the 

square of an integer. We will explore more fully elsewhere why “bit-string geome- 

try” cannot simply be characterized as the construction of figures whose sides are, 

when embedded in a finite Euclidean 3-space, straight lines of integer length. 
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2.3 TETRAHEDRA 

In order to extend our construction to a skeletal abstraction from a small 

number of the attributes of Euclidean 3-space) we next examine how to relate 

XOR to a tetrahedron whose faces will be integer sided triangles of the restricted 

class discussed in the last section, i.e. those which correspond to three bit-strings 

which combine under XOR to the null string. Consider four non-null strings which 

are not independent under XOR: 

a @I b @I c @I d = O(S) 

but which are pairwise independent: 

a # b ;  a # c ;  a # d ;  b # c ;  b # d ;  c # d  

(2.13) 

(2.14) 

allowing us to define 

hab -= a @ b = c @ d # O(S) 

h b c E b $ c = a $ d # O ( S )  (2.15) 

We also assume that all triplets are independent. For instance, if we consider the 

triplet a, b, c, we can then generate from them the three strings just expressed and 

the fourth string 

habc d(S) = a$ b e  c # O ( S )  (2.16) 

Note that three strings independent under XOR generate four more, and hence 

seven strings which close under XOR. Because the operation XOR discriminates 

between two strings in the sense of saying that they are the same when their 

discriminant is zero or different when it is not zero, it was called discrimination by 
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Amson, Bastin and Kilmister. In 1965, John Amson‘” discovered that the sets of 
strings which generate the combinatorial hierarchy as eigenvectors of non-singular, 

square mapping matricesr5’ are in fact discriminately closed subsets (DCsS). Given 

two discriminately independent (or di.) strings of length 2, we generate 3 = 22 - 1 

DCsS; given 3 d.i. strings of length 4 we generate 7 = 23 - 1 DCsS; given 7 d.i. 

strings of length 16 we generate 127 = 27 - 1 DCsS; given 127 d.i. strings of 

length 256 we generate 2127 - 1 DCsS. The Parker-Rhodes mapping construction 

cannot be continued beyond this point, because this large number of DCsS cannot 

be mapped by the 2562 mapping matrices which are available. 

Just as we were able to represent a triangle with integer sides generated by the 

discrimination of two d.i. strings using three integers or half-integers, it turns out 

(cf. Ref. 3) that the three discriminately independent strings just discussed can 

be shown to represent two chiral tetrahedra, whose opposite edges are equal, and 

all four of whose faces are the same triangle specified by 

Note that this restriction is a necessary consequence of Eq. 2.13 and the definitions 

given in 2.15. Either one of this chiral pair of tetrahedra can be decomposed into 

four (usually distinct) tetrahedra each of which has this triangle as a base and the 

three remaining edges of length a ,  b, c; b, c, d; c, d, a or d ,  a ,  b. Further, 

This geometry is illustrated in figure 1. Please note that this is a corrected version 

of Fig. 4 in Ref. 3. 

Since we are concerned in this paper with coordinates rather than the general 

geometry underlying the bit-string construction, we will not pursue the general case 

here further than to note that the seven integers a, b, c, d = habc, hab = hcd, hbc = 
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had and h,, = hbd can be represented uniquely by seven numbers nj as follows: 

(2.19) 

The inversion brings in quarter integers as well as half-integers, making the 

space of bit-string tetrahedra compared to the space of tetrahedra with integer 

length edges correspondingly sparser than the space of bit-string triangles com- 

pared to the space of triangles with integer sides. 

3. TWO POSSIBLE 3-SPACE 
“COORDINATE SYSTEMS” 

N.B. The extension of these constructions to a rigorous discussion of 
rotations in 3-space using these coordinates has yet to be accomplished. 
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3.1 A SYMMETRIC BASIS 

We pick as our basis three strings of length 4N with Hamming measure 2N 
(i.e. having an equal number of "0" 's and "1" '9) and which meet the condition 

U(4N) @ W(4N) @ V(4N) = I(4N); 

from which it follows immediately that 

U(4N) @ W(4N) = V(4N); 

W(4N) @ V(4N) = fT(4N); 

V(4N) @ U(4N) = W(4N); 

U = V = W = 2 N  (3.1) 

V = 2 N  

U = 2 N  

W = 2 N  

and hence that we have specified a regular tetrahedron with edges of length 2N. 
Further, we can think of the edges U, W, V as meeting in a vertex on one side or 

the other the plane of the triangle specified by 

u(4N) @ W(4N) @ V(4N) = O(4N) (3.3) 

If we can label the corners of the tetrahedron with four distinct labels, we can 

distinguish two chiral possibilities. Otherwise we have an even more ambiguous 

situation in going from our algebraic model to the geometrical interpretation. 

We use a particular representation for these three basis strings: 

U(4N) = 1(2N)J10(2N) 
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We simplify our notation by omitting the concatenation symbol, i.e. 

Note that this “product” can be non-commutative because it is often the case that 

allb = ab # ba = blla (3.6) 

Using U, W, V as our reference system we can represent any single arbitrary string 

about which all we know is that its Hamming measure is a and its length 4N relative 

to this representation as 

= I(n,)O(N - nr)I(nu)O(N - n,)I(n,)O(N - n,)I(n,)O(N - n,) (3-7) 

The geometrical interpretation is sketched in figure 2. Here the “coordinates” nq, 

i E r, ti, eo, v ,  must obviously meet the two restrictions 

but, subject to these constraints, can be chosen arbitrarily. We will discuss else- 

where how to make counting the number of strings which can be brought into 

this form by permutation of their ordered elements while keeping the length and 

Hamming measure fixed into a well posed problem. 

The algebraic consequences of this particular representation are that 

huu(4N; nr,  nu, n, ,n,)  a CB U = 

= O(n,)I(N - n r )  ... O(nu)I(N - n,)I(n,)O(N - n,)I(n,)O(N - n,)  (3.9) 

huw(4N; nr,  n,, nw, n,)  a @ W = 

10 
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= O(n,)I(N - n,)I(nu)O(N - n,)O(n,)I(N - n,)I(nv)O(N - nu) (3.10) 

h a v ( 4 N ;  n,, nu, n,, n,) E a @ V = 

= O(nj)I(N - n,)I(nu)O(N - nu)I(nw)O(N - n,)O(n,)I(N - nu) (3.11) 

The scalar integer equations which follow immediately are 

a = n, 4- nu 4- n, 4- nu 

hau = 2N - n, - nu + n ,  + nu = 2N - a + 2n, + 2nu 

haw = 2N - n, + nu - n ,  + nu = 2N - a + 2nu + 2nu (3.12) 

ha,  = 2N - n, + nu + n, - nu = 2N - a + 2nu - 2n, 

Noting that 

ha ,  + haw + ha,  = 6N - 3nr + nu + nw + nu = 6N - 3a + 4(n,  + nu + n,) (3.13) 

these equations can be immediately inverted to give the coordinates (nr, nu, n,, nu) 

in terms of the Hamming measures a ,  ha,, haw,  hav .  The unique inversion of these 

equations is 

1 1 1  
2 

n: = --N + ;U + , I h a u  - haw + h a v )  (3.14) 
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3.2 
STRING POLYHEDRA 

COORDINATE DESCRIPTION OF A TRIANGLE, A LINE SEGMENT AND BIT- 

It follows from the above that a string b(4N; n,, 6 6 6  nu, nw, nt )  whose discriminant 

with a is called hob = a @ b has Hamming measure 

To proceed further, we must use care. If we follow the convention used in writing a 
and b given in Eq. 3.7 and the geometrical interpretation given in Fig. 2 in which 

they are vectors from the origin of length a and b respectively, we would have the 

string 

b 

rather than the string with the same Hamming measure obtained by discriminating 

a and b, namely 

hab = a@ b = 

(3.17) 

where le(a,b) means the lesser of (a ,b )  and ge(a,b) means the greater of (u ,b) .  

Consequently, we find it necessary from now on to distinguish vector bit strings 
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defined and interpreted by Eq. 3.7, Fig. 2 and Eq. 3.16 from the string obtained 
by discriminating two such strings, given by Eq. 3.17 and interpreted in figure 3. 

We then must, retrodictively, call the strings we have been discussing .', b, U, fi, 9 
and interpret 0,8, W and hob as line segments neither of whose ends are at the 

origin. 

- b +  

I now realize that it is the failure to make the distinction between 
vector bit-strings and line segments connecting the tips of two vectors 

from a common origin which has rendered some of my previous work 

ambiguous or just pIain wrong. 

Once this distinction is made and followed consistently, any polyhedron in our 

bit-string space can be simply specified by giving the coordinates ni, i E r,u,w,v 

of each vector bit-string to each of its corners. The lengths of its edges can then be 

calculated by discrimination. The more complex the polyhedron we represent, the 

smaller the number of polyhedra of that type with integer edges which will be bit- 

string polyhedra. It will be interesting to work out the connection between the five 

regular polyhedra of Euclidean Geometry, allowed regular bit-string polyhedra, 

and the combinatorial hierarchy. In particular, we know that the cube and the 

octhedron will be excluded because bit-string geometry cannot be used to describe 

a right angle between two line segments of equal length. 

3.3 POSITIVE AND NEGATIVE COORDINATES, ROTATIONS AND ROTATIONAL IN- 

VARIANCE 

In order to treat rotations in a way compatible with the standard "vector 

model" for angular momenta in quantum mechanics, we consider a rotation of a' 

whose origin coincides with fi about fi keeping this vector, the origin, and the 

length of a' fixed. For simplicity here, we think of our bit-string vectors as embedded 

in a Euclidean 3-space. Then the point A describes an arc of a circle in a plane 
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perpendicular to @. The intersection is a distance la,l from the origin along @, 
the radius of the circle is pow, and these two numbers it5 well as the scalars 2N, a 

and how are kept fixed. This is illustrated in figure 4. Algebraically this implies 

that ' 

2 (3.18) a - a ,  = pow = h:, - (2N - 2 2  

or 

2Na,  = h:, - a2 - 4N2 (3.19) 

But 

haw + a = 2N + 2(nu + nu);  ha, - a = 2N - 2(nr + n,) (3.20) 

Hence 

Nu, = 2N(nu + nu - nr - n,) - 2(n, + n,)(n, + n,) (3.21) 

This allows us to specify a, as a positive or negative number depending on 

whether a, is above or below the plane through the origin perpendicular to @, 
or equivalently as to whether the geometrical inner product defined by the sides of 

the triangle (OWA) 

2 2 .  w' = a2 + 4N2 - hzw (3.22) 

is greater than (above) or less than (below) zero. The geometrical interpretation 

is illustrated in figure 5. 

3.4 A BASIS WITH ONE RIGHT ANGLE 

Simplify notation still further: 
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I(N) --.) N ;  O ( N )  + 0 

For our basis, specify 

Z ( 8 N )  = NONONONO 

X ( 8 N )  = NNONOOOO 

(3.23) 

(3.24) 

(3.25) 

U(8N) = NNOONNOO 

Then an arbitrary bit-string vector will have eight coordinates 

a'(8N) = rI;=l[nP](N - n?) (3.26) 

Define 

rrb = Ie(nr, ni b ); gPb = ge(nf, n, b 1; (3.27) 

Then an arbitrary bit-string in this coordinate representation which connects the 

tip of Z(8N) to the tip of g(8N) is given by 

We leave working out the further elaboration of this coordinate system for 

another occasion. For N = 1, it should be capable of describing the quantum 

numbers of one generation of quarks and leptons and the related baryons and 

bosons in the standard model, using the scheme we have already roughed outf'l 
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4. VELOCITIES AND LORENTZ TRANSFORMATIONS 

4.1 BOOSTS IN ONE DIRECTION 

In Ref. 3, Sec. 1.3, we started from two positive integers no and nl and 
defined position and time coordinates for the interval between two events by 501 = 

no - nl = -510 and to1 = no + nl = t lo  where the units are such that c = 1. Then 

the velocity vo1 = -010 and square of the invariant interval 701 = 710 are given by 

2 2  2 
; T~~ = to, - zol = 4nonl 

no - nl 
vo1 = 

no + nl 

and we find that we can define the usual Lorentz time dilation 7 by 

If we now introduce a third integer n 2  and generalize our definitions, 201  + 212  + 
5 2 0  = 0 and a little algebra gives us the familiar result that 

001 + v12 

1 t v01012 
v02 = (4.3) 

With the interpretation that 1712 is the velocity of the Lorentz boost which takes 

(201,  tol)  to (202, t o z ) ,  a little more algebra suffices to show that 

2 0 2  = 712(501 + v12t01); to2 = 712(t01 + v12501) (4.4) 

The difficult with this treatment is that our geometrical interpretation in Ref. 3 

only used positive integers, and this neat way of describing Lorentz boosts remained 

heuristic. Now that we have negative as well as positive coordinates when we project 

onto an axis of rotation, we can clearly adapt this derivation to our current context, 

so long as boosts are along a reference axis. The general Lorentz transformation 

can then be composed of a boost and a rotation, as in a more conventional context. 

We hope to have the formalism worked out soon. 

Once this is worked out, we hope to show that any Lorentz transformation is 

equivalent to a single bit-string discrimination, but details still elude us. 
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5. RELATIONSHIP TO NON-COMMUTATIVITY 
AND THE DISCRBTE ORDERED CALCULUS (DOC) 

[This chapter and the Appendix are excerpted from my contribution to ANPA 
16. We hope to relate them more closely to our tetrahedral coordinates on another 

occasion.] 

5.1 PARTICLES, NO-YES EVENTS AND MEASUREMENT ACCURACY 

My conceptual foundations for reconstructing relativistic quantum mechanics 

and physical cosmology start from three inextricably entwined technical terms: 

particle, event and conserved quantum number. I join them together in the following 

way: 

A particle is a conceptual carrier of conserved quantum numbers between 

events. 

A n  event is a finite spacial region which particles enter and leave during a 

finite time interval. Both the spacial dimensions and the time interval are fixed in 

the contest of a particular application of the definition. 

The algebraic sum of the numerical values for each type of quantum number 

cam‘ed into the region by  the entering particles is individually equal to the alge- 

braic sum of the numerical values for that type  of quantum number carried out of 

the region b y  the leaving particles. This statement defines a (set of) conserved 

quantum number(s). Note that the number ofparticles entering the region need 

not equal the number of particles leaving the region; in other words, particle number 

is not necessarily conserved. 

N.B. I n  this paper we will usually consider the restricted case in 

which only one particle enters and the “same” particle (i.e., carrying the 
same quantum numbers) leaves the event. This allows us to talk about a “single 

particle trajectory”, - a luxury usually denied to us in discussing relativistic 

quantum mechanics. 
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The paradigm for an event we have in mind is a counter firing in which a 
counter of relevant spacial size As at a specified location in the laboratory does 

not fire during a time interval At, which we call a NO-event, or does fire during 

that time interval, which we call a YES-event. 

We further assume that these NO-YES events can be recorded, using a clock 

at the counter (or calibrated in such a way that it can be thought of as “in” the 

counter) which has been synchronized to the laboratory clock using the Einstein 

convention in relation to spacial coordinates of the counter position fixed relative 

to the position of the laboratory clock (“origin”) and three fixed, independent (in 

particular, non-coplanar) directions. 

This allows us to represent the record made by a single counter as an ordered 

sequence of two distinct symbols such as “0” and “1”. When we have specified how 

two such ordered sequences of symbols of the same length combine, we will call 

them bit-stringsc A general representation of our bat-strings and the operations 

used to concatenate them is given in Appendix I. 

We take as our paradigm for measurement accuracy the smallest counter size 

Ax and time resolution At which we can either construct, or infer from the theory 

we are in the process of constructing. 

This is a very powerful and restrictive definition, because it prohibits us from 

considering fractional space and time intervals. Once we have developed the the- 

ory far enough to give meaning to interference, as in optical interferometry, this 

assumption of a minimum distance also implies a maximum distance and time, 

which we can call the event horizon. 

Up to this point we have treated length and time measurement as distinct. 

But the System International, employed universally by physicists in reporting the 

results of measurement and establishing the meaning of “fundamental constants” 

takes time measurement to be primary and defines the unit of length: 

“The meter is defined to be the length of path traveled by light in vacuum in 

1/299 792 458 ~[econds]. See B.W.Petley, Nature, 303,373 (1983).” 
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Thus, following current practice, we are no longer allowed to define Ax and At 
separately when specifying our lowest bound on measurement accuracy. In fact, 

we must make the scale invariant statement that 

Ax 
cAt 
-- - 1  

in any system of units which allows us to talk about NO-YES events in a precise 

way. 

5.2 CONSTANT VELOCITY COMMUTATION RELATIONS 

Consider first the case when the velocity is the same whenever measured. Con- 

sistent with our finite measurement accuracy postulate, and taking Ax and At 
to be, respectively, the smallest space and time intervals we can measure between 

events, either directly or indirectly, any distance will be an integral multiple of 

Ax and any time an integral multiple of At. Then any velocity will be a rational 

fraction. 

Confining ourselves to velocities that can always be interpreted as particulate 

velocities, these must then always be rational fractions less that unity. They must 

also always be greater than zero because zero is not measurable. With this under- 

stood, in the current context we can define r = n , A x  , dr  > n, s where n r  and 

d! > n, are integers with no common factor other than unity, and Ax = cAt. 
Then the desired representation of a constant velocity in units of c can be taken 

to be 

B B B  B 

B 

Note that in this context the minimum time interval between measurements which 

can yield the velocity must be d, A t  and the minimum space interval between two 

such measurements - attributed to the firings of two counters produced by a 

particle of this velocity - must be n, Ax. 

B 

B 
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In order to make it possible to define larger space and time intervals we now 
introduce the representation 

r ( N t ;  n t ,  d t )  = N t n f ) A z  (5.3) 

This allows us to introduce negative as well as positive distances from the implied 

origin simply by keeping df positive and allowing the n f  to include negative integers 

with Infl < df. Clearly this also extends our velocity space to negative rational 

fractions greater than -1. We can now displace our origin by a phase defined by 

Sn 
n 

$(n ,6n)  E - , 6 n € - n + l , - - n + 2  ,..., n - 2 , n - 1 ;  N r 4 N r + 6 n  (5.4) 

In keeping with our finite and discrete measurement restriction, we must also 

assign an event horizon for our counter array given by Rmaz = NmazAx and the 
requirement N,  P f Sn < Nmaz. Note that we will always keep N!, the number of 

spacial periods of the counters which can be used to measure p, a positive integer. 

We also assume that the largest time interval we can measure is Tmaz = 2aNmazAt, 
where "T" is for us a rational fraction known only to an accuracy consistent with 

the measurement context considered!] Ref. 21 includes a preliminary discussion 

of how Stillman Drake's analysis['o1 of the experiment by which Galileo arrived at 

the "times squared law" can be viewed as a dynamical measurement of n/2& 

We have been at some pains to make this representation consistent with the 

discussion of "measurement" in our fundamental reference!"] For the constant 

velocity case at hand, we can envisage a "particle" traversing a counter array with 

counters spaced a fixed distance n f A z  apart which fire sequentially with a fixed 

time interval d f A t  between firings. We symbolize this sequence of firings by the 

sequence R, R', R", R"', ..... For definiteness we consider positive velocity and take 

the first firing to be 

Here, consistent with Kauffman's notation, we take the symbol "R" to stand for 

the instruction measure A, and the symbol ':=" to indicate that the value on the 
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right is the numerical value obtained by the measurement. Then 

R‘ := r( N t  + 6n + 1 ) n t A s  

R“ := r( N! + 6n + 2)nfAx 

R“” := r ( N t  + bn + 3)nfAx  (5 -5 )  

. . . . . etc. 

To measure velocity requires us to select two counter firings, measure the space 

and time intervals between them, and calculate the ratio; velocity measurement 

is intrinsically a more complicated process than the measurement of the spacial 

interval from an origin to the position R of some identified counter. To conform to 

Kauffman’s usage, we assume that the ’ is an operator which shifts us forward 

in the time sequence R, R’, R”, R”’ ... by one fixed time interval df At. The symbol 

is to be interpreted as the evaluation of the interval between R’ and R by first 

measuring R, then measuring R‘ and finally by dividing the difference between the 

two intervals by the (fixed) time interval for a single shift, namely &At. Clearly 

In contrast to the notation in the Feynman-Dyson-Tanimura papers, which 

would seem to imply that position and velocity are measured at the same time 

(in violation, of the uncertainty principle), we trust that our notation and explicit 

model make it clear that the two measurements are made at digerent times, and 
hence can yield different results when made in the opposite order. Now let d, B A t  = 

1; interpret Rk as the process - measure k,  then measure R. We now have 
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established in our context the fundamental relationship 

However, if we first measure R and then measure k, we obtain 

In any theory with finite space and time shifts these two values are necessarily not 

the same. In fact, by forming Rk - kR and adding and subtracting -R(R' - R) 
we have that 

R k -  kR = ( R -  R)2 + [R,R'];  [R,R] = RR' - R'R (5.9) 

Since for us, once we have removed the velocity operation symbol R, measuring R 
and R' corresponds to ascertaining the positions of two counters which are fixed 

in the laboratory and can be measured as many times as we wish in any order 

without changing the result, we can take [R,R'] E RR' - R'R = 0 and we have 

that 

where kappa is an arbitrary constant scalarfixed by the measurement accuracy con- 

text. This establishes the desired commutation relation for a single fixed velocity 

and a single spacial direction. 

5.3 Two DIFFERENT VELOCITIES: ACCELERATION 

Consider now two constant velocities which share a common counter firing at 

R'. The first velocity is ,& = n, /d ,  and the second velocity is P b  = nb/db. The 

first velocity can be measured using either counter firings at R, and R' or at R' 
and pi or at R, and at pi. The same is true for the second velocity using Rb, R' 
and R'i. Even if all five counters are colinear, we cannot immediately apply our 

previous analysis because we have no guarantee that d, = db and hence cannot use 

our prescription dAt = 1. 
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To deal with the most difficult case, we assume further that na, nb, d,, db have 

no common factor other than unity. In the current context we will assume that 

RaR', R'R'i,&R', R'R; are colinear, but that we need more measured information 

to settle the questions about colinearity with respect to the spacial intervals Aab" = 

R','R,, etc. This information can be formalized by the definition of the inner 

product, a scalar given by 

(5.11) 

[The precise relationship to change in velocity due to a Lorentz transformation 

and to 3-space trajectories and accelerations remains to be worked out.] 

6. CONCLUSION 

The direct approach to bit-string coordinates attempted here remains frus- 

tratingly incomplete, but we freeze this effort here to keep the record clear, even 

though it does not go as far as we could wish toward meeting the promise made 

in the preliminary version of this paper, published in the Proceedings of ANPA 
WEST 11. We expect much of the algebra and geometry presented here will prove 

useful in a more satisfactory treatment. We believe that a treatment that follows 

a new approach, related more closely to the raising and lowering operators used in 

conventional treatments of quantum mechanical angular momentum, holds much 

promise. We have made significant progress along those lines and hope to have 

something useful to present in a few months. 
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7. APPENDIX. Formal derivation of 
finite and discrete Maxwell Equations 

When I recently showed Ref. 1 to my colleague, M.Peskin, he noted that the 

“shift operator J” defined by Kauffman is, in our context of a single particle, 

isomorphic to the operator U = e z p ( - i H T )  representing a finite time shift in the 

Heisenberg representation. Then the formal steps in Kauffman’s rigorous version of 

Feynman-Dyson-Tanimura “proof” go through easily. The difficulty with adopting 

Peskin’s approach is that what operational context the Heisenberg formalism fits 

into is by no means obvious. So, for mathematical and physical clarity, one needs 

to invoke the DOC and discuss the relationship between measurement accuracy 

and the DOC. I am indebted to Peskin‘’’] for allowing me to quote his shortened 

version of the Kauffman proof below. 

Define 

x = xu - ux = [X,U] 

where U is the time shift operator from X to X‘ in time At (eg U = e-iHAt ) *  

Notice that 

(AB)‘ = [AB, U] = [A,  U ] B  + A[B, U] = AB + A B  (7.2) 

as required. 

Postulate: 

Rewrite 2 as 

[Xi, [Xi, u]] = -[Xi, [u, Xi] ]  - [u, [Xi,  Xjll 

and noting that [V, [Xi, Xj]] = [U, 01 = 0 we find that 

“Sij = [Xi,  [Xj, VI] symmetric in i, j 
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(7.4) 



Now define 

Then 

But this cyclic sum vanishes by the Jacobi identity. Thus 

which is one of the two Maxwell equations we set out to derive. 

Finally, define 
" 

E; = - €;jkHk (7.8) 

We wish to prove that 

First we need to define d/dt  by 

d d H  
dt at 

H = -H = - + ( X * V ) H  (7.10) 

Then 



(7.12) 

for i = 1, eg 

= [ x1,x2 ' I [  X3 ,X1  - 1  + [ '  X l , X 3  ' I [ *  X l , X 2  ' I  = o  (7.14) 

so 
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FIGURE CAPTIONS 

1) The tetrahedron generated by three discriminately independent bit-strings 
and its decomposition into four tetrahedra with a common vertex from which 
the lines of length a, b, c, d lead to the corners labeled A, B, C, ABC. 

2) An arbitrary bit-string and the three fixed lengths ha,,  ha,, haw which freeze 
its spatial position relative to the regular tetrahedron constructed from basis 
strings of length 2N. 

3) The geometrical interpretation of the discriminant hab of two vector bit- 
strings a and b as the line segment connecting their tips of length hab. 

4) A rotation about the W axis keeps ha,  constant. 
5 )  The geometrical connection between the signed coordinate uw, the integer 

lengths a, W = 2N, ha,  and the radius Paw illustrated in Fig. 4. 
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