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Abstract 

We show that the radiation damping rate of the transverse action of 

a particle in a straight, continuous focusing system is independent of 

the particle energy, and that no quantum excitation is induced. This 

absolute damping effect leads to the existence of a transverse ground 

state which the particle inevitably decays to, and yields the minimum 

beam emittance that one can ever attain, YE,;, = h/2mc, limited only 

by the uncertainty principle. Due to adiabatic invariance, the particle can 

be accelerated along the focusing channel in its ground state without any 

radiation energy loss. These findings may apply to bent systems provided 

that the focusing field dominates over the bending field. 
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1 INTRODUCTION 

In an electron or positron storage ring the amplitude of transverse oscillations damps 

towards a stable closed trajectory. This radiation damping is caused by the emission 

of synchrotron radiation due to the uniform bending fields and by the replacement 

of the energy in the longitudinal direction only. The damping time is approximately 

equal to the time it takes to radiate away the initial energy of the particle. This 

radiation damping is counteracted by random fluctuations generated by the discrete 

photons emitted by each electron, which leads to an equilibrium beam emittance 

when the damping and excitation rates cancel [l, 21. 

Radiation damping and excitation are, in principle, present in a straight magnetic or 

electric focusing system because particles with finite amplitude are bent back towards 

the straight line trajectory. However, these effects may be modified because the fields 

are not uniform in such a focusing system. Motivated by these considerations and 

also by proposals for accelerating charged particles in crystals [3, 41, in a recent 

paper [5] we study the radiation reaction effect on a charged particle undulating in a 

straight, continuous focusing system. In this paper we present more detailed radiation 

calculation and discuss extension of the study to a focusing-dominated bent system. 

2 CHANNELING RADIATION 

2.1 Stationary States 

Consider an electrostatic focusing channel that provides a transverse continuous po- 

tential V(x) = 1(x2/2 f or a charged particle, say a positron, where Ii’ is the focusing 

strength. The parabolic potential could be, for example, an approximation of the 

Lindhard potential in the case of planar crystal channeling [6, 71. For simplicity, 

we take x as the single transverse dimension of the particle, which has relativistic 

energy E = ym and which moves freely (without acceleration) in the longitudi- 

nal z-direction with a constant momentum p, = rrn,Bz in the absence of radiation. 

We set e = h = c = 1 in most equations, but reinsert them when suitable. The 

effect of the additional transverse dimension will be discussed later. We consider 

the case in which the peak transverse momentum in one oscillation pz,maa: is much 

smaller than pz. Defining E, = Jm, we can approximate the total energy, 

E = Jm+ v(x), as E, + E,, where E, = pz/2E, + V(x) is the so-called 

transverse energy. The motion of the particle is now decoupled into two parts: a free 

relativistic longitudinal motion and a transverse harmonic oscillation with an effective 

mass E,. 

We now move straight to quantum mechanical analysis of the system because we 

want to calculate the full radiation reaction including damping and excitation due to 

discrete photon emissions. Work on relativistic crystal channeling has shown that the 

spin degree of freedom plays a negligible role [8]. Th ere f ore, we use the Klein-Gordon 
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equation to describe the general wavefunction *(x, z, t) of the channeled particle, 

[(A - Aj2 + Tn2] * = (2, - V)29 . (1) 

In the absence of radiation, we let /i = 0 and look for the energy levels E and the 

stationary states q(x, z, t) = emiEtI,, pz) of Eq. (1) by neglecting terms of the order 

(Ez/E)2 [9]. We have 

E = J% +Ez = Jnz~+~; +(n+ 1/2)w, , 

1% PA = Qg exP (~P~Z)l~(PJ) ) 

b(Pz)) = (Glxo)1’2 exP (-x2/2x:)~n(x/xo) ) 

(2) 

(3) 

where the transverse part of energy is E, = (n + l/2)wz, n is the transverse quantum 

number (n = 0, 1, a...), w, = r A E, is the transverse oscillation frequency, L is the 

length of the channel, C, = (2%!fi)-l, x0 = ,/z = l/d= is the transverse 

ground state amplitude, and H, is the nth order Hermite polynomial with its argument 

x scaled by x0. It is clear that the transverse energy level E, and the transverse 

wavefunction In(p,)) are controlled by both n and pz. 

2.2 Perturbation Approach 

Coupling between the channeled particle and the radiation field, represented by the 

vector potential i.in Eq. (l), leads to spontaneous emission of photons. By choosing 

Coulomb gauge, V . A’ = 0, and ignoring the A2 term (double-photon emission), we 

arrive at 

[ 
-v2 + m2 + ;aA’* ti 

I 
8(x, z, t) = (ia, - v)2Q(x, 2, t) . (4) 

Moving to the interaction representation we write @(:, z,t) = exp(--i’Flst)$(x,z,t). 

Identifying (T-f0 - V)2 = (-V2 + m2), and neglecting +(t) in the expansion of (i& - 

V)“@(t) in Eq. (4), we obtain 

d(t) = eixot 
[ 
(x0 - V)-‘A- ? emi”““+ 1 . 

Using first-order, time-dependent perturbation theory (Fermi’s Golden Rule), we 

obtain the transition rate Wji for the particle from an initial state In, pz) (with energy 

E) to a final state In’,p:) (with energy E’): 

W,; = 27rIMj;12S(E - E’ - wy) , (6) 

where the matrix element IMf;‘is defined by 

IMf;l” = l(n’,p:; lc,l(7& - 1/)-l/i. +[n,p,;O)i2 . (7) 
- -- 
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The vector potential 2 acting on the radiation field creates a photon of momentum 

& and energy wY(wY = ]&I) with two possible polarizations G1 and e2 (& . k2 = 0 and 

&I,2 . I$ = 0). The operator (X0 - V)-l can be approximated as ‘F&l by neglecting 

terms of the order (E,/E). Therefore 

(8) 

The matrix element (n’, pi le-“‘~“(ij e ?)ln,p,) can be evaluated by integrating 

over the coordinate space. Let the radiated photon direction be (0, c#I), where t9 is 

the emission angle relative to the longitudinal z axis and 4 is the azimuthal angle in 

the x-y plane. Thus, the photon momentum is & = Ic,( sin 19 cos 4, sin 8 sin 4, cos 4) 

and its polarization vectors can be chosen as Zr = (cos 8~0s 4, cos 19 sin 4, - sin t9) and 

62 = (sin 4, - cos 4,O). B ecause the transverse motion of the particle is restricted to 

be along the x direction, we can drop the y integral and take G = (&,O,& = ipz). 

The integral over z simply gives rise to S(p, - pi - Ic, cos 0) as the channel length 

L >> h/p,, which expresses the conservation of longitudinal momentum during the 

radiation process. We drop this S function along with its normalization to simplify 

the relevant equations, then we find 

(n’,p~le-“‘7’“(~1 - +)ln,p,) = Ii,, cos 8 cos # - ipzIz,, sin t!9 , 

(n’,p’,le-i’7’z(& - fQln,p,) = IA,, sin4 , (9) 

with 

I0 n’n 3 (n’(p:)le-izk7sineCoS~ln(pz)) , 

I1 n’n G (~'(p~)~~~imle~sinecos~~,~~(p,)) . (10) 

These matrix elements are integrals over x involving Hermite polynomials with 

different scaling parameters x0 and x& because the initial and the final transverse 

states have di$erent effective masses labeled by pz and p',. 

We will first expand the final transverse wavefunction as a superposition of the 

initial ones [lo]: 

b’(PL>l = ~(n’(P~)ln”(Pz))(n”(P~)l 
n” 

n’! 112 
= 

CC 
- 
n”l cos $ 

,,, . > 
p,gt(cos ~>(n”(pJ , (11) 

where cos 1c, = 2r/(l + r2), T = (E:/Et)lj4, CY- = (n” - n/)/2, a+ = (n” + n/)/2 and 

P& is the associated Legendre polynomial. Then Eq. (10) becomes 

I0 = CC $,,,$, > 
112 

n’n P,"t(COS~)(n/'(p,)Ie-i"kySi"eCOS91n(p,)) , 
,rr . 

I1 = $ cost/J c( > 
112 

n’n P,?t(COS~)(n"(p,)Ie-i"kysineCos9~~In(pZ)) . (12) 
,rr . 
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Since the states In”) and In) h ave the same effective mass labeled by p,, we can obtain 

the following integrals from Ref. [ll]: 

(n”le- ihsinecos41n) = [(-i)sgn(sin fl c-s $)I” (9) 1’2e-~/2L~([)[p~2 , 

(n”le- i4 sinecos4~zIn) = [( -i)sgn(sin fl cos d)]“-’ ( ?!!)1’2em~~2 

(13) 

where sgn( sin 8 cos 4) = + 1 if sin 19 cos C$ > 0 or - 1 if sin 8 cos 4 < 0, 5 = 

(x&, sin0 cos $)“/a, ,u = n - n”, and LE,, is the associated Laguerre polynomial. 

Therefore, with I,“;: given by Eq. (12) and (13), the transition rate becomes 

Wf; = ~[/I~.,cosBcosq5- ip,Ii,,sin0i2 + II$nsin$/2]6(E - E/-w,) 
w, 

. (14) 

Note that we have not made any approximations in the derivation of Eq. (12) to 

(14) except for E, << E,. Thus, this set of equations describes an arbitrary radiation 

process under the channeling condition. We can further simplify these equations by 

additional approximations. 

2.3 Wiggler Regime and Undulator Regime 

The two S functions in the previous subsection clearly indicate that the total energy 

and longitudinal momentum of the electron and the photon are conserved during 

the radiation process, just as one might expect. In order to conserve longitudinal 
momentum, we need p: = p, - wr cos 19. Let us assume the photon energy wr << E 

throughout the rest of the paper. Then the longitudinal energy, E, = Jm, 
must accordingly decrease by an amount 

A-R = (pz/E,)Ap, N w$ cos 0 < wr . (15) 

where ,B s p/(E - V) 21 p,/E,. S ince the total energy of the particle is reduced by 

an amount wr from energy conservation, its transverse energy E, = E - E, must 

decrease by 

AE,=w,(l-pcos8)>0 . 

We also know E, = (n + 1/2)w,, it follows that 

(16) 

(n + l/2)w, - (n’+ l/2) WI =wy(l -/!3cos8) > 0 . (17) 

For a small change in E,, w: = Jm 21 w,(l + AE,/2E,). Substituting 

Eq. (15) for AE,, we obtain an equation that relates the change of the transverse 

quantum number to the photon energy and its emission angle 8, 

(n -n’)w, = (1 -pcosB)w, + (wrPcosO)(n’+ 1/2)w,/2E, > 0 , (18) 

- -- 
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which is always positive definite. We therefore conclude that both the transverse 

energy and the transverse quantum number of the particle always decrease after a 

photon emission process for all possible photon angles. We will come back to this 

point in the next section. 

Introducing the harmonic number v = n - n’ and the pitch angle of the particle 

op = P~,~~~/P~ = J%i'/'E, we find from Eq. (18) a condition for the photon energy 

VW2 
W-Y” 1-p 

2y2 VW, 

cos 0 + q/4 = 1 + yV2 + 9;/2 * 
(19) 

Note that ~0~ in the above equation plays the same role as the undulator strength 

parameter in the conventional undulator radiation using alternating bending mag- 

nets [la]. In the “Wiggler” regime where ~6~ 2 1, or pz 2 m, the transverse motion 

of the particle is classical because its quantum level n >> 1. Taking the classical 

limit for the transverse motion (n + oo, ti + 0, but nh --+ E,/w, remains fixed) and 

applying W (1% we can write both the associated Legendre polynomial and the 

associated Laguerre polynomial in terms of the appropriate Bessel functions [ll]: 

(~cos?b)1’2P~;(cosb”) + J&m) ; PO> 
(n/‘/e- izk7sinecos41n) j (-i)l”J,(yb) , 

(n”le- iZkySinecos~&In) + ‘-Z1 E[J,-,(ub) + Jp+l(vb)] , (21) 

wherea i B~cos8/8(1-~cos~+8~/4) and b= ~,sin6cos~/(1-~~0~~+~~/4). Note 

that in this limit, Eq. (20) does not yield 6, n r tl even for wr < E because any small 

deviation in the sealing parameter x0 in the Hermite polynomial can be amplified as 

n + 00. Putting Eq. (20) and (21) back into Eq. (12) and (14), we obtain 

Wf; N 2 [ (S,38, cos r3 cos q5 - 2S,1/3 sin t9)” + (S,s8, sin m)2] 

xS[(l - pcos t9 + SZ/4)w, - VW,] ) (22) 

where S,r = CI JI(v~)J,-z(Y~) and LX = Cl JI(v~)[J,-zE--I(Y~) + J,-z+I(~~)]. Corn-- 
pared with Eq.(57) and Eq.(58) in Ref. [12], th e analogy between channeling radiation 

and the conventional undulator radiation is obvious. 

In the “undulator” regime where 78, << 1, the transverse oscillation amplitude is 

so small that the associated quantum level n can be very close to 1, so the above 

classical limit may not be valid. However, since both n’ and n” are comparable to n, 

we have in this case: (n’! cos $/n”!)l/‘PaqC (cos T/I) --+ S,~,tt as Ei N E, or cos 1c, N 1. 

Moreover, we can directly evaluate Eq. (13) by the dipole approximation [S] where 

terms beyond the order x are neglected: 

(n”le- izk~sinecosdln) N (n’!I - ix~,sin~cosq$ln) = -li~~~~‘@ntt,nml , 
z 

(n”le- imkysinecos4~zIn) N (n”l&jn) = J%&J~,~-~ . (23) 
- 
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We have made use of n” = n’ < n after each radiation and Ic, = wr N w,/( 1 - p cos 0) 

for ~0~ << 1 in Eq. (23) above. Thus, for an arbitrary transverse level n in the 

undulator regime, the transition rate is nonzero only if n’ = n- 1 (the dipole selection 

rule) and is given by 

27r2nw, cos2 qS(coS 0 - p)” 
Wji- Ew 2 Y [ (1 - /?cos8)2 

+ sin2 4 1 S[(l - PCOS 0)W, - WZ] . (24) 
This result is consistent with Eq. (22) in the limit of large n but small 78,. Therefore, 

we can calculate the rate of change of the particle’s total energy from the dipole 

transition rate in this regime: 

dE 

dt- f -cs 
$(E’-- E)Wf; = -igy2nliuz , (25) 

where r, = e2/mc2 is the classical electron radius. After identifying nhw, with the 

rms amplitude of the oscillating particle in the large n limit (n/h, N E, = K(x2)), 
we see that dE/dt in the above expression is identical to the classical radiation power, 

which is proportional to E2Fi (5’1 being the transverse focusing field strength). 

3 RADIATION REACTION IN A STRAIGHT CHANNEL 

3.1 Absolute, Asymmetric Damping 

We now turn to the radiation reaction of the channeled particle. the transverse 

quantum level n of the particle always decreases after a random photon emission. This 

conclusion is valid-for all oscillation amplitudes, although we focus on the undulator 

regime where 78, << 1 to illustrate the unique feature of radiation reaction in a 

focusing channel. With the dipole transition rate given by Eq. (24), we can calculate 

the rate of change of the transverse quantum level 

. (26) 

We see that n damps exponentially with an energy-independent damping constant, 

rc = 2r,Is-/3mc. Note that in the case of radiation in a bending magnet, there is 

an additional term of opposite sign independent of the quantum level in question 

that represents the excitation of transverse oscillations [a]. That term is absent in 

Eq. (26) and the radiation damping is absolute because no quantum excitation is 

induced by random photon emissions. Since the action of the transverse oscillation 

is J, = E,/w, = (n + 1/2)ti, the decrement of the transverse energy level n leads to 

the radiation damping of this action given by dJ,/dt = -r,(J, - h/2). 

One can use classical radiati,on reaction to obtain a similar result for the radiation 

damping of the transverse oscillation amplitude that damps exponentially (the change 

of energy modifies the amplitude damping). It also clearly shows how to extend 

the results to the case where 76, N > 1. More importantly, the quantum mechanical 

- -- 
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calculation above automatically takes into account the full radiation reaction and 

shows the absence of excitation in this system (a surprising result viewed from the 

standpoint of electron synchrotrons and storage rings). It is difficult if not impossible 

to model the radiation reaction effect of discrete photon emissions cZassicalZy for 

~0~ < 1, because the time during which a typical photon is emitted is much longer 

than the oscillation period in the undulator regime [a]. 

The excitation-free reaction of radiation comes from the fact that the transverse 

quantum level must decrease after each radiation process. In the longitudinal direction 

the particle recoils against the emitted photon in order to conserve the longitudinal 

momentum between the two particles. However in the transverse direction the exis- 

tence of the focusing force destroys the momentum balance and suppresses the recoil 

effect. The external focusing environment absorbs the excess transverse momentum 

during the process of radiation. In this sense, the radiation reaction of a channeled 

particle in the transverse dimension is similar to that in the Mossbauer effect [14]. 

Another novel characteristic of this radiation reaction is that the relative damping 

rate of the transverse action can be much faster than the relative damping rate of 

the longitudinal momentum, i.e., the radiation reaction is asymmetric in these two 

dimensions. The rate of change of the longitudinal momentum can be obtained from 

the energy loss equation, Eq. (25), with the approximation pz N E, N E. We obtain 

. - 
which is less than Ic for 

$$ < 1, thus 

(27) 

y20i < 2. In the undulator regime we have the condition 

(28) 

When the pitch angle of the particle is increased to the extent that the undulator 

condition is no longer satisfied, the transverse damping rate is much more complex 

and Eq. (28) should be modified. In this case, we expect that the relative damping 

rate of the transverse action approaches that of the longitudinal momentum just as 

the case of synchrotron radiation. However, some asymmetry between these two 

degrees of freedom always exists because the focusing force suppresses the radiation 

reaction in the transverse direction. 

3.2 Transverse Ground State 

Because of the lack of recoil and excitation in the transverse dimension, the particle 

damps exponentially to its transverse ground state (n = 0), and this ground state is 

stable against further radiation (energy and momentum conservation forbid further 

radiation). In the ground state the particle reaches the minimum value of the action 

Jo = h/2. Relating this minimum action to a normalized emittance, we find 

je,in E Jo/me = A,/2 , (29) 

where X, = h/me is the Compton wavelength. This minimum is also the fundamental 

emittance limited by the uncertainty principle. 

- - 
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One can estimate the time needed for a particle to damp to its ground state. 

Suppose the particle enters the focusing channel with a transverse energy (n; + 1/2)w, 

satisfying the undulator condition, it reaches the ground state in a time t, N ln(n;)/I’,. 

To illustrate the range of damping times, let us consider two extreme examples: 

crystal channels and conventional focusing devices for accelerators. The channeling 

strength for a typical crystal channel is K N 101iGeV/m2, so Ic N (lOnsec)-i. When 

a 1OOMeV particle is initially barely captured by the crystal channel, the transverse 

energy of the particle is of the order of the maximum channeling potential energy 

lOOeV, and the corresponding quantum number n; is about 500. Thus, in the absence 

of any dechanneling effects such as multiple scattering [15], the time it takes to damp 

to the ground state is t, N 60nsec. For a conventional focusing device, the focusing 

strength is about K N 30GeV/m2, so rc N (30sec)-‘. The damping time to the 

ground state in this case depends upon the logarithm of the initial state n;, but will 

usually be several e-folding times. 

One can also calculate the total energy loss of a particle when it is damped to the 

transverse ground state. By replacing n = n; exp( -r,t) and w, N c K E in Eq. (25) 

and integrating over time, we find the final energy retained in the ground state nf = 0 
iS 

Ej = Ei/[l + (7@j9);2/412 * (30) 

Since Eq. (30) is derived in the undulator regime where 70, << 1, we conclude that a 

particle can radiate to the ground state while losing only a negligible amount of total 

energy, provided that its initial pitch angle satisfies the undulator condition. Thus, 

particles that enter the focusing channel with the same initial energy but different 

initial pitch angles will all end up in the transverse ground state with a very small 

relative longitudinal energy spread of (70,):/2. 

3.3 Two Transverse Degrees of Freedom 

We have left out the other transverse degree of freedom of the particle for the sake 

of simplicity. If the y direction is free of any force, the particle radiating a photon 

with a momentum component in the y direction must recoil by the same magnitude 

to conserve total momentum in this direction. In general, quantum excitations are 

present in a force-free dimension. However, if a continuous focusing force also exists 

in the y direction, and if both transverse oscillations satisfy the conditions 70; << 1 

and +,Y < 1, then it is straightforward to extend the discussion above to both 

transverse dimensions because radiation reaction effects in the x and the y directions 

are completely decoupled. Photons are emitted by changing either n, or ny by one, 

and all the previous results apply to both dimensions. In the case where the oscillation 

amplitude is large in the z or in the y direction, there is some coupling between the 

two transverse degrees of freedom. But if we define the total transverse energy 

El = p32EZ + K1x2/2 + p;/2Ez + K2y2/2 , (31) 
from the conservation of both energy and longitudinal momentum, it follows that El 
always decreases after a random photon emission. Combining this with the existence 

- ~-- 
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of a focusing axis in the continuous focusing system, we conclude that the particle 

must damp to a mutual transverse ground state (n, = 0 and ny = 0) that is stable 

against further radiation. 

3.4 Adiabatic Acceleration 

We note that all the results obtained here are not affected by adiabatic acceleration 

along the longitudinal direction, since both the action and the stationary states in 

our system are adiabatic invariants. The condition for adiabatic acceleration is given 

bY 
d&ccel 

dt 
<w,Eem . (32) 

Using the previous examples, we get w,E - 105GeV/m for a crystal channel and 

2GeV/m for a conventional focusing device when the energy of the particle is only 

100MeV. Obviously, the above inequality is guaranteed by any foreseeable accel- 

eration mechanism. We conclude that the particle, once damped to its transverse 

ground state in a continuous focusing channel, can be accelerated adiabatically along 

the channel without any further radiation loss. Therefore, the theoretical minimum 

transverse emittance can be retained at a much higher accelerated particle energy, 

and the relative longitudinal energy spread can be reduced through acceleration. 

4 RADIATION REACTION IN BENT SYSTEMS 

4.1 Bending Magnet and Storage Ring 

We have shown that the radiation reaction in a straight, continuous focusing channel 

is fundamentally different from that in a bending magnet. In a uniform magnetic 

field, the radiating particle recoils against the emitted photon by both reducing its 

orbital quantum number and by shifting the center of its circular orbit [2]. This 

latter change is allowed due to the translational invariance of the system in the plane 

perpendicular to the magnetic field, i.e., the system is degenerate with regard to 

the orbiting centers. The center shift is even necessary in order that the tangent of 

the particle trajectory be continuous before and after the emission. Therefore, the 

photon emission yields a random recoil of the electron due to variations in both angle 

and magnitude of the photon’s momentum. The resulting random shifts in the orbit 

center give rise to the random excitations of radial betatron oscillations. 

On the other hand, the existence of a focusing axis in a straight, continuous focus- 

ing environment removes such a degeneracy and therefore eliminates any quantum 

excitation to the particle from random photon emissions. In a conventional storage 

ring, the stored particles are confined by both bending and focusing fields. However, 

the focusing field is typically so much weaker than the bending field that its radiation 

effect is negligible. On the average, radiation damping in a conventional storage ring 

shrinks the momentum vector of the particle proportionally [l, 161. 

-- - 
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4.2 Focusing-dominated Bent System 

Nevertheless, the above results of straight, focusing channels can be extended to bent 

systems provided that the focusing field is much stronger than the bending field. Let 

us consider a bent system with the radius of curvature p. A highly relativistic particle 

of energy E 

being bent by a uniform magnetic field, B = E/ecp, radiates electromagnetic energy 

at the rate: 
dE 2 r,c E4 - = _-___- 
dt 3 (mc2)3 p2 ’ (33) 

and the characteristic damping (or anti-damping) rate in all three degrees of freedom 

due to the bending is 
1 dE 2 r,c 

rbN-- =--?3 . I I E dt 3 p2 

In addition, the particle radiates while executing rapid betatron oscillations around 

the ideal bent trajectory due to the focusing field. If the bending is adiabatic, the 

transverse damping rate due to betatron oscillations can then be approximated by 

IC = 2r,K/3mc, as discussed in the previous section. Taking the ratio of these two 

rates, we obtain: 

rb XP2 

r,=(plr)2 ’ 
(35) 

where XP = ,/E/K = l/ w, represents the betatron wavelength. Since the radiation 

formation length due to the bending is of the order p/y [l, 21, Eq. (??) shows that 

when this length is much longer than the betatron wavelength, the transverse damping 

due to local oscillations is much stronger than the radiation effects from the global 

bending of the trajectory. Therefore, in such a system, the radiation reaction is 

dominated by the focusing field. To illustrate the choice of parameters for such a 

system, we consider a numerical example: a focusing-dominated low energy electron 

ring. Let us assume that the radius of the ring is ,o = 33m and that E = O.lGeV 

electrons circulate around the ring. A rather weak magnetic field B = O.OlT is 

required to confine the particles on the ideal circular trajectory. Suppose along the 

ideal trajectory, the electrons are continuously focused with the focusing strength 

K = 30GeV/m2, so the betatron wavelength Xp is about 5.8cm and the radiation 

formation length p/y is about 17cm. From Eq. (??), we see that the transverse 

damping rate due to the focusing field is about nine times as fast as the characteristic 

damping (or anti-damping) rate from the bending field. 

In a straight system, quantum excitation is absent because the transverse energy 

level must decrease after each radiation process to satisfy the kinematic constraints. 

However, in a bent system, the transverse betatron oscillations can be coupled with 

the energy loss through the dispersion function 11. The instantaneous emission of a 

typical photon with energy wr results in a change Sx:p in the betatron displacement 

and a change 6x:& in the betatron slope given by [l] 

W-T sxp=q- ) 
E 

Sx& = r/f% . (36) 
- - 
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We can estimate the transverse energy change induced by this effect to the first order 

in wy/E. 

(LYE&, N Kxp(Sxp) + Exb(6xb) = K(xpq + Ap2xj+)% . (37) 
Since the transverse energy is discrete with minimum level spacing w,, the transverse 

quantum level change is not allowed when the induced change is smaller than w,. If 

we make the simplifying assumption that 7 N Xp”/p is a constant, so that ‘7’ = 0; and 

use the dipole radiation photon energy wr N 2y2w, as the typical photon energy in a 
focusing-dominated system, then the condition (AEz)diS < w, is equivalent to 

JP - - 
(P/Y) < 2:sP . 

(38) 

Note that Eq. (38) is derived in the undulator regime where 70, < 1. Thus the 
inequality is guaranteed in the focusing-dominated system with Xp < p/y. These 

considerations suggest that quantum excitation may be prohibited even in dispersive 

systems as long as certain conditions are satisfied. We should emphasize that the 

above discussion is not a proof; however, it points out a new regime in focusing- 

dominated systems where the discrete photon emissions actually occur over a length 

scale long compared with betatron oscillations. This radiation process may lead to 
adiabatic variations of both the particle trajectory and the off-energy closed orbit 

without any quantum excitations to betatron oscillations. 

5 CONCLUSION 

The basic resultsobtained here apply to straight or adiabatically bent, focusing- 

dominated systems. The excitation-free, asymmetric radiation reaction in such sys- 

tems is the direct consequence of the kinematic requirements and does not depend 

on the various approximations used here. There may be interesting applications of 

this phenomenon in beam handling, cooling and acceleration. For example, in a suffi- 

ciently low-energy, focusing-dominated electron ring, the absolute transverse damping 

could perhaps be utilized to obtain ultra-cool beams in transverse phase space with 

negligible total energy loss. Proposals of miniature linacs powered by lasers focusing 

systems. The results of this paper provide a radiation damping mechanism to pre- 

vent emittance growth. The existence of a transverse ground state for the accelerated 

particles might also be relevant and important. However, when realistic systems are 

considered, some of the results shown here may be modified. For instance, if other 

sources of excitation (multiple Coulomb scattering, imperfections, etc.) are present, 

then the beam may not reach the minimum emittance. When these additional effects 

are included, the actual equilibrium beam emittance will depend upon the details of 

the application considered. 
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