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Abstract

The interaction of an electron beam with residual gas ions results in mutually

driven transverse oscillations. This effect arises during the passage of a single

train of bunches. An equivalent instability mechanism is encountered in

positron beams where ionization electrons oscillate within a single bunch. In

either case, the oscillations grow exponentially with an exponent proportional

to t1/2. In this report, the rise time of the instability is calculated analytically

by a perturbation series approach and is compared with computer simulations.

Growth rates are evaluated for several existing or proposed storage rings and

linear accelerators; the effect considered could be a significant limitation in

many of the future designs.
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I. INTRODUCTION

The instability mechanism described in this report is caused by residual gas ions or

electrons. Both the nature of the instability and the analytical treatment chosen resemble

the beam break-up due to transverse wakefields [1,2]. The effect discussed here may occur on

different time and length scales, involve different species of particles, and be a single-bunch or

a multibunch effect for positron and electron beams, respectively. Charged particle beams,

traversing a beam line or circulating in a storage ring, ionize the residual gas and generate

free ions and electrons. The ionized atomic electrons, trapped inside a positron bunch, are

strongly focused and oscillate at high frequency, thereby causing a transverse deformation of

the beam. The wavelength of the oscillation is typically a small fraction of the bunch length.

In much the same manner, a long train of electron bunches can interact with positive ions,

resulting in a mutual excitation of the beam and the ions. Due to the mass-difference of

electrons and ions, the wavelength of the ion-oscillation within the electron bunch train is

several orders of magnitude larger than that of the electrons within a single positron bunch.

The effect described arises during the passage of a single electron-bunch train or a

single positron bunch; ions (or ionized electrons) created by the head of the train (bunch)

perturb the tail. The instability mechanism is the same in linacs and storage rings where

we assume that the ions are not trapped from turn-to-turn. It differs from instabilities

previously studied [2–8], where the ions, usually treated as being in equilibrium, interact

with a circulating electron or antiproton beam. The two-beam instability theory developed

by Koshkarev [9] and Laslett [10] explains the dependence of the beam-ion interaction upon

the ion oscillation frequency and the betatron tunes of the storage ring. However, it does

not describe the instability we discuss that can occur in a transport line, linac, or a storage

ring with a clearing gap to prevent ion trapping.

This report is structured as follows. In Section 2, the differential equations of motion are

given. Section 3 discusses the underlying assumptions and approximations. For a rectangular

beam distribution, the equations of motion are solved by a perturbation expansion in
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Section 4, where expressions for the instability rise time are derived. Section 5 describes the

computer simulations performed for several accelerators and compares the simulation data

with the analytical results. In Section 6, rise times are evaluated for several operating or

proposed storage rings and linear accelerators. Section 7 is devoted to a brief discussion of

possible remedies. Results are summarized and a perspective on open questions is given in

Section 8.

II. THE EQUATIONS OF MOTION

The vertical motion of the beam and the ions or electrons generated during the beam

passage via ionization of the residual gas is a mutually driven oscillation, which, in linear

approximation, may be described by two equations of motion. The first equation reads

d2yb(s, z)

ds2
+ ω2

βyb(s, z) = K[yi(s, s+ z)− yb(s, z)]
∫ z

−∞
ρ(z′) dz′ . (1)

The coordinate s denotes the longitudinal position along the beam line or storage ring.

Equation (1) represents the vertical motion of the beam centroid yb(s, z) at a distance z

from the bunch/bunch train center. In our convention, positive values of z refer to trailing

particles. The motion is a combination of a betatron oscillation due to external focusing,

represented by a harmonic oscillator of frequency ωβ ≈ 1/βy, and a driving force that is

proportional to the distance between the beam and the ion centroids, and to the number

of generated ions. Thus, assuming collisional ionization, the driving force is proportional

to an integral over the beam density ρ normalized such that
∫∞
−∞ ρ(z)dz = 1. Here, and in

the following, the term ‘ions’ shall be understood as ‘ions or electrons’ and the term ‘bunch

train’ will refer to the ‘bunch train or single bunch’, depending on whether we are discussing

an electron bunch train or a single positron bunch.

The coefficient K is given by

K ≡ 2λion(pgas) re
γΣy(Σy + Σx)

≈ 4λion(pgas) re
γ3σy(σx + σy)

, (2)
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where γ denotes the relativistic factor γ = E/(mc2) for the beam, re is the classical electron

radius, and

Σ2
x,y = σ2

x,y + σ2
ion, x,y ≈

3

2
σ2
x,y . (3)

The term σx,y denotes the horizontal and the vertical rms beam size respectively. Assuming

that the ions are generated at rest (i.e., at temperature zero), the average rms size of the

ion cloud is smaller by a factor
√

2 due to focusing by the beam. The ions also have a

non-Gaussian transverse distribution, but the force on the beam closely approximates that

of a Gaussian bunch. Assuming a cross section for collisional ionization of about 2 Mbarns

(corresponding to carbon monoxide at 40 GeV) the density λion of ions per meter at the end

of the bunch train is

λion [m−1] ≈ 6Npgas [Torr] , (4)

where N is the total number of particles in the beam, pgas the residual gas pressure in Torr,

and other quantities are in SI units, which are used throughout the paper.

The second equation,

d2ỹi(s, t)

dt2
+ ω2

i (t− s) ỹi(s, t) = ω2
i (z) yb(s, t− s) , (5)

with the appropriate initial conditions, describes a transverse slice of ions or electrons, at

fixed position s, oscillating in time inside the beam. The variable ỹi(s, t) is the vertical

centroid of the transverse slice of ions. For convenience, here and in the following, time t is

quoted in units of length obtained from the actual time by multiplication with velocity of

light c. At a certain time t, beam particles at a distance z = t − s from the bunch center

reach the location s. Their centroid position is therefore given by yb(s, t−s). The oscillation

frequency ωi(t− s) = ωi(z) is proportional to the square root of the beam density ρ. In the

case of electrons oscillating inside a single positron bunch, ωi is given by

ωi ≡
[

4Nρ(z)re
3σy(σx + σy)

]1/2

(electrons, single bunch) , (6)
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while for ions and an electron bunch train. we have

ωi ≡
[

4Nbrp
3Lsep σy(σx + σy)A

]1/2

(ions, bunch train) , (7)

where A designates the atomic mass number of the ions, Nb the number of particles per

bunch, Lsep the bunch spacing, and rp the classical proton radius (rp ≈ 1.5× 10−18 m).

The solution to Eq. (5) for a slice of ions generated at time t′ = s + z′ is denoted

ỹi(s, t|s+ z′). The centroid of the ions yi(s, t) of Eq. (1) is obtained by averaging ỹi(s, s+ z′)

over all possible creation times; namely,

yi(s, t) =

∫ z
−∞ dz

′ρ(z′)ỹi(s, t|s+ z′)∫ z
−∞ ρ(z′) dz′

. (8)

III. APPROXIMATIONS IN THE ANALYTICAL TREATMENT

Equations (1–5) involve several assumptions and approximations. Noteworthy are:

• The force between beam and ions is assumed to be linear. Should the coherent

oscillation grow larger than the beam size, this approximation would no longer be valid

and the decay of the force at large distances would have to be considered. Furthermore,

we neglect the Landau damping due to the nonlinearity of the beam-ion force. This

may reduce the instability growth rate.

• We ignore any Landau damping caused by the lattice, such as that due to nonlinear

fields or chromaticity, which could counteract a further growth of the oscillation

amplitude and give rise to filamentation.

• It is supposed that inside a bunch train the ions are not over-focused, so that a smooth

approximation of the motion in the form of Eq. (5) may be made. This condition is

written

ωiLsep < 4 , (9)
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where Lsep is the distance between two bunches. Ions are, however, strongly

over-focused between two different bunch trains, so we ignore the coupling between

trains.

• The number of neutral gas molecules is assumed to be large compared with the number

of ions during the full passage time of the bunch train or bunch. If there is no

repopulation, this condition may also be written

N

σxσy
< 3× 1022 m−2 , (10)

where N denotes the total number of electrons in the train. This condition is barely

fulfilled for the NLC main linac. However, saturation effects are not important when

the beam area is repopulated by thermally moving gas molecules, as is usually the

case. Second ionization (the cross section of which is, in general, comparable to that

of the first ionization) may be important in some situations, but is not included in the

present treatment.

• In the case of storage rings, ions are generated not only by collisional ionization from

the beam, but also by synchrotron radiation. The photoelectric cross section for

photon energies below 100 eV is about 5–10 Mbarns, which is 3–5 times larger than

the collisional ionization cross section. In total, for the SLAC PEP–II High Energy

Ring (PEP–II HER) [11], the NLC Damping Ring (NLC DR) [12], and the SLC Arcs

[13], there are about 2–3 times more ions generated by synchrotron radiation than

by the beam electrons. Most of the former are far outside the beam area, and are

equally distributed between the beam and the chamber wall. Because the density of

the radiation-generated ions is low compared with the density of ions generated by

collisional ionization, in a first approximation, they can be ignored; the ions form a

diffuse halo around the beam without effecting the dynamics.

• The neutralization of ions by photoelectrons from the vacuum chamber walls is ignored.

The probability of this process is extremely small. Furthermore, only the small fraction
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of photoelectrons of sufficiently high energy may reach the beam orbit in the time

interval between two bunch passages. For instance, if the bunch gap is 1.4 ns, the

minimum electron energy is of the order of 3 keV.

IV. PERTURBATION EXPANSION AND RISE TIMES

In the following we make the further approximation that the longitudinal bunch density

ρ(z) is a rectangular distribution; namely,

ρ(z) =


1

2z0
, for |z| < z0 ,

0 , otherwise .
(11)

In this case, the oscillation frequency ωi is constant inside the bunch or along the bunch

train. This assumption considerably simplifies the following calculations.

Consider a transverse slice of ions at position s in the accelerator created by ionization at

time t′. Because the initial position of the ions must be the same as the beam that created

them, the initial conditions are ỹi(s, t
′|t′) = yb(s, t

′−s) and dỹi(s, t
′|t′)/dt = 0. From Eq. (5),

the vertical position at a later time t is

ỹi(s, t|t′) = yb(s, t
′ − s) cos[ωi(t− t′)] + ωi

∫ t

t′
yb(s, t

′′ − s) sin[ωi(t− t′′)] dt′′ (12)

= yb(s, t− s)−
∫ t

t′

∂yb(s, t
′′ − s)

∂t′′
cos[ωi(t− t′′)] dt′′ , (13)

where we have performed an integration by parts. The centroid of the ions or electrons is

obtained from Eq. (8)

yi(s, t) = yb(s, t− s)−
1∫ z

−z0 dz
′ρ(z′)

×
∫ z

−z0
dz′ρ(z′)

∫ z+s

z′+s

∂yb(s, t
′′ − s)

∂t′′
cos[ωi(t− t′′)] dt′′ , (14)

or

yi(s, s+ z) = yb(s, z)−
1∫ z

−z0 dz
′ρ(z′)

×
∫ z

−z0
dz′ ρ(z′)

∫ z

z′
dz′′

∂yb(s, z
′′)

∂z′′
cos[ωi(z − z′′)] dz′′ , (15)
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where in the second step we have changed the variable of integration from t to z ≡ t − s.

According to Eq. (15), a nonzero slope ∂yb(s, z)/∂z (i.e., a transverse displacement of at least

one ‘slice’ in z with respect to the rest of the beam) is required in order that the instability

can develop. We are now in a position to combine Eqs. (1) and (5) into an integral equation

for the beam centroids yb(s, z) alone. From Eq. (1) we find

yb(s, z) = yb(0, z) cos(ωβs+ φ0)

+
1

ωβ

∫ s

0
ds′K

∫ z

−z0
ρ(z′) dz′[yi(s

′, z + s′)− yb(s′, z)] sin[ωβ(s− s′)] , (16)

= yb(0, z) cos(ωβs+ φ0)− 1

ωβ

∫ s

0
ds′K sin[ωβ(s− s′)]

×
∫ z

−z0
dz′ρ(z′)

∫ z

z′
dz′′

∂yb(s
′, z′′)

∂z′′
cos[ωi(z − z′′)] , (17)

where the first term represents an unperturbed betatron oscillation. This integral equation

may be solved by a perturbation series in K/ωβ. For that purpose we write

yb(s, z) =
∞∑
n=0

ynb (s, z) , (18)

and the nth order solution ynb (s, z) is given by the recursion relation

yn+1
b (s, z) = −K

ωβ

∫ z

−z0
dz′ ρ(z′)

∫ z

z′
dz′′ cos[ωi(z − z′′)]

×
∫ s

0
ds′ sin[ωβ(s− s′)] ∂y

n
b (s′, z′′)

∂z′′
. (19)

For the zeroth order term y0
b (s, z) we now make the following ansatz

y0
b (s, z) = ŷ cos(ωβs+ φ) sin(ωiz + θ) (20)

where ŷ is the initial Fourier component of frequency ωi in the longitudinal beam distribution.

This initial amplitude could, for instance, be due to Schottky noise (i.e. the finite number

of particles in which case ŷ ∼ 3σy/
√
N), or vertical dispersion, etc. The s-dependent term

of Eq. (20) describes a pure betatron oscillation, while the z-dependent part reflects the

oscillation of the ions at a frequency ωi for each position s; this translates into a longitudinal

8



   

deformation of the beam. The terms φ and θ denote initial phases. In order to solve the

perturbation equation (20) it is convenient to make the further simplifying assumptions,

ωβsÀ 1 (21)

ωiz0 À 1 (22)

In other words, we consider, firstly, the beam evolution over time periods larger than the

betatron oscillation period and, secondly, bunches or bunch trains which are long compared

with the oscillation wavelength of the trapped particles. Both conditions are easily fulfilled

for the applications considered in the later sections.

Using Eq. (20) and Eq. (19) the first order solution reads

y1
b (s, z) = −Kωi

ωβ

[ ∫ z

−z0
dz′

1

2z0

∫ z

z′
dz′′ cos[ωi(z − z′′)] cos(ωiz

′′ + θ)
]

×
[∫ s

0
ds′ sin[ωβ(s− s′)] cos(ωβs

′ + φ)
]
,

= − ŷ
Kωi

2z0 ωβ

[
1

4
(z + z0)2 cos(ωiz + θ)

] [
s

2
sin(ωβs+ φ)

]
, (23)

More generally, the nth order term in the expansion (18) is given by

ynb (s, z) = ŷ

(
−K
ωβ

)n
· Sn(s) · Zn(z) (24)

where

Sn(s) ≡
∫ s

0
ds(1) sinωβ(s− s(1)) . . .

∫ s(n−1)

0
ds(n) sinωβ(s(n−1) − s(n)) cos(ωβs

(n) + φ) ,

≈ 1

n!

sn

2n
· Re [in exp{i(ωβs+ φ)} ] , (25)

and

Zn(z) ≡
∫ z

−z0
dz(1)′ 1

2z0

∫ z

z(1)′
dz(1) f(z, z(1)) . . .

∫ z(n−1)

−z0
dz(n)′

× 1

2z0

∫ z(n−1)

z(n)′
dz(n) f(z(n−1), z(n)) sin(ωiz

(n) + θ) ,

≈
[
ωi(z + z0)2

8z0

]n
1

n!
Im [inexp{i(ωiz + θ)} ] , (26)
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where

f(z, z(1)) = cos
[
ωi(z − z(1))

] ∂

∂z(1)
. (27)

The approximate expressions for Sn and Zn were found, assuming that the growth is small

over an oscillation ωβ or ωi. Strictly, this imposes an upper limit on s and z, but these limits

are outside the regions of physical interest.

If we introduce the dimensionless function

η(s, z) ≡
[
Kωi(z + z0)2s

ωβ16z0

]
(28)

solution (24) may be rewritten

yb(s, z) =
ŷ

2

∞∑
n=0

η(s, z)n

(n!)2

× [(−1)n sin(ωiz + θ + ωβs+ φ) + sin(ωiz + θ − ωβs− φ)] . (29)

Since the series expansion of the zeroth order Bessel function J0 is

J0(z) = 1− z2/4

(1!)2
+

(z2/4)2

(2!)2
− (z2/4)3

(3!)2
+ . . . , (30)

Eq. (29) can be written in more compact form as

yb(s, z) = ŷ
1

2

{
J0

[
2
√
η(s, z)

]
sin(ωiz + ωβs+ φ+ θ)

+J0

[
2i
√
η(s, z)

]
sin(ωiz − ωβs− φ+ θ)

}
. (31)

Now the asymptotic form of the Bessel function for large arguments,

2
√
η(s, z)À 1 , (32)

is

J0(2
√
η ) ≈ π−1/2η−1/4 cos

(
2
√
η − π

4

)
(33)

J0(2i
√
η ) ≈ (4π

√
η )−1/2 exp(2

√
η ) . (34)
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In this large time limit, we find

yb(s, z) ≈ ŷ
1

4
√
π

1

η1/4
exp(2

√
η ) sin(ωiz − ωβs+ θ − φ) . (35)

Only the term with phase (ωiz − ωβs) is exponentially growing, while the other, of phase

(ωiz + ωβs), is damped. In the first case, the two slopes ∂yb/∂s and ∂yb/∂(−z) have equal

sign. For a train of electron bunches, the dimensionless function η(s, z), Eq. (28), is

η(s, z) =
N

3/2
b rer

1/2
p (z + z0)3 s

√
2γσ

3/2
y (σx + σy)3/2 ωβz0 A1/2 L

3/2
sep

· p [Torr] , (36)

where Nb denotes the number of particles per bunch, Lsep is the bunch spacing, σx,y is the

horizontal and vertical beam size, A is the atomic mass number of the ions, γ = Ee/(mec
2) is

the relativistic factor of the beam electrons, ωβ(≈ 1/βy) is the vertical betatron frequency, re

and rp are the classical electron and proton radii, and all quantities are in SI units. Finally,

notice that the function η(s, z) increases linearly with time t (or with distance s) and with

vacuum pressure pgas, and is inversely proportional to the beam energy. It scales as the

3/2-power of the number of particles per bunch, and as the square of the bunch train length.

Defining a growth rate τ−1
asym for the asymptotic limit as the time at which the exponent

in Eq. (35) is equal to one, we find

τ−1
asym [m−1] ≡ Kωi (z + z0)2

4ωβ z0

(asymptotic limit) . (37)

For comparison, from the first-order solution, Eq. (23), the small-amplitude growth rate is

estimated to be

τ−1
1 [m−1] =

Kωi(z + z0)2

16ωβ z0

(first-order solution) , (38)

which is smaller by a factor of 4. For the multibunch case, the asymptotic growth rate,

Eq. (37), at z = z0 can be expressed in terms of more basic parameters as

τ−1
asym,e− [s−1] ≈ 5p [Torr]

N
3/2
b n2

b re r
1/2
p L1/2

sep c

γσ
3/2
y (σx + σy)3/2 A1/2ωβ

, (39)

where nb is the number of bunches, and c is the velocity of light. The growth rate strongly

depends on the number of bunches, the number of particles per bunch, and the beam size.
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In the case of a single positron bunch interacting with the atomic electrons, the asymptotic

growth rate at z = z0 can also be written

τ−1
asym,e+ [s−1] ≈ 7p [Torr]

N
3/2
b r3/2

e σ1/2
z c

γσ
3/2
y (σx + σy)3/2 ωβ

, (40)

where σz is the rms bunch length.

Finally, the asymptotic form of the ion oscillation is obtained by inserting the asymptotic

beam oscillation, Eq. (35), into Eq. (15). Retaining only the largest terms, we find

yi(s, s+ z) ≈ yb(s, z) +
ŷωi(z + z0)

8
√
η

[
iJ1(2i

√
η) cos(ωiz − ωβs+ θ − φ)

− J1(2
√
η) cos(ωi + ωβs+ θ + φ)

]
, (41)

≈ yb(s, z)−
ŷωi(z + z0)

8
√
π η3/4

[
1

2
exp{2√η} cos(ωiz − ωβs+ θ − φ)

+ sin
(

2
√
η − π

4

)
cos(ωiz + ωβs+ θ + φ)

]
, (42)

≈ ŷ

4
√
π η1/4

exp{2√η}
[
sin(ωiz − ωβs+ θ − φ)

−ωi(z + z0)

4η1/2
cos(ωiz − ωβs+ θ − φ)

]
. (43)

The difference between the ion and beam amplitudes is proportional to the factor

ωi(z + z0)/(4
√
η) and disappears in the limit η → ∞, for which yi(s, s + z) ≈ yb(s, z).

The same is true for the phase shift between the two oscillations, Eq. (35) and (42). The

linear approximation of the coupling force between the beam and the ions in Eq. (1) is no

longer valid when the separation of the two centroids becomes of the order of the beam size

σy. Since the ions and bunches oscillate with similar amplitudes, the linear approximation

breaks down at about

yb(s, z) ≈ σy . (44)

V. COMPUTER SIMULATIONS

To study this instability, we have written a computer simulation. The simulation

treats the beam, the ions, and the ionized electrons as collections of macroparticles whose
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distributions are allowed to evolve self-consistently. Specifically, each bunch in the beam is

divided into slices in z. Each slice is then represented by macroparticles with coordinates

in (x, xp, y, yp, δE/E). The number of particles per slice is chosen to reflect a Gaussian

distribution between ± 3 σz, and the initial particle coordinates are random with Gaussian

distributions. Typically, when studying the effect of trapped ions generated by an electron

bunch train, each bunch is divided into five slices, while the bunch is divided into as many

as 300 slices when studying the effect of the trapped electrons within a positron bunch.

Finally, it is important to note that the longitudinal position z of the particles is fixed; the

code was written to study linacs and does not include synchrotron motion.

The slices of macroparticles are tracked through a magnet lattice. To date, we have only

considered FODO lattices with or without acceleration sections between the quadrupoles.

When tracking storage rings, horizontal dispersion is included, and sextupole magnets can be

included. The generation and motion of ions and ionized electrons, and their effects on the

beam, are calculated at four locations in each FODO cell: at the center of each quadrupole,

and at the center of each drift or acceleration section.

At each lattice point, the calculations are performed using a grid in x and y centered

at the bunch train centroid and extending between ± 5 σx,y. As each beam slice passes,

macroparticles are created at the grid points representing the ions and ionized electrons

generated by collisional and tunneling ionization. The charge density of each ion/electron

macroparticle is determined by the ionization cross sections, the beam charge in the slice, and

the local gas density. The local gas is depleted by the ionization process, but can partially

repopulate between bunches since it is assumed to be at 300 K. The ion and ionized electron

macroparticles are created with zero initial velocity. After creation, each macroparticle is

free to move in transverse phase space; longitudinal motion is ignored. The number of

ion/electron macroparticles accumulates with the passage of each beam slice until the end

of the bunch train. At this point, they are discarded, and the calculation proceeds to the

next lattice point.
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As each beam slice passes, the beam fields are calculated, using the rms width of the

beam macro-particle distribution and the Bassetti-Erskine formula [14], and are mapped

onto the grid. The charge density of the ion and atomic electron macroparticles is also

mapped onto the grid and the corresponding electric field is calculated at the grid points

using the two-dimensional Coulomb law. A linear two-dimensional interpolation is used to

evaluate the fields at the macroparticle positions, and deflections are calculated assuming

the fields are constant over one-quarter of the FODO cell. Finally, the motion of the ionized

electrons is calculated between the bunch slices and the bunches, while the motion of the ions

is calculated between bunches; in both cases, the motion is assumed to be nonrelativistic.

The simulation was written to study effects where the ions are strongly focused by the

beam, so a number of simplifications were made. The primary omissions are:

• The integration step is one-quarter of a FODO cell. This should not be a limitation

since the beam distribution does not change much over this distance.

• The fields are mapped onto a grid (typically 25×25) and the ion/electron

macroparticles are created on this grid. Again, this is not an important limitation—we

have verified that doubling the number of grid points does not significantly change the

results.

• The beam is assumed to be Gaussian when calculating the beam forces. This is valid

provided the beam distribution is not strongly distorted.

• Synchrotron motion of the beam particles and longitudinal motion of the ions is

ignored. The longitudinal ion motion is insignificant over the passage of a single bunch

train, and the synchrotron motion can be neglected provided the growth rates are fast

compared to the synchrotron frequency.

• Nonrelativistic motion is assumed for ions and atomic electrons. This is a reasonable

assumptions for the ions, whose typical velocity is of the order 3000∼30,000 m/s.

Strictly, in the case of electron bunches, the atomic electrons acquire velocities close
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to speed of light, but they are lost so rapidly that they do not have any effect on the

beam. In the case of positron bunches, where the atomic electrons are trapped inside a

bunch, the nonrelativistic approximation is usually fulfilled. For instance, in the case

of the SLC Positron Arc, the rms velocity of atomic electrons is about 4% c.

• Ions and atomic electrons are generated at temperature zero; i.e., with zero initial

velocity. This is usually a good approximation for ions whose thermal velocity is about

300 m/s (and thus only 1–10% of the velocity they have gained after the first bunch

has passed), but it may not be a good approximation for the atomic electrons.

• The simulation is based on a linac model. Accordingly, trapping of ions through the

gap in a ring is not considered. For the high-current factory rings, this is a very good

approximation. As an example, in the case of PEP–II, the residual CO ion density

after the gap is only about 1% of the ion density before the gap.

• In the simulations, the cross section for collisional ionization is held constant at a value

of 2 Mbarns (corresponding to carbon monoxide and a beam energy of about 40 GeV).

As in the analytical treatment, second ionization and photoionization are not included.

• Each simulation study includes a single species of ions (one particular value of the

ion mass). If more than one species is present with a comparable abundance, the

lightest molecule which is still stably trapped inside the bunch train will asymptotically

determine the evolution of the instability, since the corresponding rise time is the

smallest. In such a case, the partial pressure for this particular molecule has to be

used in the analytical estimate of the rise time, Eq. (39).

The simulations described above have been performed for the PEP–II HER, the SLC

Positron Arc, and the NLC Damping Ring. In the simulations of the SLC Positron Arc,

the total number of macroparticles was 160,000 distributed over 80 slices in z, while in the

case of PEP–II and the NLC Damping Ring, 20,000 macroparticles distributed over five

slices were used per bunch. In the simulations, the transverse density of the generated ions
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becomes sharply peaked at the beam center. After the passage of a few electron bunches,

the transverse density is quite different from a Gaussian distribution [15].

Figure 1 shows the vertical bunch centroid positions as a function of bunch number after

a distance of 0, 750, 1125, 1500, and 1875 meters, respectively, for a train of 100 bunches and

a pressure of 10−5 Torr in the arcs of the PEP–II HER. Clearly visible is the instability at the

tail of the train and the exponential growth of the vertical amplitude as a function of z (the

bunch number). The amplitude growth slows down, or saturates, at about 1 σy (100 µm)

due to the nonlinearity of the beam-ion force and the detuning of ωi at large amplitudes.

In Fig. 2, the action of the bunch centroid:

Jy ≡
1

2

[
(1 + α2)

β
〈y〉2 + 2α〈y〉〈y′〉+ β〈y′〉2

]
(45)

is depicted as a function of the distance in meters for every twentieth bunch in the train.

The initial amplitudes are due to the finite number of macro-particles and on average

〈Jy〉 = εy/Nmacro. Notice that the initial growth from noise is not uniform; that it depends

instead on the initial distribution of macroparticles, which will subsequently be discussed

further. The growth rate of the trailing bunches for the real PEP–II HER extrapolated from

this scaled version is about 5 µs; this is close to the estimate of 6 µs obtained from Eq. (39).

In Figs. 3–5, the action of every twentieth bunch in the NLC Damping Ring is depicted

for three different pressure values over a distance of 800 m. For bunch number 90, the

action increases by a factor of nine after 800 m, 260 m, and 70 m at a pressure of 10−8 Torr,

3×10−8 Torr, and 10−7 Torr, respectively. This is in agreement with the expected scaling

s ∝ 1/p.

Figure 6 shows results obtained under the same conditions as the previous case (see

Fig. 5), but using a different random seed for the initial beam macro-particle distribution.

In this simulation, the rise time of bunch number 90 is roughly 9.8 ns, while in the previous

case (Fig. 5), the rise time is 23 ns. The initial growth from noise is sensitive to the

distributions of macroparticles, and, because the growth saturates at roughly σy, we do

not observe the full asymptotic behavior. We thus see large fluctuations in the simulation
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results. Typically, the simulated growth times vary by less than an order of magnitude and,

within this uncertainty, they agree with the analytic calculations. For example, the growth

times in both Figs. 5 and 6 should be compared with the analytical estimate of 5 ns.

In Fig. 7, the conditions were the same as in Fig. 5 except for a smaller bunch

charge—namely, 7×109. The corresponding growth rate is smaller by about a factor of 5,

which is expected from the analytical result. Figure 8 shows results for an ion atomic mass

of 44 (carbon dioxide), for which the rise time is about 25% larger than for carbon monoxide

(see Fig. 5). This is again consistent with the analytical dependence. Finally, Figs. 9 and 10

shows the position of the vertical beam and ion centroids along the bunch train after 0, 200,

400, and 600 meters in the NLC Damping Ring when the pressure is 10−7 Torr; the data is

from the same simulation as that in Fig. 5.

We have also performed simulations of the ion instability in the NLC prelinac and the

NLC main linac, and simulations of trapped electrons in the SLC Positron Arc, which

transports positrons. In these cases, as well as for those described above, we find that

the simulation results are consistent with the analytical calculation. The growth rates

found in the simulations agree with the analytical result to within a factor 2 or 3, which

is comparable to the spread of values obtained for different random seeds. We should

note that the simulations were typically performed at relatively high vacuum pressures to

increase the growth rates and to reduce the simulation time. This introduces uncertainty

when extrapolating to much lower vacuum pressures and growth rates, which, for example,

is necessary in the PEP–II HER or NLC Damping Rings.

VI. RISE TIMES FOR EXISTING AND PLANNED ACCELERATORS

Table I shows basic accelerator parameters and the asymptotic growth times, Eq. (39) and

(40), for several accelerators proposed or under construction at SLAC and KEK; namely, for

the NLC Damping Rings and linacs, the PEP–II HER, and for the ATF Damping Ring [16].

Due to its much higher vacuum pressure, the smallest rise time is expected for the ATF
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damping ring, which will come into operation in 1996. The growth times listed are those for

the trailing bunches (z ≈ z0). Values for the NLC systems vary between 40 ns and 1 µs. If

the initial perturbation is purely due to Schottky noise, it takes about 200 times the quoted

value before the bunches oscillate at an amplitude comparable to the beam size. Even with

the additional factor 200, the growth times are still very short.

For comparison, Table II presents a similar set of numbers for existing accelerators,

such as the SLC Positron Arc, the Advanced Light Source (ALS) at LBL, the HERA

electron/positron ring at DESY, and the SLC Positron Damping Ring. For the two positron

storage rings considered, HERA and the SLC Positron Damping Ring, the expected rise

times are much larger than the synchrotron period (300 µs and 10 µs, respectively), in

which case the instability cannot develop and the presented theory does not apply.

For CESR the predicted rise time is not small compared with the radiation damping

time (several milliseconds), while in the case of the HERA electron ring, the rise time is

about a factor 1 or 2 larger than the damping time of the transverse multibunch feedback.

In both cases, the ion-coupled instability may not be observed. Finally, from all the existing

machines considered, only the ALS should show a significant ion-coupled instability, with

a growth time of about 2 µs. Experience so far is unclear. Transverse instabilities are

observed, but these are not necessarily caused by ions.

An experimental confirmation of analytical theory and computer simulations is highly

desirable because of the potential impact on B factory and NLC designs.

An experiment to monitor and compare the emittance of electron and positron beams

as a function of the increased vacuum pressure in the SLC Arcs is therefore being proposed.

At the current pressure of 10−5 Torr, the initial Fourier component at the ion frequency is

enhanced by a modest 20% at the end of the Arc. This effect is too small to be measurable.

The ‘threshold’ pressure for observable positron emittance growth is 3×10−4 to 10−3 Torr.

Above the threshold, the positron emittance increases exponentially with an exponent

proportional to p1/2, while the electron emittance continues to increase quadratically due to

an interplay of ions and dispersion as discussed in Ref. [17].
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VII. POSSIBLE CURES

There are several possible ways to alleviate the described detrimental effect of ions or

electrons. If the oscillation amplitude of the trailing bunches or positrons respectively

saturates at about 1 σy due to the nonlinear character of the coupling force (not included

in the analytical treatment), a reduction of the vertical emittance by a factor of 2 results

in approximately the desired projected final emittance after filamentation [18]. It is not yet

known if the beam will continue to blow up, although with a decreasing growth rate, after

partial filamentation. A second possibility is to use an optical lattice in which the product

of the horizontal and vertical beta functions changes substantially as∣∣∣∣∣d(βxβy)

ds

∣∣∣∣∣ >> 1 , (46)

so that ωi varies significantly with time and no coherent oscillation can therefore develop.

A third remedy consists in introducing additional gaps in the bunch train, large enough so

that the ions are over-focused between the shorter trains [19]. As an example, additional ten

bunch gaps in PEP–II increase the instability rise time from 5 µs to 0.5 ms, which is inside

the bandwidth of the feedback system. Finally, in linear accelerators, the trailing bunches

might be realigned by use of fast kickers and feed forward.

VIII. SUMMARY AND OUTLOOK

The interaction of an electron bunch train or a single positron bunch with ions or

ionization electrons causes a transverse instability. The signature of this instability is an

exponential growth of the vertical amplitude, the exponent being directly proportional to

the position along the bunch or bunch train and to the square root of time, and inversely

proportional to the 3/4-power of the beam sizes.

The expected rise time of the instability is exceedingly short; it varies between 40 and

800 ns for the various NLC rings and linacs, while it is estimated at 5 µs for the PEP–II

HER. As far as existing machines are concerned, the effect should be present in the ALS and
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possibly CESR, but observations so far are inconclusive, partly due to technical problems

and partly due to the similarity with transverse wakefield effects. An experiment to measure

the emittance increase as a function of pressure in the SLC Arcs is being pursued to confirm

the theory and the simulations described.

Several possible remedies have been suggested. The addition of ten short gaps in the

bunch train might alleviate the problem for the PEP–II HER. It also may be possible to

design lattices in which the ion frequency is strongly location dependent. Both of these

options require further study. Finally, if the instability saturates at an amplitude of about

1 σ, it is conceivable to design damping rings in which the equilibrium emittance is about half

the desired emittance. Preliminary simulations indicate that the saturation is not complete

and that further amplitude growth at a smaller rate is possible.

The analytical model described is a linearized approximation and does not include

nonlinearities of the ion-beam force or the lattice. However, these nonlinearities are included

in the simulations which yield rise times for the parameter regimes compared that are in

excellent agreement with the analytic model. It is not known at this time if and when the

Landau damping due to the nonlinear ion-beam force becomes significant, and our model

should be extended to include this effect [20]. A large number of other questions also remain

to be answered. Among them are the saturation or filamentation due to detuning at large

vertical amplitudes, the initial growth from noise, the effect of synchrotron motion on the

growth rate, the rise time in the presence of different ion species, the possible damping

due to the nonlinearity of the beam-beam interaction in circular colliders, and the study of

coherent oscillation modes of higher order.
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TABLES

TABLE I. Parameters and oscillation growth rates for some future accelerators.

NLC PEP–II ATF
Accelerator

e− DR e+ DR PL ML HER DR

εNx [m] 3×10−6 3×10−6 3×10−6 3×10−6 5×10−4 3×10−6

εNy [m] 3×10−8 3×10−8 3×10−8 3×10−8 2.5×10−5 3×10−8

nb 90 90 90 90 1658 60

Nb 1.5×1010 1.5×1010 1.5×1010 1.5×1010 3×1010 1010

βx,y [m] 0.5, 5 0.5, 5 6 8 15 0.5, 5

βy [m] 2 2 6 8 15 2.5

σx [µm] 62 62 68 35 1,060 22

σy [µm] 4 4 7 3.5 169 7

z0 (σz) 19 m 4 mm 19 m 19 m 1000 m 25 mm

E [GeV] 2 2 2 10 9 1.54

p [Torr] 10−9 10−9 10−8 10−8 10−9 6×10−8

Particle species e− e+ e− e− e− e−

cωion/2π [MHz] 184 3.2×105 104 201 4 85

Single/

multibunch m s m m m m

τasym (z ≈ z0) 465 ns 122 µs 88 ns 46 ns 6 µs 29 ns
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TABLE II. Parameters and oscillation growth rates for some existing accelerators.

Accelerator SLC Arc ALS HERA e− HERA e+ SLC SDR CESR

εNx [m] 5 ×10−5 1.2×10−5 2×10−3 2×10−3 3×10−5 2.7×10−3

εNy [m] 5×10−6 2×10−7 1.1×10−4 1.1×10−4 3×10−6 1.2×10−4

nb 1 328 210 210 1 7

Nb 3.5×1010 7×109 3.7×1010 3.7×1010 4 ×1010 4.6×1011

βx,y [m] 4 2.5, 4 25 25 1,3 14, 13

βy [m] 4 4 25 25 3 13

σx [µm] 50 101 1000 1000 114 2000

σy [µm] 15 17 230 230 62 400

z0 (σz) 1 mm 100 m 3024 m 8.3 mm 5.9 mm 335 m

E [GeV] 46 1.5 26 26 1.2 5

p [Torr] 10−5 10−9 10−9 10−9 10−8 5×10−9

Particle species e+ e− e− e+ e+ e−

cωion/2π [MHz] 4×105 25 0.8 8×104 5×104 0.6

Single/

multibunch s m m s s m

τasym (z ≈ z0) 1.1 µs 2.4 µs 211 µs 1.64 s 490 µs 3.9 ms
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FIGURE CAPTIONS

1 Vertical beam centroid as a function of bunch number after a distance of 0 m (solid),

750 m (dashes), 1125 m (dots), 1500 m (dash-dot), and 1875 m (solid), respectively, for

a train of 100 bunches, with an atomic mass of 28 (carbonmonoxide), and a pressure

of 10−5 Torr in the arcs of the PEP–II HER.

2 Action of the vertical centroid as a function of distance for every twentieth bunch of a

train of 100 bunches in the PEP–II HER with a pressure of 10−5 Torr.

3 Growth of the action of the vertical centroid for every twentieth (plus last) of 90

bunches in the NLC Damping Ring for 10−8 Torr, an atomic mass of 28 (carbon

monoxide), and 1.5×1010 particles per bunch over a distance of 800 m.

4 Growth of the action of the vertical centroid for every twentieth of 90 bunches in the

NLC Damping Ring for 3×10−8 Torr, an atomic mass of 28 (carbon monoxide), and

1.5×1010 particles per bunch over a distance of 800 m.

5 Growth of the action of the vertical centroid for every twentieth of 90 bunches in the

NLC Damping Ring for 10−7 Torr, an atomic mass of 28 (carbon monoxide), and

1.5×1010 particles per bunch over a distance of 800 m.

6 Growth of the action of the vertical centroid for every twentieth of 90 bunches in the

NLC Damping Ring for the same conditions as Fig. 5 but using a different random

seed for the macroparticle distribution.

7 Growth of the action of the vertical centroid in the NLC Damping Ring for 7×109

particles per bunch, an atomic mass of 28, and a pressure of 10−7 Torr.

8 Growth of the action of the vertical centroid in the NLC Damping Ring for carbon

dioxide (atomic mass 44), 1.5×1010 particles per bunch, and a pressure of 10−7 Torr.
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9 Vertical beam centroid along the bunch train after 0 m (solid), 200 m (dashes), 400 m

(dots), and 600 m (solid) along the NLC Damping Ring at a pressure of 10−7 Torr;

from the same simulation as Fig. 5.

10 Vertical ion centroid along the bunch train after 0 m (solid), 200 m (dashes), 400 m

(dots), and 600 m (solid) along the NLC Damping Ring at a pressure of 10−7 Torr

(compare with Fig. 9).
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