Comparison of a New Calculation of Energy-Energy Correlations with $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ Hadrons Data at the Z^{0} Resonance

The SLD Collaboration*

Submitted to Physical Review D (Rapid Communications).

This work was supported by Department of Energy contracts: DE-FG02-91ER40676 (BU), DE-FG03-92ER40701 (CIT), DE-FG03-91ER40618 (UCSB), DE-FG03-92ER40689 (UCSC), DE-FG03-93ER40788 (CSU), DE-FG02-91ER40672 (Colorado), DE-FG02-91ER40677 (Illinois), DE-AC03-76SF00098 (LBL), DE-FG02-92ER40715 (Massachusetts), DE-AC02-76ER03069 (MIT), DE-FG06-85ER40224 (Oregon), DE-AC03-76SF00515 (SLAC), DE-FG05-91ER40627 (Tennessee), DE-AC02-76ER00881 (Wisconsin), DE-FG02-92ER40704 (Yale); National Science Foundation grants: PHY-91-13428 (UCSC), PHY-89-21320 (Columbia), PHY-9204239 (Cincinnati), PHY-88-17930 (Rutgers), PHY-88-19316 (Vanderbilt), PHY-92-03212 (Washington); the UK Science and Engineering Research Council (Brunel and RAL); the Istituto Nazionale di Fisica Nucleare of Italy (Bologna, Ferrara, Frascati, Pisa, Padova, Perugia); and the Japan-US Cooperative Research Project on High Energy Physics (Nagoya, Tohoku).

Abstract

We have compared a new QCD calculation by Clay and Ellis of energy-energy correlations ($E E C$) and their asymmetry ($A E E C$) in $\mathrm{e}^{+} \mathrm{e}^{-}$ annihilation into hadrons with data collected by the SLD experiment at SLAC. From fits of the new calculation, complete at $\mathcal{O}\left(\alpha_{s}^{2}\right)$, we obtained $\alpha_{s}\left(M_{Z}^{2}\right)=0.1184 \pm 0.0031$ (exp.) ± 0.0129 (theory) $(E E C)$ and $\alpha_{s}\left(M_{Z}^{2}\right)=0.1120 \pm$ 0.0034 (exp.) ± 0.0036 (theory) ($A E E C$). The $E E C$ result is significantly lower than that obtained from comparable fits using the $\mathcal{O}\left(\alpha_{s}^{2}\right)$ calculation of Kunszt and Nason.

I. INTRODUCTION

The theory of Quantum Chromodynamics (QCD) [1] contains in principle only one free parameter, the fundamental scale of strong interactions $\Lambda_{\overline{M S}}$, which can be expressed in the form of the strong coupling α_{s}. Tests of QCD in various hard processes and at different hard scales can therefore be reduced to comparison of the resulting values of α_{s} from fits of QCD to the data from these different reactions. For this purpose it has become standard to express such measurements in terms of $\alpha_{s}\left(M_{Z}^{2}\right)(\overline{\mathrm{MS}}$ scheme $)$.

In $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation α_{s} may be determined from inclusive measures of the topology of hadronic events. We have previously determined α_{s} by applying such measures to hadronic decays of Z^{0} bosons collected by the SLD experiment at SLAC [3,4]. A complementary technique is to measure α_{s} using energy-energy

[^0]correlations ($E E C$) and their asymmetry ($A E E C$) [5]. These are inclusive two-particle correlations that can be used to probe the structure of hadronic events in more detail than the event topology variables and can be calculated perturbatively in QCD. Comparison of α_{s} determined in this way with that measured from event topology variables provides a significant consistency check of the validity of perturbative QCD.

The $E E C$ is defined [5] to be the normalized energy-weighted sum over all pairs of particles whose opening angles $\chi_{i j}$ lie between $\chi-\Delta \chi / 2$ and $\chi+\Delta \chi / 2$:

$$
\begin{equation*}
E E C(\chi)=\frac{1}{N_{\text {event }}} \sum_{1}^{N_{\text {event }}}\left(\frac{1}{\Delta \chi} \int_{\chi-\frac{\Delta \chi}{2}}^{\chi+\frac{\Delta \chi}{2}} \sum_{i, j=1}^{n_{\text {particle }}} \frac{E_{i} E_{j}}{E_{\text {vis }}^{2}} \delta\left(\chi^{\prime}-\chi_{i j}\right) d \chi^{\prime}\right) \tag{1}
\end{equation*}
$$

where χ is the opening angle to be studied for the correlations; $\Delta \chi$ is the bin width; E_{i} and E_{j} are the energies of particles i and j and $E_{v i s}$ is the sum of the energies of all particles in the event. In the central region, $\chi \sim 90^{\circ}$, the shape of the $E E C$ is determined by hard gluon emission; hadronization contributions are expected to be large in the collinear and back-to-back regions, $\chi \sim 0^{\circ}$ and 180°, respectively. The asymmetry of the $E E C$ is defined as

$$
\begin{equation*}
A E E C(\chi)=E E C(\pi-\chi)-E E C(\chi) \tag{2}
\end{equation*}
$$

Several groups have performed perturbative QCD calculations, complete at $\mathcal{O}\left(\alpha_{s}^{2}\right)$, of the $E E C$ and $A E E C$: Richards, Stirling and Ellis (RSE) [6], Ali and Barreiro (AB) [7], Falck and Kramer (FK) [8], and Kunszt and Nason (KN) [9]. These calculations, valid in the central region, have the general form

$$
\begin{equation*}
E E C(\chi)=\frac{\alpha_{s}\left(\mu^{2}\right)}{2 \pi} A(\chi)+\left(\frac{\alpha_{s}\left(\mu^{2}\right)}{2 \pi}\right)^{2}\left[A(\chi) 2 \pi b_{0} \ln \left(\mu^{2} / s\right)+B(\chi)\right] \tag{3}
\end{equation*}
$$

where, to the same order in perturbation theory, $\alpha_{s}\left(\mu^{2}\right)$ is related to the QCD scale $\Lambda_{\overline{M S}}$ by [10]

$$
\begin{equation*}
\alpha_{s}\left(\mu^{2}\right)=\frac{1}{b_{0} \ln \left(\mu^{2} / \Lambda_{\overline{M S}}^{2}\right)}\left[1-\frac{b_{1}}{b_{0}^{2}} \frac{\ln \left[\ln \left(\mu^{2} / \Lambda_{\overline{M S}}^{2}\right)\right]}{\ln \left(\mu^{2} / \Lambda_{\overline{M S}}^{2}\right)}\right] \tag{4}
\end{equation*}
$$

μ is the renormalization scale, often expressed in terms of the factor $f=\mu^{2} / s$; \sqrt{s} is the center-of-mass energy of the experiment; $b_{0}=\left(33-2 n_{f}\right) / 12 \pi ; b_{1}=$ $\left(153-19 n_{f}\right) / 29 \pi^{2}$; and n_{f} is the number of active quark flavors. Here we have assumed the definition of $\Lambda_{\overline{M S}}$ for five active flavors. The first order coefficients $A(\chi)$ can be calculated analytically, and the second order coefficients $B(\chi)$ are calculated numerically. The main difference among the four theoretical calculations mentioned above is in the method used to treat the soft and collinear singularities appearing in the second order coefficients.

In our recent comprehensive study [11] we compared all four calculations with our data and found large discrepancies between the values of $\alpha_{s}\left(M_{Z}^{2}\right)$ determined from the $E E C$ of up to 10% in magnitude (Table I). Given that a priori one has no reason to disregard any of these calculations, this situation represents a serious limitation to our ability to measure $\alpha_{s}\left(M_{Z}^{2}\right)$ using the $E E C$. Furthermore, for fixed values of f the different calculations typically yielded different values of $\alpha_{s}\left(M_{Z}^{2}\right)$ from fits to the $E E C$ than from fits to the $A E E C$ [11]. However, it is interesting, and perhaps significant, that the three more recent calculations (AB, FK and KN) yielded consistent values of $\alpha_{s}\left(M_{Z}^{2}\right)$ from the $A E E C$.

In an attempt to resolve these discrepancies two groups have recently recalculated the $E E C$ and $A E E C$ complete at $\mathcal{O}\left(\alpha_{s}^{2}\right)$ in perturbative QCD. Glover
and Sutton (GS) rederived the next-to-leading coefficients B using three numerical techniques [12], and found essentially the same results as Kunszt and Nason, leading them to the conclusion that the KN calculation is correct and that the RSE, AB, and FK calculations are somehow deficient. Given that all of the KN calculations of observables at $\mathcal{O}\left(\alpha_{s}^{2}\right)$ [9] were based upon the same methods as the KN EEC and AEEC calculations, and are the benchmarks for measurements of α_{s} at SLC/LEP (see, e.g., Ref. [4]), such confirmation is of extreme importance. However, in an independent calculation using a modification of the method of RSE, Clay and Ellis (CE) rederived the coefficients B [13], but found that their results are not consistent with those of RSE or KN. In this paper we present the results of a comparison of the new CE calculation with our data, and compare these results with those from our previous comparisons of RSE, AB, FK, and KN.

II. MEASUREMENT OF EEC AND AEEC

The data used in this analysis were recorded in 1992 and 1993 by the SLC Large Detector (SLD) from electron-positron annihilation events at the Z^{0} resonance produced by the SLAC Linear Collider (SLC). The detector is described in Ref. [14]. This analysis is based on charged tracks. Details of the trigger, hadronic event, and charged track selection critera are given in Refs. [3,4].

The $E E C$ and $A E E C$ were calculated using all pairs of selected charged tracks, assigning each the charged pion mass. The data were corrected [11] for initial state radiation and detector effects using the JETSET [15] and HERWIG [16] Monte Carlo programs which simulate the hadronic decays of Z^{0} bosons, combined with a simulation of the SLD. The bin width was chosen to be 3.6°, which is much
larger than the two-particle angular resolution of the detector, so as to minimize bin-to-bin migration effects in the data correction procedure. The data were further corrected [11] for the effects of hadronization using both JETSET and HERWIG. The differences between the JETSET and HERWIG correction factors were taken into account in the systematic errors [11].

Our previous study of energy-energy correlations [11] using the RSE, AB, FK, and KN calculations was based upon a comparison with the 1992 data sample. Our more recent compendium of $\alpha_{s}\left(M_{Z}^{2}\right)$ measurements [4] used only the KN calculations and was based upon comparison with our combined 1992 and 1993 data samples; it includes $\alpha_{s}\left(M_{Z}^{2}\right)$ values from fits to the $E E C$ and $A E E C$ that are consistent with our earlier KN results within experimental statistical errors. Our earlier KN results have already been quoted in the literature [12]. To avoid confusion over the slightly different central values and experimental errors given in Refs. [11] and [4] we list both sets of our KN results in Table I.

III. DETERMINATION OF α_{s}

The CE calculation was fitted to the fully corrected measured $E E C$ and $A E E C$ by minimizing χ^{2} under variation of $\Lambda_{\overline{M S}}$ for fixed renormalization scale factor f. The fits were restricted to the angular region $36^{\circ} \leq \chi \leq 154.8^{\circ}$ for the $E E C$ and $21.6^{\circ} \leq \chi \leq 79.2^{\circ}$ for the $A E E C$ [4]. For illustration the CE fit to our $E E C$ data for $f=1$ is shown in Fig. 1, where the corresponding KN fit [4] is shown for comparison. The CE and KN fits are practically indistinguishable and both describe the data well. However, the fitted $\Lambda_{\overline{M S}}$ values are different. This is illustrated in Figs. 2(a) and 3(a), where $\alpha_{s}\left(M_{Z}^{2}\right)$ derived from $\Lambda_{\overline{M S}}$ is shown
for different values of f, from fits using the $E E C$ and $A E E C$ respectively. The corresponding fit qualities $\chi_{d o f}^{2}$ are shown in Figs. 2(b) and 3(b). While the CE and KN fits are of comparable quality (Figs. 2(b) and 3(b)), and the $\alpha_{s}\left(M_{Z}^{2}\right)$ values derived from the $A E E C$ are very similar (Fig. 3(a)), in the case of the $E E C$ the CE $\alpha_{s}\left(M_{Z}^{2}\right)$ values are systematically lower than the $\mathrm{KN} \alpha_{s}\left(M_{Z}^{2}\right)$ values (Fig. 2(a)) by between 0.005 and 0.009 in the range $f>10^{-3}$, where perturbation theory can be applied reliably [17].

Following the procedure defined in Ref. [4] to quote a single value of α_{s} for the CE calculation we obtained:

$$
\begin{gathered}
E E C: \alpha_{s}\left(M_{Z}^{2}\right)=0.1184 \pm 0.0031(\text { exp. }) \pm 0.0021(\text { had. }) \pm 0.0127(\text { scale }) \\
A E E C: \alpha_{s}\left(M_{Z}^{2}\right)=0.1120 \pm 0.0034(\text { exp. }) \pm 0.0017(\text { had. }) \pm 0.0032(\text { scale }),
\end{gathered}
$$

where the total experimental error is the sum in quadrature of the statistical and experimental systematic errors [4], and the hadronization and scale uncertainties are defined in Ref. [4].

IV. SUMMARY AND DISCUSSION

We have compared our measurements of energy-energy correlations and their asymmetry in hadronic Z^{0} decays with a new $\mathcal{O}\left(\alpha_{s}^{2}\right)$ perturbative QCD calculation by Clay and Ellis. This calculation describes our data well, and fits to the $A E E C$ yield similar values of $\alpha_{s}\left(M_{Z}^{2}\right)$ and its renormalisation scale uncertainty

[^1]as previous calculations by Ali and Barreiro, Falck and Kramer, and Kunszt and Nason presented in our previous studies [11,4]. However, in the case of fits to the $E E C$ the $\mathrm{CE} \alpha_{s}\left(M_{Z}^{2}\right)$ value is consistent only with the FK value, and is about 0.006 lower than the KN value.

Our $\alpha_{s}\left(M_{Z}^{2}\right)$ results are summarised in Table I. With the exception of the RSE calculation, the remarkable degree of consistency between the $A E E C$ results, compared with differences at the level of 10% between the corresponding EEC results, may provide some clue as to the theoretical origin of the discrepancies.

The Clay-Ellis EEC result does not appear to be consistent with the claim of Ref. [12] that the Kunszt-Nason EEC calculation has been demonstrated to be correct, and the data do not favour either calculation over the other. As the Kunszt-Nason calculations of the $E E C, A E E C$, and other event shapes have been used universally in $\alpha_{s}\left(M_{Z}^{2}\right)$ determinations at SLC/LEP, an application of the techniques used by Clay and Ellis to the other event shapes would seem to be highly desirable as a consistency check.

Acknowledgements

We thank the personnel of the SLAC accelerator department and the technical staffs of our collaborating institutions for their efforts which resulted in the successful operation of the SLC and the SLD. We thank K. Clay and S. Ellis for making their calculation available to us and for helpful comments relating to this analysis.
*The SLD Collaboration: K. Abe, ${ }^{(29)}$ I. Abt, ${ }^{(14)}$ C.J. Ahn, ${ }^{(26)}$ T. Akagi, ${ }^{(27)}$ N.J. Allen, ${ }^{(4)}$ W.W. Ash,,${ }^{(27) \dagger}$ D. Aston, ${ }^{(27)}$ K.G. Baird, ${ }^{(24)}$ C. Baltay, ${ }^{(33)}$ H.R. Band, ${ }^{(32)}$ M.B. Barakat, ${ }^{(33)}$ G. Baranko, ${ }^{(10)}$ O. Bardon, ${ }^{(16)}$
T. Barklow, ${ }^{(27)}$ A.O. Bazarko, ${ }^{(11)}$ R. Ben-David, ${ }^{(33)}$ A.C. Benvenuti, ${ }^{(2)}$ T. Bienz, ${ }^{(27)}$ G.M. Bilei, ${ }^{(22)}$ D. Bisello, ${ }^{(21)}$ G. Blaylock, ${ }^{(7)}$ J.R. Bogart, ${ }^{(27)}$
T. Bolton, ${ }^{(11)}$ G.R. Bower, ${ }^{(27)}$ J.E. Brau, ${ }^{(20)}$ M. Breidenbach, ${ }^{(27)}$
W.M. Bugg, ${ }^{(28)}$ D. Burke, ${ }^{(27)}$ T.H. Burnett, ${ }^{(31)}$ P.N. Burrows, ${ }^{(16)}$
W. Busza, ${ }^{(16)}$ A. Calcaterra, ${ }^{(13)}$ D.O. Caldwell, ${ }^{(6)}$ D. Calloway, ${ }^{(27)}$
B. Camanzi, ${ }^{(12)}$ M. Carpinelli, ${ }^{(23)}$ R. Cassell, ${ }^{(27)}$ R. Castaldi, ${ }^{(23)(a)}$ A. Castro, ${ }^{(21)}$ M. Cavalli-Sforza, ${ }^{(7)}$ E. Church, ${ }^{(31)}$ H.O. Cohn, ${ }^{(28)}$ J.A. Coller, ${ }^{(3)}$ V. Cook, ${ }^{(31)}$ R. Cotton, ${ }^{(4)}$ R.F. Cowan, ${ }^{(16)}$ D.G. Coyne, ${ }^{(7)}$
A. D'Oliveira, ${ }^{(8)}$ C.J.S. Damerell, ${ }^{(25)}$ M. Daoudi, ${ }^{(27)}$ R. De Sangro, ${ }^{(13)}$
P. De Simone, ${ }^{(13)}$ R. Dell'Orso, ${ }^{(23)}$ M. Dima, ${ }^{(9)}$ P.Y.C. Du, ${ }^{(28)}$ R. Dubois, ${ }^{(27)}$
B.I. Eisenstein, ${ }^{(14)}$ R. Elia, ${ }^{(27)}$ D. Falciai, ${ }^{(22)}$ C. Fan, ${ }^{(10)}$ M.J. Fero, ${ }^{(16)}$ R. Frey, ${ }^{(20)}$ K. Furuno, ${ }^{(20)}$ T. Gillman, ${ }^{(25)}$ G. Gladding, ${ }^{(14)}$ S. Gonzalez, ${ }^{(16)}$ G.D. Hallewell, ${ }^{(27)}$ E.L. Hart, ${ }^{(28)}$ Y. Hasegawa, ${ }^{(29)}$ S. Hedges, ${ }^{(4)}$ S.S. Hertzbach, ${ }^{(17)}$ M.D. Hildreth, ${ }^{(27)}$ J. Huber, ${ }^{(20)}$ M.E. Huffer, ${ }^{(27)}$ E.W. Hughes, ${ }^{(27)}$ H. Hwang, ${ }^{(20)}$ Y. Iwasaki, ${ }^{(29)}$ D.J. Jackson, ${ }^{(25)}$
P. Jacques, ${ }^{(24)}$ J. Jaros, ${ }^{(27)}$ A.S. Johnson, ${ }^{(3)}$ J.R. Johnson, ${ }^{(32)}$ R.A. Johnson, ${ }^{(8)}$
T. Junk, ${ }^{(27)}$ R. Kajikawa, ${ }^{(19)}$ M. Kalelkar, ${ }^{(24)}$ I. Karliner, ${ }^{(14)}$ H. Kawahara, ${ }^{(27)}$
H.W. Kendall, ${ }^{(16)}$ Y. Kim, ${ }^{(26)}$ M.E. King, ${ }^{(27)}$ R. King, ${ }^{(27)}$ R.R. Kofler, ${ }^{(17)}$
N.M. Krishna, ${ }^{(10)}$ R.S. Kroeger, ${ }^{(18)}$ J.F. Labs, ${ }^{(27)}$ M. Langston, ${ }^{(20)}$ A. Lath, ${ }^{(16)}$ J.A. Lauber, ${ }^{(10)}$ D.W.G. Leith, ${ }^{(27)}$ X. Liu, ${ }^{(7)}$ M. Loreti, ${ }^{(21)}$
A. Lu, ${ }^{(6)}$ H.L. Lynch, ${ }^{(27)}$ J. Ma, ${ }^{(31)}$ G. Mancinelli, ${ }^{(22)}$ S. Manly, ${ }^{(33)}$
G. Mantovani, ${ }^{(22)}$ T.W. Markiewicz, ${ }^{(27)}$ T. Maruyama, ${ }^{(27)}$ R. Massetti, ${ }^{(22)}$
H. Masuda, ${ }^{(27)}$ E. Mazzucato, ${ }^{(12)}$ A.K. McKemey, ${ }^{(4)}$ B.T. Meadows, ${ }^{(8)}$ R. Messner, ${ }^{(27)}$ P.M. Mockett, ${ }^{(31)}$ K.C. Moffeit, ${ }^{(27)}$ B. Mours, ${ }^{(27)}$ G. Müller, ${ }^{(27)}$ D. Muller, ${ }^{(27)}$ T. Nagamine, ${ }^{(27)}$ U. Nauenberg, ${ }^{(10)}$ H. Neal, ${ }^{(27)}$ M. Nussbaum, ${ }^{(8)}$ Y. Ohnishi, ${ }^{(19)}$ L.S. Osborne, ${ }^{(16)}$ R.S. Panvini, ${ }^{(30)}$
H. Park, ${ }^{(20)}$ T.J. Pavel, ${ }^{(27)}$ I. Peruzzi, ${ }^{(13)(b)}$ M. Piccolo, ${ }^{(13)}$ L. Piemontese, ${ }^{(12)}$
E. Pieroni, ${ }^{(23)}$ K.T. Pitts, ${ }^{(20)}$ R.J. Plano, ${ }^{(24)}$ R. Prepost, ${ }^{(32)}$ C.Y. Prescott, ${ }^{(27)}$ G.D. Punkar, ${ }^{(27)}$ J. Quigley, ${ }^{(16)}$ B.N. Ratcliff, ${ }^{(27)}$ T.W. Reeves, ${ }^{(30)}$
P.E. Rensing, ${ }^{(27)}$ L.S. Rochester, ${ }^{(27)}$ J.E. Rothberg, ${ }^{(31)}$ P.C. Rowson, ${ }^{(11)}$
J.J. Russell, ${ }^{(27)}$ O.H. Saxton, ${ }^{(27)}$ T. Schalk, ${ }^{(7)}$ R.H. Schindler, ${ }^{(27)}$
U. Schneekloth, ${ }^{(16)}$ B.A. Schumm, ${ }^{(15)}$ A. Seiden, ${ }^{(7)}$ S. Sen, ${ }^{(33)}$ V.V. Serbo, ${ }^{(32)}$ M.H. Shaevitz, ${ }^{(11)}$ J.T. Shank, ${ }^{(3)}$ G. Shapiro, ${ }^{(15)}$ S.L. Shapiro, ${ }^{(27)}$
D.J. Sherden, ${ }^{(27)}$ C. Simopoulos, ${ }^{(27)}$ N.B. Sinev, ${ }^{(20)}$ S.R. Smith, ${ }^{(27)}$
J.A. Snyder, ${ }^{(33)}$ P. Stamer, ${ }^{(24)}$ H. Steiner, ${ }^{(15)}$ R. Steiner, ${ }^{(1)}$ M.G. Strauss, ${ }^{(17)}$
D. Su, ${ }^{(27)}$ F. Suekane, ${ }^{(29)}$ A. Sugiyama, ${ }^{(19)}$ S. Suzuki, ${ }^{(19)}$ M. Swartz, ${ }^{(27)}$
A. Szumilo, ${ }^{(31)}$ T. Takahashi, ${ }^{(27)}$ F.E. Taylor, ${ }^{(16)}$ E. Torrence, ${ }^{(16)}$ J.D. Turk, ${ }^{(33)}$
T. Usher, ${ }^{(27)}$ J. Va'vra, ${ }^{(27)}$ C. Vannini, ${ }^{(23)}$ E. Vella, ${ }^{(27)}$ J.P. Venuti, ${ }^{(30)}$ R. Verdier, ${ }^{(16)}$ P.G. Verdini, ${ }^{(23)}$ S.R. Wagner, ${ }^{(27)}$ A.P. Waite, ${ }^{(27)}$ S.J. Watts, ${ }^{(4)}$
A.W. Weidemann, ${ }^{(28)}$ E. Weiss, ${ }^{(31)}$ J.S. Whitaker, ${ }^{(3)}$ S.L. White, ${ }^{(28)}$ F.J. Wickens, ${ }^{(25)}$ D.A. Williams, ${ }^{(7)}$ D.C. Williams, ${ }^{(16)}$ S.H. Williams, ${ }^{(27)}$
S. Willocq, ${ }^{(33)}$ R.J. Wilson, ${ }^{(9)}$ W.J. Wisniewski, ${ }^{(5)}$ M. Woods, ${ }^{(27)}$
G.B. Word, ${ }^{(24)}$ J. Wyss, ${ }^{(21)}$ R.K. Yamamoto, ${ }^{(16)}$ J.M. Yamartino, ${ }^{(16)}$
X. Yang, ${ }^{(20)}$ S.J. Yellin, ${ }^{(6)}$ C.C. Young, ${ }^{(27)}$ H. Yuta, ${ }^{(29)}$ G. Zapalac, ${ }^{(32)}$
R.W. Zdarko, ${ }^{(27)}$ C. Zeitlin, ${ }^{(20)}$ Z. Zhang, ${ }^{(16)}$ and J. Zhou, ${ }^{(20)}$
${ }^{(1)}$ Adelphi University, Garden City, New York 11530
${ }^{(2)}$ INFN Sezione di Bologna, I-40126 Bologna, Italy
${ }^{(3)}$ Boston University, Boston, Massachusetts 02215
${ }^{(4)}$ Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom ${ }^{(5)}$ California Institute of Technology, Pasadena, California 91125
${ }^{(6)}$ University of California at Santa Barbara, Santa Barbara, California 93106
${ }^{(7)}$ University of California at Santa Cruz, Santa Cruz, California 95064
${ }^{(8)}$ University of Cincinnati, Cincinnati, Ohio 45221
${ }^{(9)}$ Colorado State University, Fort Collins, Colorado 80523
${ }^{(10)}$ University of Colorado, Boulder, Colorado 80309
${ }^{(11)}$ Columbia University, New York, New York 10027
${ }^{(12)}$ INFN Sezione di Ferrara and Università di Ferrara, I-44100 Ferrara, Italy
${ }^{(13)}$ INFN Lab. Nazionali di Frascati, I-00044 Frascati, Italy
${ }^{(14)}$ University of Illinois, Urbana, Illinois 61801
${ }^{(15)}$ Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720
${ }^{(16)}$ Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
${ }^{(17)}$ University of Massachusetts, Amherst, Massachusetts 01003
${ }^{(18)}$ University of Mississippi, University, Mississippi 38677
${ }^{(19)}$ Nagoya University, Chikusa-ku, Nagoya 464 Japan
${ }^{(20)}$ University of Oregon, Eugene, Oregon 97403
${ }^{(21)}$ INFN Sezione di Padova and Università di Padova, I-35100 Padova, Italy
${ }^{(22)}$ INFN Sezione di Perugia and Università di Perugia, I-06100 Perugia, Italy
${ }^{(23)}$ INFN Sezione di Pisa and Università di Pisa, I-56100 Pisa, Italy
${ }^{(24)}$ Rutgers University, Piscataway, New Jersey 08855
${ }^{(25)}$ Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX United Kingdom
${ }^{(26)}$ Sogang University, Seoul Korea
${ }^{(27)}$ Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309
${ }^{(28)}$ University of Tennessee, Knoxville, Tennessee 37996
${ }^{(29)}$ Tohoku University, Sendai 980 Japan
(30) Vanderbilt University, Nashville, Tennessee 37235
${ }^{(31)}$ University of Washington, Seattle, Washington 98195
${ }^{(32)}$ University of Wisconsin, Madison, Wisconsin 53706
${ }^{(33)}$ Yale University, New Haven, Connecticut 06511
${ }^{\dagger}$ Deceased
${ }^{(a)}$ Also at the Università di Genova
${ }^{(b)}$ Also at the Università di Perugia

REFERENCES

1. H. Fritzsch, M. Gell-Mann and H. Leutwyler, Phys. Lett. B47 (1973) 365, D.J. Gross and F. Wilczek, Phys. Rev. Lett. 30 (1973) 1343, H.D. Politzer, Phys. Rev. Lett. 30 (1973) 1346.
2. W.A. Bardeen, A.J. Buras, D.W. Duke, T. Muta, Phys. Rev. 18 (1978) 3998. D.W. Duke, Rev. Mod. Phys. 52 (1980) 199.
3. SLD Collab., K. Abe et al., Phys. Rev. Lett. 71 (1993) 2528.
4. SLD Collab., K. Abe et al., to appear in Phys. Rev. D51 (1995)
5. C.L. Basham et al., Phys. Rev. Lett. 41 (1978) 1585, Phys. Rev. D17 (1978) 2298, Phys. Rev. D19 (1979) 2018.
6. D.G. Richards, W.J. Stirling and S.D. Ellis, Nucl. Phys. B229 (1983) 317.
7. A. Ali and F. Barreiro, Nucl. Phys. B236 (1984) 269.
8. N.K. Falck and G. Kramer, Z. Phys. C42 (1989) 459.
9. Z. Kunszt and P. Nason, Z Physics at LEP 1, CERN Report CERN 89-08, Vol. 1 eds. G. Altarelli, R. Kleiss and C. Verzegnassi, p. 373.
10. Review of Particle Properties, L. Montanet et al., Phys. Rev. D50 (1994) I. 1297.
11. SLD Collab., K. Abe et al., Phys. Rev. D50 (1994) 5580.
12. E.W.N. Glover, M.R. Sutton, Durham preprint DTP/94/80 (1994).
13. K.A. Clay, S.D. Ellis, Univ. Washington preprint UW/PT 94-17 (1995); subm. to Phys. Rev. Lett.
14. SLD Design Report, SLAC Report 273 (1984).
15. T. Sjöstrand and M. Bengtsson, Comp. Phys. Comm. 43 (1987) 367.
16. G. Marchesini et al., Comp. Phys. Commun. 67 (1992) 465.
17. The criteria for reliability are discussed in: P.N. Burrows, H. Masuda, Z. Phys. C63 (1994) 235.

Figure captions

Fig. 1: The measured parton-level (see text) EEC (data points) compared with fits of the Clay-Ellis (solid line) and Kunszt-Nason (dashed line) $\mathcal{O}\left(\alpha_{s}^{2}\right) \mathrm{QCD}$ calculations. The fit range is indicated by vertical lines.

Fig. 2: (a) $\alpha_{s}\left(M_{Z}^{2}\right)$ and (b) $\chi_{d o f}^{2}$ from $\mathcal{O}\left(\alpha_{s}^{2}\right) \mathrm{QCD}$ fits to the $E E C$ as a function of renormalization scale factor f. The statistical error at each f value is typically $\pm 0.0008(E E C)$ or $\pm 0.0012(A E E C)$ and is not shown.

Fig. 3: As Fig. 2, but for the $A E E C$.

Table I: $\alpha_{s}\left(M_{Z}^{2}\right)$, experimental errors, and scale uncertainties from $\mathcal{O}\left(\alpha_{s}^{2}\right) \mathrm{QCD}$ fits to the $E E C$ and the $A E E C$ using SLD data.

QCD	EEC				AEEC		
Calc.	$\alpha_{s}\left(M_{Z}^{2}\right)$	Exp. error	Scale uncertainty	$\alpha_{s}\left(M_{Z}^{2}\right)$	Exp. error	Scale uncertainty	Reference
RSE	0.133^{*}	${ }_{-0.003}^{+0.002}$	± 0.011	0.124	± 0.005	± 0.008	$[11]$
AB	0.132	${ }_{-0.003}^{+0.002}$	± 0.011	0.114	± 0.005	± 0.004	$[11]$
FK	0.119	${ }_{-0.003}^{+0.002}$	± 0.013	0.113	± 0.005	± 0.003	$[11]$
KN, GS	0.125	${ }_{-0.003}^{+0.002}$	± 0.012	0.114	± 0.005	± 0.004	$[11,12]$
KN	0.1240	± 0.0031	± 0.0121	0.1121	± 0.0034	± 0.0031	$[4]$
CE	0.1184	± 0.0031	± 0.0127	0.1120	± 0.0034	± 0.0032	This analysis

* Due to a typographical error in press this value is incorrectly given as 0.113 in Ref. [11].

Figure 1:

Figure 2:

Figure 3:

[^0]: * Throughout this paper we use the modified minimal subtraction $(\overline{\mathrm{MS}})$ scheme [2] convention.

[^1]: * The scale ranges given in Ref. [4] and used here to quote average $\alpha_{s}\left(M_{Z}^{2}\right)$ values for the CE fits are slightly different than those used in Ref. [11]. In fact we obtain the same results for CE with either scale range.

