Precision Measurement of the
 Deuteron Spin Structure Function $g_{1}^{d *}$

The E143 Collaboration
K. Abe, ${ }^{15}$ T. Akagi,,12,15 P. L. Anthony, ${ }^{12}$ R. Antonov, ${ }^{11}$ R. G. Arnold, ${ }^{1}$ T. Averett, ${ }^{16}$ H. R. Band, ${ }^{17}$ J. M. Bauer, ${ }^{7}$ H. Borel, ${ }^{5}$ P. E. Bosted, ${ }^{1}$ V. Breton, ${ }^{3}$ J. Button-Shafer, ${ }^{7}$ J. P. Chen, ${ }^{16}$ T. E. Chupp, ${ }^{8}$ J. Clendenin, ${ }^{12}$ C. Comptour, ${ }^{3}$ K. P. Coulter, ${ }^{8}$ G. Court, ${ }^{12, *}$ D. Crabb, ${ }^{16}$ M. Daoudi, ${ }^{12}$ D. Day, ${ }^{16}$ F. S. Dietrich, ${ }^{6}$ J. Dunne, ${ }^{1}$ H. Dutz, ${ }^{12, * *}$ R. Erbacher, ${ }^{12,13}$ J. Fellbaum, ${ }^{1}$ A. Feltham, ${ }^{2}$ H. Fonvieille, ${ }^{3}$ E. Frlez, ${ }^{16}$ D. Garvey, ${ }^{9}$ R. Gearhart, ${ }^{12}$ J. Gomez, ${ }^{4}$ P. Grenier, ${ }^{5}$ K. Griffioen, ${ }^{11, \dagger}$ S. Hoibraten, ${ }^{16, \S}$ E. W. Hughes, ${ }^{12}$ C. Hyde-Wright, ${ }^{10}$ J. R. Johnson, ${ }^{17}$ D. Kawall, ${ }^{13}$ A. Klein, ${ }^{10}$ S. E. Kuhn,,10 M. Kuriki, ${ }^{15}$ R. Lindgren, ${ }^{16}$ T. Liu, ${ }^{16}$ R. M. Lombard-Nelsen, ${ }^{5}$ J. Marroncle, ${ }^{5}$ T. Maruyama, ${ }^{12}$ X. K. Maruyama, ${ }^{9}$ J. McCarthy, ${ }^{16}$ W. Meyer, ${ }^{12, * *}$ Z.-E. Meziani, ${ }^{13,14}$ R. Minehart, ${ }^{16}$ J. Mitchell, ${ }^{4}$ J. Morgenstern, ${ }^{5}$ G. G. Petratos,,$^{12, \ddagger}$ R. Pitthan, ${ }^{12}$ D. Pocanic, ${ }^{16}$ C. Prescott,,${ }^{12}$ R. Prepost, ${ }^{17}$ P. Raines, ${ }^{11}$ B. Raue, ${ }^{10}$ D. Reyna, ${ }^{1}$ A. Rijllart,,${ }^{12, \dagger \dagger}$ Y. Roblin, ${ }^{3}$ L. S. Rochester, ${ }^{12}$ S. E. Rock, ${ }^{1}$ O. Rondon-Aramayo, ${ }^{16}$ I. Sick, ${ }^{2}$ L. C. Smith, ${ }^{16}$ T. B. Smith, ${ }^{8}$ M. Spengos, ${ }^{1}$ F. Staley, ${ }^{5}$ P. Steiner, ${ }^{2}$ S. St.Lorant, ${ }^{12}$ L. M. Stuart, ${ }^{12}$ F. Suekane, ${ }^{15}$ Z. M. Szalata, ${ }^{1}$ H. Tang, ${ }^{12}$ Y. Terrien, ${ }^{5}$ T. Usher, ${ }^{12}$ D. Walz, ${ }^{12}$ J. L. White, ${ }^{1}$ K. Witte, ${ }^{12}$ C. C. Young, ${ }^{12}$ B. Youngman, ${ }^{12}$ H. Yuta, ${ }^{15}$ G. Zapalac, ${ }^{17}$ B. Zihlmann, ${ }^{2}$ D. Zimmermann ${ }^{16}$
${ }^{1}$ The American University, Washington, D.C. 20016
${ }^{2}$ Institut für Physik der Universität Basel, CH 4056 Basel, Switzerland
${ }^{3}$ Laboratoire de Physique Corpusculaire, IN2P3/CNRS, University Blaise Pascal, F-63170 Aubiere Cedex, France
${ }^{4}$ CEBAF, Newport News, Virginia 23606
${ }^{5}$ DAPNIA-Service de Physique Nucleaire Centre d'Etudes de Saclay, 91191 Gif/Yvette, France
${ }^{6}$ Lawrence Livermore National Laboratory, Livermore, California 94550
${ }^{7}$ University of Massachusetts, Amherst, Massachusetts 01003
${ }^{8}$ University of Michigan, Ann Arbor, Michigan 48109
${ }^{9}$ Naval Postgraduate School, Monterey, California 93943
${ }^{10}$ Old Dominion University, Norfolk, Virginia 23529
${ }^{11}$ University of Pennsylvania, Philadelphia, Pennsylvania 19104
${ }^{12}$ Stanford Linear Accelerator Center, Stanford, California 94309
${ }^{13}$ Stanford University, Stanford, California 94305
${ }^{14}$ Temple University, Philadelphia, Pennsylvania 19122
${ }^{15}$ Tohoku University, Sendai 980, Japan
${ }^{16}$ University of Virginia, Charlottesville, Virginia 22901
${ }^{17}$ University of Wisconsin, Madison, Wisconsin 53706

We report on a high-statistics measurement of the deuteron spin structure function g_{1}^{d} at a beam energy of 29 GeV in the kinematic range $0.029<x<0.8$ and $1<Q^{2}<10(\mathrm{GeV} / \mathrm{c})^{2}$. The integral $\Gamma_{1}^{d}=\int_{0}^{1} g_{1}^{d} d x$ evaluated at fixed $Q^{2}=3(\mathrm{GeV} / \mathrm{c})^{2}$ gives 0.042 ± 0.003 (stat.) ± 0.004 (syst.). Combining this result with our earlier measurement of g_{1}^{p}, we find $\Gamma_{1}^{p}-\Gamma_{1}^{n}=0.163 \pm 0.010$ (stat.) \pm 0.016 (syst.), which agrees with the prediction of the Bjorken sum rule with $\mathrm{O}\left(\alpha_{s}^{3}\right)$ corrections, $\Gamma_{1}^{p}-\Gamma_{1}^{n}=0.171 \pm 0.008$. We find the quark contribution to the proton helicity to be $\Delta q=0.30 \pm 0.06$.

Submitted to Physical Review Letters

[^0]The longitudinal and transverse spin-dependent structure functions $g_{1}\left(x, Q^{2}\right)$ and $g_{2}\left(x, Q^{2}\right)$ for polarized deepinelastic lepton-nucleon scattering provide information on the spin structure of the proton and neutron. A fundamental quantum chromodynamics (QCD) sum rule, originally derived from current algebra by Bjorken [1], predicts the difference $\Gamma_{1}^{p}-\Gamma_{1}^{n}=\frac{1}{6}\left(g_{A} / g_{V}\right)$ at infinite Q^{2} where $\Gamma_{1}^{p(n)}=\int_{0}^{1} g_{1}^{p(n)}\left(x, Q^{2}\right) d x$ for the proton (neutron), and g_{A} and g_{V} are the axial-vector and vector coupling constants in neutron β-decay. QCD corrections up to third order in α_{s} have been computed [2], thus making a test of the Bjorken sum rule possible at finite Q^{2}. Measurements of Γ_{1}^{p} [3] [4], Γ_{1}^{n} from ${ }^{3} \mathrm{He}[5]$, as well as results from deuterium [6] targets, are in agreement with this prediction within experimental uncertainties. Separate sum rules for Γ_{1}^{p} and Γ_{1}^{n} were derived by Ellis and Jaffe [7] under the assumptions of $\mathrm{SU}(3)$ flavor symmetry and an unpolarized strange sea. Higher order QCD corrections have been calculated [8] [9].

The polarized spin structure function g_{1} is related to the virtual photon asymmetries A_{1} and A_{2} :

$$
\begin{equation*}
g_{1}=\frac{F_{1}}{\left(1+\gamma^{2}\right)}\left(A_{1}+\gamma A_{2}\right) \tag{1}
\end{equation*}
$$

where F_{1} is the unpolarized structure function, $\gamma^{2}=Q^{2} / \nu^{2}, \nu=E-E^{\prime}, E$ and E^{\prime} are incident and scattered electron energies respectively, and A_{1} and A_{2} are virtual photon cross section asymmetries. [10] These asymmetries are related by kinematic factors to the experimentally measured electron asymmetries $A_{\|}$and A_{\perp}. The longitudinal asymmetry $A_{\|}$is the cross section asymmetry between negative- and positive-helicity electron beams when the target nucleon is polarized parallel to the beam direction. The transverse asymmetry A_{\perp} is the asymmetry when the target nucleon is polarized transverse to the beam direction. We use the relationships $A_{1}=\left(A_{\|} / D-\eta A_{\perp} / d\right) /(1+\eta \zeta)$, and $A_{2}=\left(\zeta A_{\|} / D+A_{\perp} / d\right) /(1+\eta \zeta)$, where $\eta=\epsilon \sqrt{Q^{2} / E^{2}} /\left(1-\epsilon E^{\prime} / E\right), \zeta=\eta(1+\epsilon) / 2 \epsilon, D=\left(1-\epsilon E^{\prime} / E\right) /(1+\epsilon R)$ is the depolarization factor, $d=D \sqrt{2 \epsilon /(1+\epsilon)}, \epsilon^{-1}=1+2\left[1+\left(\nu^{2} / Q^{2}\right)\right] \tan ^{2}(\theta / 2), R=\sigma_{L} / \sigma_{T}$, and θ is the electron scattering angle. Thus, the quantity g_{1} can be written as $g_{1}=\left(F_{1} / D^{\prime}\right)\left(A_{\|}+\tan (\theta / 2) A_{\perp}\right)$, where $D^{\prime}=$ $(1-\epsilon)(2-y) /[y(1+\epsilon R)]$ and $y=\nu / E$.

Experiment E143 used the SLAC polarized electron beam with energies of 9.7, 16.2, and 29.1 GeV incident on polarized proton and deuteron targets in End Station A to measure $g_{1}^{p}, g_{2}^{p}, g_{1}^{d}$, and g_{2}^{d} in the range $1<Q^{2}<10$ $(\mathrm{GeV} / \mathrm{c})^{2}$ and $0.029<x<0.8$. This Letter reports on our analysis of the 29.1 GeV data, which yielded g_{1}^{d} results with considerably smaller statistical uncertainties than previous measurements [6]. We adopt the convention that g_{1}^{d} refers to the average structure function of the nucleon in the deuteron: $g_{1}^{d} \approx \frac{1}{2}\left(g_{1}^{p}+g_{1}^{n}\right)$.

The longitudinally polarized electron beam [11] was produced by a circularly polarized laser beam illuminating a strained gallium arsenide photocathode. Beam pulses of typically $2 \mu \mathrm{sec}$ duration were delivered at 120 Hz , and the helicity was selected randomly on a pulse-to-pulse basis to minimize instrumental asymmetries, which were found to be negligible. The beam polarization P_{b} was measured daily with a Møller polarimeter, and was found to vary with the cathode quantum efficiency from 0.83 to 0.86 . An overall uncertainty on P_{b} of ± 0.02 was achieved. [4]

The target [12] was a 3 -cm-long 2.5 -cm-diameter cylinder filled with granules of deuterated ammonia, ${ }^{15} \mathrm{ND}_{3}$, of greater than 98% isotopic purity. It was polarized by the technique of dynamic nuclear polarization in a $4.8-\mathrm{T}$ magnetic field. An average in-beam polarization P_{t} of 25% was measured with a nuclear magnetic resonance (NMR) technique, and a maximum of greater than 40% was achieved. The NMR signal was calibrated by measuring the thermal-equilibrium polarization near 1.6 K . An overall relative uncertainty of 4% on P_{t} was achieved.

Scattered electrons were detected in two independent spectrometers [13] at angles of 4.5° and 7° with respect to the incident beam. Electrons were identified in each spectrometer by use of two threshold gas Čerenkov counters and a 200-element shower-counter array of lead glass blocks 24 radiation lengths thick. Particle momenta and scattering angles were measured with seven planes of scintillator hodoscopes.

The experimental longitudinal and transverse asymmetries $A_{\|}$and A_{\perp} were determined from

$$
\begin{equation*}
A_{\|}\left(\text {or } A_{\perp}\right)=C_{1}\left(\frac{N_{L}-N_{R}}{N_{L}+N_{R}} \frac{1}{f P_{b} P_{t}}-C_{2}\right)+A_{r c} \tag{2}
\end{equation*}
$$

where N_{L} and N_{R} are the corrected numbers of scattered electrons per incident charge for negative and positive beam helicity, respectively. Charge-symmetric background processes were measured by reversing the spectrometer polarity and have no measurable asymmetry. These processes led to rate corrections of 10% at the lowest x bin, decreasing rapidly at higher x. The rates were also corrected for deadtime effects.

The correction factors C_{1} and C_{2} account for the polarizations of ${ }^{15} \mathrm{~N}$, unsubstituted ${ }^{14} \mathrm{~N}$, and residual protons in the target. The factor C_{2} ranges from 3 to 5% of the measured proton asymmetry, and C_{1} is typically 1.016 . These factors were determined from measured nitrogen polarizations and a shell-model calculation to determine the contribution of the unpaired p-shell proton.

The dilution factor f represents the fraction of measured events expected to originate from polarizable deuterons in the target. It was calculated from the composition of the target, which contained about 23% deuterons, $56 \%{ }^{15} \mathrm{~N}$,
$10 \%{ }^{4} \mathrm{He}, 6 \% \mathrm{Al}, 4 \% \mathrm{Cu}$, and $1 \% \mathrm{Ti}$ by weight. The dilution factor was x dependent and varied from 0.22 at low x to 0.25 at high x. The relative systematic error in f was determined from uncertainties in the target composition and cross section ratios, and ranged from 2.2 to 2.6%.

The radiative correction $\mathrm{A}_{r c}$ includes both internal [14] and external [15] contributions, and typically changed $A_{\|}$by 10% of its value. Systematic errors on $\mathrm{A}_{r c}$ were estimated based on uncertainties in the input models and correspond to relative errors on $A_{\|}$of typically 7% for $x>0.1$, increasing to 100% at $x=0.03$.

Data from the two spectrometers, which differ by about a factor of two in average Q^{2}, are consistent with A_{1}^{d}, A_{2}^{d}, and g_{1}^{d} / F_{1}^{d} being independent of Q^{2} in the overlap region $0.07<x<0.55$, and therefore have been averaged together. The values of A_{1}^{d} from this experiment at $E=29.1 \mathrm{GeV}$ shown in Fig. 1 and listed in Table I are consistent with the higher Q^{2} results from the Spin Muon Collaboration (SMC) [6].

Values of g_{1}^{d} at the average $Q^{2}=3(\mathrm{GeV} / \mathrm{c})^{2}$ of this experiment are shown in Fig. 2a. The evaluation of g_{1}^{d} at constant Q^{2} is model-dependent. We made the assumption that g_{1}^{d} / F_{1}^{d} is independent of Q^{2}. For $F_{1}^{d} /\left(1+\gamma^{2}\right)=$ $F_{2}^{d} /[2 x(1+R)]$ we used the New Muon Collaboration fit [16] to F_{2}^{d} and the SLAC fit to R [17]. Using the SLAC fit to F_{2}^{d} [18] gives similar results. The systematic error on F_{1}^{d} is typically 2.5%, increasing to 5% at the lowest x bin and 15% at the highest x bin. The integral of g_{1}^{d} at $Q^{2}=3(\mathrm{GeV} / \mathrm{c})^{2}$ and over the measured range $0.029<x<0.8$ is $\int_{0.029}^{0.8} g_{1}^{d}(x) d x=0.040 \pm 0.003 \pm 0.004$, where the errors are statistical and systematic respectively. The integral is decreased by 0.002 if we make the alternate assumption that both A_{1}^{d} and A_{2}^{d} are independent of Q^{2}.

Assuming g_{1}^{d} varies as $(1-x)^{3}$ at high x [19], the extrapolation for $x>0.8$ yields $\int_{0.8}^{1} g_{1}^{d}(x) d x=0.000 \pm 0.001$. To make the extrapolation to $x=0$, we make a model-dependent assumption that the data is described by the Regge-motivated form [20] $g_{1}^{d}(x)=C x^{-\alpha}$, where α is allowed to be in the range -0.5 to 0 . [21] A fit to the data of this experiment in the range $x<x_{\max }=0.1$ gives $\int_{0}^{0.029} g_{1}^{d}(x) d x=0.001 \pm 0.001$. The uncertainty includes a statistical component, the uncertainty in α, and the effect of varying the fitting range from $x_{\max }=0.05$ to $x_{\max }=0.12$. Including the data of the SMC [6] in the fit does not change the results. An alternate form $[22], g_{1}^{d}(x)=C^{\prime} \log (x)$, which provides good fits to low x data on F_{2} from HERA, gives similar results. Thus, we obtain the total integral $\Gamma_{1}^{d}(E 143)=0.042 \pm 0.003$ (stat.) ± 0.004 (sys.), to be compared with the results of SMC at $Q^{2}=4.7(G e V / c)^{2}$: $\Gamma_{1}^{d}(S M C)=0.023 \pm 0.020$ (stat.) ± 0.015 (sys.). The contributions to systematic uncertainties are given in Table II.

The Ellis-Jaffe sum rule for the deuteron is related to the sum rules for the proton and the neutron by: $\Gamma_{1}^{d}=$ $\frac{1}{2}\left(\Gamma_{1}^{p}+\Gamma_{1}^{n}\right)\left(1-1.5 \omega_{D}\right)$, where ω_{D} is the probability that the deuteron will be in a D-state. We use $\omega_{D}=0.05 \pm 0.01$ [23] given by $N-N$ potential calculations. No other nuclear contributions to ω_{D} are included. The sum rule predicts $\Gamma_{1}^{d}(E J)=0.069 \pm .004$ where we have used $F+D=g_{A} / g_{V}=1.2573 \pm 0.0028$ and $F / D=0.575 \pm 0.016$ [24], and $\alpha_{s}=0.35 \pm 0.05[25]$ for QCD corrections to $Q^{2}=3(\mathrm{GeV} / \mathrm{c})^{2}$. [8] Our measurement of Γ_{1}^{d} provides a precise test of the Ellis Jaffe sum rule, and shows a disagreement of more than $3-\sigma$.

The spin structure function integral can be used in the quark parton model to extract the helicity contributions to the proton of each type of quark and antiquark. Measurements using the deuteron are expected to be more sensitive than those using either the proton or the neutron [26]. We find the total contribution from all quarks to be $\Delta q=0.30 \pm 0.06$, and the contribution from strange quarks and antiquarks to be $\Delta s=-0.09 \pm 0.02$. They are the most precise determinations to date and are consistent with earlier results [27].

The neutron spin structure function can be extracted using the relation $g_{1}^{n}(x)=2 g_{1}^{d}(x) /\left(1-1.5 \omega_{D}\right)-g_{1}^{p}(x)$. The results obtained using our earlier measurements [4] of $g_{1}^{p}(x)$ are compared in Fig. 2b with the results obtained by E142 [5] at $Q^{2}=2(G e V / c)^{2}$ using a ${ }^{3} \mathrm{He}$ target. We use the same extrapolation procedure as in the case of the deuteron and find $\Gamma_{1}^{n}(E 143)=-0.037 \pm 0.008$ (stat.) ± 0.011 (sys.), compared with $\Gamma_{1}^{n}(E 142)=-0.022 \pm 0.007$ (stat.) ± 0.009 (sys.). The correlations between proton and deuteron measurements were accounted for when determining the systematic uncertainty contributions in Table II.

The Bjorken sum rule prediction of $\Gamma_{1}^{p}-\Gamma_{1}^{n}=0.171 \pm 0.008$ at $3(G e V / c)^{2}$ can be tested by combining proton and deuteron results: $g_{1}^{p}(x)-g_{1}^{n}(x)=2 g_{1}^{p}(x)-2 g_{1}^{d}(x) /\left(1-1.5 \omega_{D}\right)$. The extrapolation to $x=0$ and $x=1$ follows the same procedure as in the case of the deuteron. Our result at $Q^{2}=3(G e V / c)^{2}, \Gamma_{1}^{p}(E 143)-\Gamma_{1}^{n}(E 143)=$ 0.163 ± 0.010 (stat.) ± 0.016 (sys.), is consistent with the prediction. Contributions to systematic uncertainties are given in Table II. This result is also consistent with that obtained by combining the Γ_{1}^{p} result from this experiment [4] and the Γ_{1}^{n} result from E142 [5]: $\Gamma_{1}^{p}(E 143)-\Gamma_{1}^{n}(E 142)=0.149 \pm 0.014$.

In conclusion, we have performed a high-statistics measurement of the deuteron spin structure function g_{1}^{d}, and find the Ellis-Jaffe sum rule violated by more than $3-\sigma$. When combined with our earlier results on g_{1}^{p}, we find the difference $\Gamma_{1}^{p}-\Gamma_{1}^{n}$ is in agreement with the fundamental Bjorken sum rule.

We wish to acknowledge the tremendous effort made by the SLAC staff in making this experiment successful; H. Wiedemann and SSRL, and the staffs of the Bates Linear Accelerator, CEBAF, and the Saskatoon accelerator for providing beams to irradiate the ammonia targets; and N. Shumeiko for help with radiative corrections. This work was supported by Department of Energy contracts: DE-AC05-84ER40150 (CEBAF), W-2705-Eng48 (LLNL), DE-AC03-76SF00515 (SLAC), DE-FG03-88ER40439 (Stanford), DE-FG05-94ER40859 (ODU), DE-

FG05-88ER40390 and DE-FG05-86ER40261 (Virginia), and DE-AC02-76ER00881 (Wisconsin); by National Science Foundation Grants 9114958 (American), 9307710 (Massachusetts), 9217979 (Michigan), 9104975 (ODU), and 9118137 (U. Penn.); by the Schweizersche Nationalfonds (Basel); by the Commonwealth of Virginia (Virginia); by the Centre National de la Recherche Scientifique (L.P.C. Clermont-Ferrand); by the Commissariat a l'Energie Atomique (C.E. Saclay); and by the Ministry of Science, Culture and Education of Japan (Tohoku).

* Permanent address: Oliver Lodge Lab, University of Liverpool, Liverpool, U. K.
** Permanent address: University of Bonn, Bonn, D-53313 Germany.
${ }^{\dagger}$ Present address: College of William and Mary, Williamsburg Virginia 23187.
${ }^{\S}$ Permanent address: FFIYM, P.O. Box 25, N-2007 Kjeller, Norway.
${ }^{\ddagger}$ Present address: Kent State University, Kent, Ohio 44242.
${ }^{\dagger \dagger}$ Permanent address: CERN, 1211 Geneva 23, Switzerland.
[1] J. D. Bjorken, Phys. Rev. 148, 1467 (1966); Phys. Rev. D1, 1376 (1970).
[2] S. A. Larin and J. A. M. Vermaseren, Phys. Lett. B259, 345 (1991) and references therein.
[3] SLAC E80, M. J. Alguard et al., Phys. Rev. Lett. 37, 1261 (1976); 41, 70 (1978); SLAC E130, G. Baum et al., Phys. Rev. Lett. 51, 1135 (1983); EMC, J. Ashman et al., Phys. Lett. B206, 364 (1988); Nucl. Phys. B328, 1 (1989); SMC, D. Adams et al., Phys. Lett. B329, 399 (1994).
[4] SLAC E143, K. Abe et al., Report No. SLAC-PUB-6508 (1994), Phys. Rev. Letters, 74, 346 (1995).
[5] SLAC E142, P. L. Anthony et al., Phys. Rev. Lett. 71, 959 (1993).
[6] SMC, B. Adeva et al., Phys. Lett. B302, 533 (1993).
[7] J. Ellis and R. L. Jaffe, Phys. Rev. D9, 1444 (1974); D10, 1669 (1974).
[8] S. Larin, Phys. Lett. B334, 192 (1994).
[9] A. L. Kataev, Report No. CERN-TH-7427-94.
[10] R. D. Roberts, The Structure of the Proton, Cambridge Univ. Press (1990).
[11] T. Maruyama, E. Garwin, R. Prepost, G. Zapalac, Phys. Rev. B46, 4261 (1992); D. Schultz et al., Nucl. Instru. and Meth. A340, 127 (1994).
[12] D. G. Crabb and D. Day, Proceedings of the 7th Workshop on Polarized Target Materials and Techniques, Bad Honnef, Germany (1994), to be published in Nucl. Instr. and Meth.
[13] G. G. Petratos et al., Report No. SLAC-PUB-5678 (1991); H. Borel, et al., to appear in IEEE Conference, Norfolk, VA (1994).
[14] T. V. Kukhto and N. M. Shumeiko, Nucl. Phys. B219, 412 (1983); I. V. Akusevich and N. M. Shumeiko, J. Phys. G20, 513 (1994).
[15] Y. S. Tsai, Report No. SLAC-PUB-848 (1971); Y. S. Tsai, Rev. Mod. Phys. 46, 815 (1974).
[16] NMC, P. Amaudruz et al., Phys. Lett. B295, 159 (1992).
[17] L. W. Whitlow et al., Phys. Lett. B250, 193 (1990).
[18] L. W. Whitlow et al., Phys. Lett. B282, 475 (1992).
[19] S. J. Brodsky, M. Burkardt and I. Schmidt, Report No. SLAC-PUB-6087 (1994).
[20] R. L. Heimann, Nucl. Phys. B64, 429 (1973).
[21] J. Ellis and M. Karliner, Phys. Lett. B213, 73 (1988).
[22] S. D. Bass and P. V. Landshoff, Phys. Lett. B336, 537 (1994); F. E. Close and R. G. Roberts, Phys. Lett. B336, 257 (1994).
[23] M. Lacombe et al., Phys. Rev. C21, 861 (1980); M. J. Zuilhof and J. A. Tjon, Phys. Rev. C22, 2369 (1980); R. Machleidt et al., Phys. Rep. 149, 1 (1987).
[24] Particle Data Group, L. Montanet et al., Review of particle properties, Phys. Rev. D50, 1173 (1994).
[25] M. S. Schmelling and R. D. St. Denis, Phys. Lett. B329, 323 (1994); S. Narison, Report No. CERN-TH-7188-94 (1994).
[26] F. E. Close and R. G. Roberts, Phys. Rev. Lett. 60, 1471 (1988).
[27] J. Ellis and M. Karliner, Phys. Lett. B341, 397 (1994), and references therein.

FIG. 1. The virtual photon asymmetry A_{1}^{d} from this experiment. The systematic errors are indicated by the shaded band. The average Q^{2} varies from $1.3(\mathrm{GeV} / \mathrm{c})^{2}$ at low x to $9(\mathrm{GeV} / \mathrm{c})^{2}$ at high x. Data from the SMC collaboration [6] are also shown.

FIG. 2. Values of $x g_{1}$ from this experiment (E143) as a function of x for (a) the deuteron and (b) the neutron. The errors are statistical only. Systematic errors are indicated by the shaded bands. Also shown are the neutron results from SLAC E142. [5]

TABLE I. Average values A_{1}^{d} from the $E=29.1 \mathrm{GeV}$ data of this experiment at the indicated average values of Q^{2}. Also shown are values of g_{1}^{d} at fixed $Q^{2}=3(\mathrm{GeV} / \mathrm{c})^{2}$, evaluated assuming g_{1}^{d} / F_{1}^{d} is independent of Q^{2}.

	$<Q^{2}>$	A_{1}^{d}	g_{1} at $Q^{2}=3(\mathrm{GeV})^{2}$
x	$(\mathrm{GeV} / \mathrm{c})^{2}$	\pm stat \pm syst	\pm stat \pm syst
	1.27	$0.007 \pm 0.037 \pm 0.007$	$0.009 \pm 0.166 \pm 0.030$
0.031	1.39	$-0.001 \pm 0.028 \pm 0.006$	$0.026 \pm 0.111 \pm 0.029$
0.035	1.52	$0.040 \pm 0.025 \pm 0.006$	$0.144 \pm 0.089 \pm 0.024$
0.039	1.65	$-0.015 \pm 0.024 \pm 0.006$	$-0.032 \pm 0.073 \pm 0.017$
0.044	1.78	$0.037 \pm 0.023 \pm 0.005$	$-0.033 \pm 0.062 \pm 0.014$
0.049	1.92	$0.009 \pm 0.022 \pm 0.004$	$0.075 \pm 0.053 \pm 0.013$
0.056	2.07	$0.023 \pm 0.022 \pm 0.004$	$0.006 \pm 0.046 \pm 0.008$
0.063	2.22	$0.054 \pm 0.022 \pm 0.004$	$0.043 \pm 0.041 \pm 0.008$
0.071	2.48	$0.053 \pm 0.022 \pm 0.004$	$0.070 \pm 0.037 \pm 0.008$
0.079	2.78	$0.106 \pm 0.023 \pm 0.005$	$0.093 \pm 0.033 \pm 0.008$
0.090	3.11	$0.156 \pm 0.025 \pm 0.009$	$0.066 \pm 0.029 \pm 0.006$
0.101	3.43	$0.133 \pm 0.019 \pm 0.010$	$0.076 \pm 0.027 \pm 0.006$
0.113	3.74	$0.129 \pm 0.023 \pm 0.010$	$0.106 \pm 0.024 \pm 0.008$
0.128	4.06	$0.143 \pm 0.030 \pm 0.012$	$0.136 \pm 0.023 \pm 0.008$
0.144	4.59	$0.294 \pm 0.041 \pm 0.021$	$0.101 \pm 0.014 \pm 0.007$
0.172	5.27	$0.288 \pm 0.061 \pm 0.022$	$0.067 \pm 0.013 \pm 0.006$
0.218	5.93	$0.316 \pm 0.108 \pm 0.028$	$0.069 \pm 0.012 \pm 0.006$
0.276	6.61	$0.311 \pm 0.255 \pm 0.029$	$0.086 \pm 0.011 \pm 0.005$
0.350	7.26		$0.050 \pm 0.011 \pm 0.004$
0.443	8.23		$0.048 \pm 0.011 \pm 0.003$
0.555	9.11		$0.005 \pm 0.012 \pm 0.002$
0.707			

TABLE II. Contributions to the systematic uncertainties of $\Gamma_{1}^{d}, \Gamma_{1}^{n}$ and $\Gamma_{1}^{p}-\Gamma_{1}^{n}$.

uncertainty	$\delta \Gamma_{1}^{d}$	$\delta \Gamma_{1}^{n}$	$\delta\left(\Gamma_{1}^{p}-\Gamma_{1}^{n}\right)$
P_{b}	0.001	0.001	0.004
P_{t}	0.002	0.005	0.007
f	0.002	0.006	0.008
$A_{r c}$	0.002	0.006	0.007
F_{2} and R	0.001	0.002	0.005
Extrapolation	0.001	0.004	0.006
			0.011
Total	0.004		0.016

[^0]: *Work supported by Department of Energy contract DE-AC03-76SF00515.

