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INTRODUCTION 

In principle, quantum chromodynamics can provide a fundamental descrip- 

tion of hadron and-nuclei structure and dynamics in terms of elementary quark 

and gluon degrees of freedom. In practice, the direct application of QCD to nu- 

clear phenomena is extremely complex because of the interplay of nonperturbative 

effects such as color confinement and multi-quark coherence. Despite these chal- 

lenging theoretical difficulties, there has been substantial progress in identifying 

specific QCD effects in nuclear physics. A crucial tool in these analyses is the use 

of relativistic light-cone quantum mechanics and Fock state methods in order to 

provide a tractable and consistent treatment of relativistic many-body effects. In 

some applications, such as exclusive nuclear processes at large momentum transfer, 

one can make first-principle predictions using factorization theorems which sepa- 

rate hard perturbative dynamics from the nonperturbative physics associated with 

hadron or nuclear binding. In other applications, such as the passage of hadrons 

through nuclear matter and the calculation of the axial, magnetic, and quadrupole 

moments of light nuclei, the QCD description provides new insights which go well 

beyond the usual assumptions of traditional nuclear physics. 

In these lectures, we will outline a number of novel applications of QCD and 

light-cone quantum mechanics to nuclear structure and dynamics. We will partic- 

ularly emphasize the importance of light-cone Hamiltonian and Fock State meth- 

ods as a tool to consistently describe composite relativistic many-body systems ’ 

and their electromagnetic interactions. Further discussions and references may be 

found in the review (Brodsky and Lepage, 1989). 

I- LIGHT-CONE METHODS IN QCD 

In recent years quantization of quantum chromodynamics at fixed light-cone 

time T = t - Z/C has emerged as a promising method for solving relativistic bound- 

state problems in the strong coupling regime including nuclear systems (Brodsky 

et al., 1993). Light-cone quantization has a number of unique features that make 

it appealing, most notably, the ground state of the free theory is also a ground 

state of the full theory, and the Fock expansion constructed on this vacuum state 

provides a complete relativistic many-particle basis for diagonalizing the full the- 

ory. The light-cone wavefunctions $n(~i, kli, A;), which describe the hadrons and 

nuclei in terms of their fundamental quark and gluon degrees of freedom, are frame- 
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independent. The essential variables are the boost-invariant light-cone momentum 

fractions z; = p’/P+, where Pp and p’ are the hadron and quark or gluon mo- 

menta, respectively, with p* = P” f P”. The internal transverse momentum 

variables iii are given by i,i = pi; - ziF1 with the constraints C il; = 0 and 

Cxi = 1. i.e., the light-cone momentum fractions xi and Zli are relative coor- 

dinates, and they describe the hadronic system independent of its total four mo- 

mentum pp. The entire spectrum of hadrons and nuclei and their scattering states 

is given by the set of eigenstates of the light-cone Hamiltonian HLC of QCD. The 

Heisenberg problem takes the form: 

HLC’IQ) = M219). 

For example, each hadron has the eigenfunction IS,) of Hz:” with eigenvalue 

M2 = M&. If we could solve the light-cone Heisenberg problem for the proton in 

QCD, we could then expand its eigenstate on the complete set of quark and gluon 

eigensolutions In) = luud), luudg) . . . of the free Hamiltonian Hi, with the same 

global quantum numbers: 

The $)n n = 3,4, . . . are first-quantized amplitudes analogous to the Schrodinger 

wavefunction, but it is Lorentz-frame independent. Particle number is generally 

not conserved in a relativistic quantum field theory. Thus each eigenstate is repre- 

sented as a sum over Fock states of arbitrary particle number. Thus in QCD each 

hadron is expanded as second-quantized sums over .fluctuations of color-singlet 

quark and gluon states of different momenta and number. The coefficients of 

these fluctuations are the light-cone wavefunctions Gn(xi, Icl;, Xi). The invariant 

mass M of the partons in a given Fock state can be written in the elegant form 

M2 = & i:i;m2. The dominant configurations in the wavefunction a.re gener- 

ally those with minimum values of M 2. Note that except for the case mi = 0 and 

iii = o’, the limit xi + 0 is an ultraviolet limit; i.e. it corresponds to particles 

moving with infinite momentum in the negative z direction: kf + -kf + --co. 

In the case of QCD in one space and one time dimensions, the application 

of discretized light-cone quantization (DLCQ) (Brodsky and Pauli, 1991) provides 

complete solutions of the theory, including the entire spectrum of mesons, baryons, 

and nuclei, and their wavefunctions (Hornbostel, Brodsky, and Pauli, 1990). In the 
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DLCQ method, one simply diagonalizes the light-cone Hamiltonian for QCD on a 

discretized Fock state basis. The DLCQ solutions can be obtained for arbitrary 

parameters including the number of flavors and colors and quark masses. More 

recently, DLCQ has b een applied to new variants of QCD(l+l) with quarks in 

the adjoint representation, thus obtaining color-singlet eigenstates analogous to 

gluonium states (Demeterfi, Klebanov, and Bhanot, 1994). 

The DLCQ method becomes much more numerically intense when applied 

to physical theories in 3 + 1 dimensions; however, progress is being made. An 

analysis of the spectrum and light-cone wavefunctions of positronium in QED(3+1) 

is given in (Krautgartner, Pauli, and Wolz, 1992). Currently, Hiller, Okamoto, 

and Brodsky (Hiller et al., 1994) are pursuing a nonperturbative calculation of 

the lepton anomalous moment in QED using this method. Burkardt has recently 

solved scalar theories with transverse dimensions by combining a Monte Carlo 

lattice method with DLCQ (Burkardt, 1994). 

Given the light-cone wavefunctions {+n(xi, kl,, Xi)}, one can compute the elec- 

tromagnetic and weak form factors from a simple overlap of light-cone wavefunc- 

tions, summed over all Fock states (Drell and Yan, 1970, Brodsky and Drell, 1980). 

In the case of matrix elements of the current j+ in a frame with y+ = 0, only diag- 

onal matrix elements in particle number n’ = n are needed. In the nonrelativistic 

limit one can make contact with the usual formulae for form factors in Schrodinger 

many-body theory. In the case of inclusive reactions, the hadron and nuclear struc- 

ture functions are the probability distributions constructed from integrals over the 

absolute squares I?,& I2 summed over n. In the far off-shell domain of large par- 

ton virtuality, one can use perturbative QCD to derive the asymptotic fall-off of 

the Fock amplitudes, which then in turn leads to the QCD evolution equations 

for distribution amplitudes and structure functions. More generally, one can prove 

factorization theorems for exclusive and inclusive reactions which separate the hard 

and soft momentum transfer regimes, thus obtaining rigorous predictions for the 

leading power behavior contributions to large momentum transfer cross sections. 

One can also compute the far off-shell amplitudes within the light-cone wavefunc- 

tions where heavy quark pairs appear in the Fock states. Such states persist over 

time 7 N P+/M2 until they are materialized in the hadron collisions. This leads to 

a number of novel effects in the hadroproduction of heavy quark hadronic states. 

See (Brodsky, et al., 1992) for further details. A review of the application of 

light-cone quantized QCD to exclusive processes is given in (Brodsky and Lepage, 

1989). 
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The light-cone approach to QCD h as immediate application to nuclear systems: 

1. The formalism provides a covariant many-body description of nuclear systems 

formally similar to nonrelativistic many-body theory. 

2. One can derive rigorous predictions for the leading power-law fall-off of 

nuclear amplitudes, including the nucleon-nucleon potential, the deuteron 

form factor, and the distributions of nucleons within nuclei at large mo- 

mentum fraction. For example, the leading electromagnetic form factor 

of the deuteron falls as Fd(Q2) = f(a,(Q2))/(Q2)“, where, asymptotically, 

f(4Q2>> x 4Q > 2 5+Y The leading anomalous dimension y is computed in . 
(Brodsky, Ji, and Lepage, 1983). 

3. In general the six-quark Fock state of the deuteron is a mixture of five differ- 

ent color-singlet states. The dominant color configuration of the six quarks 

corresponds to the usual proton-neutron bound state. However, as Q2 in- 

creases, the deuteron form factor becomes sensitive to deuteron wavefunc- 

tion configurations where all six quarks overlap within an impact separation 

b’” < 0(1/Q). In th e asymptotic domain, all five Fock color-singlet com- 

ponents acquire equal weight; i.e., the deuteron wavefunction becomes 80% 

“hidden color” at short distances. The derivation of the evolution equation 

for the deuteron distribution amplitude is given in (Brodsky, Ji, and Lepage, 

1983) and (Ji and Brodsky, 1986). 

4. QCD predicts that Fock components of a hadron with a small color dipole 

moment can pass through nuc1ea.r matter without intera.ctions (Bertsch, et 

al., 1981, Brodsky and Mueller, 1988). Th us in the case of large momentum 

transfer reactions where only small-size valence Fock state configurations 

enter the hard scattering amplitude, both the initial and final state inter- 

actions of the hadron states become negligible. There is now evidence for 

QCD “color transparency” in exclusive virtual photon p production for both 

nuclear coherent and incoherent reactions in the E665 experiment at Fermi- 

lab (Fang, 1993), as well as the original measurement at BNL in quasielastic 

pp scattering in nuclei (Heppelmann, 1990). The recent NE18 measurement 

of quasielastic electron-proton scattering at SLAC finds results which do 

not clearly distinguish between conventional Glauber theory predictions and 

PQCD color transparency (Makins, 1994). 

5. In contrast to color transparency, Fock states with large-scale color configu- 

rations strongly interact with high particle number production (Blaettel, et 

al. 1993). 
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6. The traditional nuclear physics assumption that the nuclear form factor fac- 

torizes in the form FAN = EN FN(02)$$“(Q2), where FN(&~) is the 

on-shell nucleon form factor is in general incorrect. The struck nucleon is 

necessarily off-shell, since it must transmit momentum to align the spectator 

nucleons along the direction of the recoiling nucleus. 

7. Nuclear form factors and scattering amplitudes can be factored in the form 

given by the reduced amplitude formalism (Brodsky and Chertok, 1976), 

which follows from the cluster decomposition of the nucleus in the limit of 

zero nuclear binding. The reduced form factor formalism takes into account 

the fact that each nucleon in an exclusive nuclear transition typically absorbs 

momentum QN 21 Q/N. Tests of this formalism are discussed in a later 

section. 

8. The use of covariant kinematics leads to a number of striking conclusions for 

the electromagnetic and weak moments of nucleons and nuclei. For example, 

magnetic moments cannot be written as the naive sum p = C pi of the 

magnetic moments of the constituents, except in the nonrelativistic limit 

where the radius of the bound state is much larger than its Compton scale: 

RAMA >> 1. The deuteron quadrupole moment is in general nonzero even 

if the nucleon-nucleon bound state has no D-wave component (Brodsky and 

Hiller, 1983). S UC e ec s are due to the fact that even “static” moments h ff t 

have to be computed as transitions between states of different momentumpp 

and pp + 4’1 -with qp --+ 0. Thus one must construct current matrix elements 

between boosted states. The Wigner boost generates nontrivial corrections 

to the current interactions of bound systems (Brodsky and Primack, 1969). 

9. One can also use light-cone methods to show that the proton’s magnetic 

moment pp and its axial-vector coupling 9A have a relationship independent 

of the assumed form of the light-cone wavefunction (Brodsky and Schlumpf, 

1994). At the physical value of the proton radius computed from the slope 

of the Dirac form factor, R1 = 0.76 fm, one obtains the experimental values 

for both pp and gA; the helicity carried by the valence u and d quarks are 

each reduced by a factor N 0.75 relative to their nonrelativistic values. At 

infinitely small radius I$&‘~ -+ 0, pp becomes equal to the Dirac moment, as 

demanded by the Drell-Hearn-Gerasimov sum rule (Gerasimov, 1965; Drell 

and Hearn, 1966). Another surprising fact is that as Rr t 0, the constituent 

quark helicities become completely disoriented and gA -+ 0. We discuss these 

features in more detail in the following section. 
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10. In the case of the deuteron, both the quadrupole and magnetic moments 

become equal to that of an elementary vector boson in the the Standard 

Model in the limit iVl*Rd t 0. The three form factors of the deuteron have 

the same ratio as that of the W boson in the Standard Model (Brodsky and 

Hiller, 1983). 

11. The basic amplitude controlling the nuclear force, the nucleon-nucleon scat- 

tering amplitude can be systematically analyzed in QCD in terms of basic 

quark and gluon scattering subprocesses. The high momentum transfer be- 

havior of the amplitude from dimensional counting is M,,,,, N fpp.+pp(l/s)/i4 

at fixed center of mass angle. A review is given in (Brodsky and Lepage, 

1989). The fundamental subprocesses, including pinch contributions (Land- 

shoff, 1974), can be classified as arising from both quark interchange and 

gluon exchange contributions. In the case of meson-nucleon scattering, the 

quark exchange graphs (Blankenbecler et al., 1973) can explain virtually all 

of the observed features of large momentum transfer fixed CM angle scatter- 

ing distributions and ratios (Carroll, 1992). The connection between Regge 

behavior and fixed angle scattering in perturbative QCD for quark exchange 

reactions is discussed in (Brodsky, Tang, and Thorn, 1993). (Sotiropoulos 

and Sterman, 1994) h ave shown how one can consistently interpolate from 

fixed angle scaling beha,vior to the l/t8 scaling behavior of the elastic cross 

section in the s > -t, large -t regime. 

12. One of the most striking anomalies in elastic proton-proton scattering is the 

large spin correlation ANN observed at large angles (Krisch, 1992). At & N 

5 GeV, the rate for scattering with incident proton spins parallel and normal 

to the scattering plane is four times larger than scattering with antiparallcl 

polarization. This phenomena in elastic pp scattering can be explained as 

the effect due to the onset of charm production in the intermediate state 

at this energy (Brodsky and de Teramond, 1988). The intermediate state 

~uuduudc~) has odd intrinsic parity and couples to the J = S = 1 initial 

state, thus strongly enhancing scattering when the incident projectile and 

target protons have their spins parallel and normal to the scattering plane. 

13. The simplest form of the nuclear force is the interaction between two heavy 

quarkonium states, such as the r(bz) and the J/$(E). Since there a,re no va- 

lence quarks in common, the dominant color-singlet interaction arises simply 

from the exchange of two or more gluons, the analog of the van der Waals 

molecular force in QED. In principle, one could measure the interactions of 
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such systems by producing pairs of quarkonia in high energy hadron colli- 

sions. The same fundamental QCD van der Waals potential also dominates 

the interactions of heavy quarkonia with ordinary hadrons and nuclei. As 

shown in (Luke, Manohar, and Savage, 1992), the small size of the QQ bound 

state relative to the much larger hadron sizes allows a systematic expansion 

of the gluonic potential using the operator product potential. The matrix 

elements of multigluon exchange in the quarkonium state can be computed 

from nonrelativistic heavy quark theory. The coupling of the scalar part of 

the interaction to large-size hadrons is rigorously normalized to the mass 

of the state via the trace anomaly. This attractive potential dominates the 

interactions at low relative velocity. In this way one establishes that the 

nuclear force between heavy quarkonia and ordinary nuclei is attractive and 

sufficiently strong to produce nuclear-bound quarkonium (Brodsky, de Tera- 

mond, and Schmidt, 1990). 

MOMENTS OF NUCLEONS AND NUCLEI IN THE LIGHT-CONE 

FORMALISM 

Let us consider an effective three-quark light-cone Fock description of the nu- 

cleon in which additional degrees of freedom (including zero modes) are param- 

eterized in an effective potential (Lepage and Brodsky, 1980). After truncation, 

one could in principle obtain the mass A4 and light-cone wavefunction of the three- 

quark bound-states by solving the Hamiltonian eigenvalue problem. It is reasonable 

to assume that adding more quark and gluonic excitations will only refine this ini- 

tial approximation (Perry, Harindranath, and Wilson,. 1990). In such a. t,heory t,he 

constituent quarks will also acquire effective masses and form factors. However, 

even without explicit solutions, one knows that the helicity and flavor structure 

of the baryon eigenfunctions will reflect the assumed global SU(6) symmetry and 

Lorentz invariance of the theory. Since we do not have an explicit representation for 

the effective potential in the light-cone Hamiltonian Hiptive for three-quarks, we 

shall proceed by making an ansatz for the momentum space structure of the wave- 

function q. As we will show below, for a given size of the proton, the predictions 

and interrelations between observables at Q2 = 0, such as the proton ma.gnetic 

moment pp and its axial coupling gA, turn out to be essentially independent of the 

shape of the wavefunction (Brodsky and Schlumpf, 1994). 

The light-cone model given in (Schlumpf, 1993) provides a framework for 
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representing the general structure of the effective. three-quark wavefunctions for 

baryons. The wavefunction Xlj is constructed as the product of a momentum wave- 

function, which is spherically symmetric and invariant under permutations, and a 

spin-isospin wave function, which is uniquely determined by SU(G)-symmetry re- 

quirements. A Wigner-Melosh (Wigner, 1939; Melosh, 1974) rotation is applied to 

the spinors, so that the wavefunction of the proton is an eigenfunction of J and J, 

in its rest frame (Coester and Polyzou, 1982; Leutwyler and Stern, 1978). To repre- 

sent the range of uncertainty in the possible form of the momentum wavefunction, 

we shall choose two simple functions of the invariant mass M of the quarks: 

$H.o.(M~) = N~.o.exp(-M~/W~), 

$~~~lver(M~) = N~ower(l +.M2/P2)-’ 

where p sets the characteristic internal momentum scale. Perturbative QCD pre- 

dicts a nominal power-law fall off at large Icl corresponding to p = 3.5 (Lepage 

and Brodsky, 1980). The Melosh rotation insures that the nucleon has j = 3 in 

its rest system. It has the matrix representation (Melosh, 1974) 

with Z = (O,O, 1): and it becomes the unit matrix if the quarks are collinear 

RM(z;,O,m) = 1. Th us the internal transverse momentum dependence of the 

light-cone wavefunctions also affects its helicity structure (Brodsky and Primack, 

1969). 

The Dirac and Pauli form factors Fr ( Q2) and F2 ( Q2) of the nucleons are given 

by the spin-conserving and the spin-flip vector current J$ matrix elements (Q” = 

-q2) (Brodsky and Drell, 1980) 

WQ2) = (P + cl- IJ;lp,f), 

(Q1 - ;QPdQ2) = -2M(p + q, T 1 J;jp, .j,) . 

We then can calculate the anomalous magnetic moment a = limQ2,s 1;;(Q2). [The 

total proton magnetic moment is ,LL~ = $( 1 + up).] The same parameters as in 
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(Schlumpf, 1993) are chosen; namely m = 0.263 GeV (0.26 GeV) for the up7 and 

down-quark masses, and ,B = 0.607 GeV (0.55 GeV) for $power ($H.o.) and p = 3.5. 

The quark currents are taken as elementary currents with Dirac moments z. All 

of the baryon moments are well-fit if one takes the strange quark mass as 0.38 GeV. 

With the above values, the proton magnetic moment is 2.81 nuclear magnetons, 

the neutron magnetic moment is -1.66 nuclear magnetons. (The neutron value 

can be improved by relaxing the assumption of isospin symmetry.) The radius of 

the proton is 0.76 fm; i.e., MPR1 = 3.63. 

2 

1 

0 s 
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-- 

11-94 7842A5 

Figure 1. The anomalous magnetic moment a = Fz(O) of the proton as a function of MpR1: 
broken line, pole type wavefunction; continuous line, gaussian wavefunction. The experimental 
value is given by the dotted lines. The prediction of the model is independent of the wavefunction 
for Q2 = 0. 

In Fig. 1 we show the functional relationship between the anomalous moment 

up and its Dirac radius predicted by the three-quark light-cone model. The value 

of R; = -~cP’~(Q~)/~Q~I~~,~ is varied by changing /3 in the light-cone wave- 

function while keeping the quark mass m fixed. The prediction for the power-law 

wavefunction $power is given by the broken line; the continuo& line represents 

‘zjH.0.. Figure 1 shows that when one plots the dimensionless observable ap against 

the dimensionless observable M,Rl the prediction is essentially independent of the 
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assumed power-law or Gaussian form of the three-quark light-cone wavefunction. 

Different values of p > 2 also do not affect the functional dependence of uP(MPRl) 

shown in Fig. 1. In this sense the predictions of the three-quark light-cone model 

relating the Q2 -+ 0 observables are essentially model-independent. The only 

parameter controlling the relation between the dimensionless observables in the 

light-cone three-quark model is m/MP which is set to 0.28. For the physical proton 

radius M&r = 3.63 one obtains the empirical value for up = 1.79 (indicated by 

the dotted lines in Fig. 1). 

The prediction for the anomalous moment a can be written analytically as 

a = (-Yv)aNR, where aNR = 2MP/3m is the nonrelativistic (R -+ co) value and yv 

is given as (Chung and Coester, 1991) 

(1 - x3)wm + 23M)_- c3/2 . 

(m + ~3.4~ + ft3 I 

The expectation value (7~) is evaluated as* 

Let us take a closer look at the two limits R + 00 and JX + 0. In the 

nonrelativistic limit we let /3 -+ 0 and keep the quark mass m and t,he proton mass 

MP fixed. In this limit the proton radius Rr -+ co and ap --+ 2MP/3m = 2.38 since 

(YV) ---f 1+. Thus the physical value of the anomalous magnetic moment at the 

empirical proton radius MPR1 = 3.63 is reduced by 25% from its nonrelativistic 

value due to relativistic recoil and nonzero kl’. 

To obtain the ultra-relativistic limit, we let ,B t 0~) while keeping m fixed. In 

this limit the proton becomes pointlike (A/l,Rl --+ 0) and the internal tra.nsverse 

* [d31c] = &r&d&(& + & + is). The third component off is defined as lisi = i(xiM - 
mlTzi). Th is measure differs from the usual one used in (Lepage and Brodsky, 1980) by 

the Jacobian fl $$ which can be absorbed into the wavefunction. 

t This differs slight& from the usual nonrelativistic formula 1 + a = C, 2$- due to the * 
nonvanishing binding energy which results in MP # 3m,. 

$ The nonrelativistic value of the neutron magnetic moment is reduced by 31%. 
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momenta Icl t 00. The anomalous magnetic momentum of the proton goes lin- 

early to zero as a = 0.43MPR1 since (7~) t 0. Indeed, the Drell-Hearn-Gerasimov 

sum rule (Gerasimov, 1965; Drell and Hearn, 1966) demands that the proton mag- 

netic moment becomes equal to the Dirac moment at small radius. For a spin-$ 

system 

2 M2 wds 

a - = 27Ga J 
; b+> - aA(s 

Sth 

where ap(A) is the total photoabsorption cross section with parallel (antiparallel) 

photon and target spins. If we take the point-like limit, such that the threshold 

for inelastic excitation becomes infinite while the mass of the system is kept finite, 

the integral over the photoabsorption cross section vanishes and a = 0 (Brodsky 

and Drell, 1980). I n contrast, the anomalous magnetic moment, of the proton 

does not vanish in the nonrelativistic quark model as R t 0. The nonrelativistic 

quark model does not take into account the fact that the magnetic moment of a 

baryon is derived from lepton scattering at nonzero momentum transfer; i.e., the 

calculation of a magnetic moment requires knowledge of the boosted wavefunction. 

The Melosh transformation is also essential for deriving the DHG sum rule and 

low energy theorems of composite systems (Brodsky and Primack, 1969). 

Figure 2. (a) The axial vector coupling gA of the neutron to proton decay as a function of 
MpR1. The experimental value is given by the dotted lines. (b) The ratio gA/gA(RI -+ 03) 
versus ap/ap(R1 + co) as a function of the proton radius RI.. The line code is as in Fig. 1. 
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A similar analysis can be performed for the axial-vector coupling measured 

in neutron decay. The coupling gA is given by the spin-conserving axial current 

Ji matrix element gA(0) = (p, 1‘ IJi\p, r). The value for gA can be written as 

gA = (yA)gzR with gA NR being the nonrelativistic value of gA and with YA as 

(Chung and Coester, 1991; Ma, 1991) 

In Fig. 2(a) the axial-vector coupling is plotted against the proton radius MPRr. 

The same parameters and the same line representation as in Fig. 1 are used. The 

functional dependence of gA( MPRr) is also found to be independent of the assumed 

wavefunction. At the physical proton radius MPRr = 3.63 one predicts the value 

gA = 1.25 (indicated by the dotted lines in Fig. 2(a)) since (7~) = 0.75. The 

measured value is gA = 1.2573 f 0.0028 (Particle Data Group, 1992). This is a 

25% reduction compared to the nonrelativistic SU(6) value QA = 5/3, which is 

only valid for a proton with large radius Rr >> l/MP. As shown in (Ma, 1991), the 

Melosh rotation generated by the internal transverse momentum spoils the usual 

identification of the y+ys quark current matrix element with the total rest-frame 

spin projection s,, thus resulting in a reduction of gA. 

Thus, given the empirical values for the proton’s anomalous moment ~1~’ a.nd 

radius MPRr, its axial-vector coupling is automatically fixed at the value gA = 1.25. 

This prediction is an essentially model-independent prediction of the three-quark 

structure of the proton in QCD. The Melosh rotation of the light-cone wavefunction 

is crucial for reducing the value of the axial coupling from its nonrelativistic value 

5/3 to its empirical value. In Fig. 2(b) we plot gA/gA(Rr -+ 00) versus aP/aP(~r -i 

co) by varying the proton radius RI. The near equality of these ratios reflects 

the relativistic spinor structure of the nucleon bound state, which is essentially 

independent of the detailed shape of the momentum-space dependence of the light- 

cone wavefunction. We emphasize that at small proton radius the light-cone model 

predicts not only a vanishing anomalous moment but also limRl-;s gA(fld$r) = 0. 

One can understa,nd this physically: in the zero radius limit the interna. transverse 

momenta become infinite and the quark helicities become completely disorientccl. 

This is in contradiction with chiral models which suggest that for a zero radius 

composite baryon one should obtain the chiral symmetry result gA = 1. 

The helicity measures au and Ad of the nucleon each experience the same 

reduction as gA due to the Melosh effect. Indeed, the quantity Aq is defined by 
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the axial current matrix element 

and the value for Aq can be written analytically as Aq = (YA)A~~~ with AqNR 

being the nonrelativistic or naive value of Aq and with ?A. 

The light-cone model also predicts that the quark helicity sum AX = Au + Ad 

vanishes as a function of the proton radius RI. Since the helicity sum AX depends 

on the proton size, and thus it cannot be identified as the vector sum of the rest- 

frame constituent spins. As emphasized in (Ma, 1991), the rest-frame spin sum is 

not a Lorentz invariant for a composite system. Empirically, one measures Aq from 

the first moment of the leading twist polarized structure function gr(z, Q). In the 

light-cone and parton model descriptions, Aq = &r dx[qT(x) - ql(z)], where qt(x) 

and ql(x) can be interpreted as the probability for finding a quark or antiquark 

with longitudinal momentum fraction z and polarization parallel or antiparallel to 

the proton helicity in the proton’s infinite momentum frame (Lepage and Brodsky, 

1980). [In the infinite momentum there is no distinction between the quark helicity 

and its spin-projection sZ.] Thus Aq refers to the difference of helicities at fixed 

light-cone time or at infinite momentum; it cannot be identified with q(s, = +$) - 

q(sz = -i), the spin carried by each quark flavor in the proton rest frame in the 

equal time formalism. 

. 

Thus the usual- SU(6) values AuNR = 4/3 and AdNR = -l/3 are only valid 

predictions for the proton at large &RI. At the physical radius the quark helicities 

are reduced by the same ratio 0.75 as gA/gA NR due to the Melosh rotation. Qualita- 

tive arguments for such a reduction have been given in (Karl, 1992) and (Fritzsch, 

1990). For MPRr = 3.63, the three-quark model predicts Au = 1, Ad = -l/4, and 

AX = Au + Ad = 0.75. Alth ough the gluon contribution AG = 0 in our model, 

the general sum rule (Jaffe and Manohar, 1990) 

is still satisfied, since the Melosh transformation effectively contributes to ,L,. 

Suppose one adds polarized gluons to the three-quark light-cone model. Then 

the flavor-singlet quark-loop radiative corrections to the gluon propagator will give 

an anomalous contribution S(Aq) = -2AG to each light quark helicity (Efremov 
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and Teryaev, 1988). The predicted value of gA = Au - Ad is of course unchanged. 

For illustration we shall choose ZAG = 0.15. The gluon-enhanced quark model 

then gives the values in Table 1, which agree well with the present experimental 

values. Note that the gluon anomaly contribution to As has probably been over- 

estimated here due to the large strange quark mass. One could also envision other 

sources for this shift of Aq such as intrinsic flavor (Fritzsch, 1990). A specific model 

for the gluon helicity distribution in the nucleon bound state is given in (Brodsky, 

Burkardt, and Schmidt, 1994). 

In summary, we have shown that relativistic effects are crucial for understand- 

ing the spin structure of the nucleons. By plotting dimensionless observables 

against dimensionless observables we obtain model-independent relations indepen- 

dent of the momentum-space form of the three-quark light-cone wavefunctions. 

For example, the value of gA N 1.25 is correctly predicted from the empirical value 

of the proton’s anomalous moment. For the physical proton radius n/ir,Rr = 3.63 

the inclusion of the Wigner (Melosh) rotation due to the finite relative transverse 

momenta of the three quarks results in a ~3i 25% reduction of the nonrelativistic 

predictions for the anomalous magnetic moment, the axial vector coupling, and 

the quark helicity content of the proton. At zero radius, the quark helicities be- 

come completely disoriented because of the large internal momenta, resulting in 

the vanishing of gi and the total quark helicity AX. 

Table I 

Comparison of the quark content of the proton in the nonrelativistic quark 

model (NR), in our three-quark model (3s)) in a gluon-enhanced three-quark model 

(3q+g), and with experiment (Ellis and Karliner, 1994). 

-- 

Quantity NR 3q 

Au 4 3 1 

Ad -- 1 -- 1 
3 4 

As 0 0 

AX 1 3 4 

3q+g Experiment 

0.85 0.83 f 0.03 

-0.40 -0.43 f 0.03 

-0.15 -0.10 f 0.03 

0.30 0.31 f 0.07 
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* 

APPLICATIONS TO NUCLEAR SYSTEMS 

We can analyze a nuclear system in the same way as we did the nucleon in 

the preceding chapter. The triton, for instance, is modeled as a bound state of 

a proton and two neutrons. The same formulae as i? the preceding chapter are 

valid (for spin-$ nuclei); we only have to use the appropriate parameters for the 

constituents. 

The light-cone analysis yields nontrivial corrections to the moments of nu- 

clei. For example, consider the anomalous magnetic moment ad and anomalous 

quadrupole moment Qi = Qd + e/M” of the deuteron. As shown in (Tung, 1968), 

these moments satisfy the sum rule 

Here &(A)( 7 > v t is the non-forward Compton amplitude for incident parallel (an- 

tiparallel) photon-deuteron helicities. Thus, in the pointlike limit where the thresh- 

old for particle excitation vth t co, the deuteron acquires the same electroma.gnetic 

moments Qz -+ 0, ad --+ 0 a.s that of the l/I/ in the Standard Model (Brodsky a.nd 

Hiller, 1983). The approach to zero anomalous magnetic and quadrupole moments 

for Rd -+ 0 is shown in Figs. 3 and 4. Thus, even if the deuteron has no D-wave 

component, a nonzero quadrupole moment arises from the relativistic recoil correc- 

tion. This correction, which is mandated by relativity, could cure a long-standing 

discrepancy between experiment and the traditional nuclear physics predictions for ’ 

the deuteron quadrupole. Conventional nuclear theory predicts a quadrupole mo- 

ment of 7.233 GeVe2 which is smaller than the experimental value (7.369 f 0.039) 

GeVm2. The light-cone calculation for a pure S-wave gives a positive contribution 

of 0.08 GeVe2 which accounts for most of the previous discrepancy. 

i. 

In the case of the tritium nucleus, the value of the Gamow-Teller matrix element 

can be calculated in the same way as we calculated the axial vector coupling gA 

of the nucleon in the previous section. The correction to the nonrelativistic limit 

for the S-wave contribution is gA = (YA)gA NR. For the physical quantities of the 

triton we get (7~) = 0.99. Th is means that even at the physical radius, we find a 

nontrivial nonzero correction of order -0.01 to g~iton/~=;lcleon due to the relativistic 

recoil correction implicit in the light-cone formalism. The Gamow-Teller matrix 

element is measured to be 0.961 f 0.003. The wave function of the tritium (3H) 
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Figure 3. The anomalous moment ad of the deuteron as a function of the deuteron radius 
In the limit of zero radius, the anomalous moment vanishes. 
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Figure 4. The quadrupole moment Qd of the deuteron as a function of the deuteron radius 
Rd. In the limit of zero radius, the quadrupole moment approaches its canonical value Qd = 
-e/M~. 

is a superposition of a dominant S-state and small D- and S’-state components 

4 = dS+dSl+dD. The G amow-Teller matrix element in the nonrelativistic theory 

is then given by g~on/g~cleon = (l&l2 - ;l&12 + +l$Dj2)(l + 0.0589) = 0.974, 

where the last term is a correction due to meson exchange currents. Figure 5 shows 

that the Gamow-Teller matrix element of tritium must approach zero in the limit 

of small nuclear radius, just as in the case of the nucleon as a bound state of three 
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Figure 5. The reduced Gamow-Teller matrix element for tritium decay as a function of the 

tritium radius. 

quarks. This phenomenon is confirmed in the light-cone analysis. 

EXCLUSIVE NUCLEAR PROCESSES 

One of the most elegant areas of application of QCD to nuclear physics is the 

domain of large momentum transfer exclusive nuclear processes. Rigorous results 

for the asymptotic properties of the deuteron form factor at large momentum 

transfer are given in (Brodsky, Ji, and Lepage, 1983). In the asympt,otic limit 

Q2 + oo the deuteron distribution amplitude, which controls large momentum 

transfer deuteron reactions, becomes fully symmetric among the five possible color- 

singlet combinations of the six quarks. One can also study the evolution of the 

“hidden color” components (orthogonal to the np and AA degrees of freedom) from 

intermediate to large momentum transfer scales; the results also give constraints on 

the nature of the nuclear force at short distances in QCD. The existence of hidden 

color degrees of freedom further illustrates the complexity of nuclear systems in 

&CD. It is conceivable that six-quark d* resonances corresponding to these new 

degrees of freedom may be found by careful searches of the y*d t ycl and y*d -+ 7rrcl 

channels. 
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The basic scaling law for the helicity-conserving deuteron form factor is Fd( Q2) N 

l/&lo which comes from simple quark counting rules, as well as perturbative QCD. 

One cannot expect this asymptotic prediction to become accurate until very large 

Q2 since the momentum transfer has to be shared by at least six constituents. How- 

ever, one can identify the QCD physics due to the compositeness of the nucleus, 

with respect to its nucleon degrees of freedom by using the reduced amplitude 

formalism (Brodsky and Chertok, 1976). F or example, consider the deuteron form 

factor in &CD. By definition this quantity is the probability amplitude for the 

deuteron to scatter from p to p + q but remain intact. 

e 8’ 

x d d 

12-4( 

n 

0)) 7@42A2 

Figure 6. (a) Application of the reduced amplitude formalism to the deuteron form factor 
at large momentum transfer. (b) C onstruction of the reduced nuclear amplitude for two-body 
inelastic deuteron reactions. 

Note that for vanishing nuclear binding energy cd --+ 0, the deuteron can be 

regarded as two nucleons sharing the deuteron four-momentum (see Fig. 6(a)). 

In the zero-binding limit one can show that the nuclear light-cone wavefunction 

properly decomposes into a product of uncorrelated nucleon wavefunctions (Ji and 

Brodsky, 1986). Th e momentum e is limited by the binding and can thus be ne- 

glected, and to first approximation, the proton and neutron share the deuteron’s 

momentum equally. Since the deuteron form factor contains the probability am- 

plitudes for the proton and neutron to scatter from p/2 to p/2 + q/2, it is natural 

to define the reduced deuteron form factor (Brodsky and Chertok, 1976; Brodsky, 

Ji, and Lepage, 1983; Ji and Brodsky, 1986): 

.fdQ2) = Fd(Q2) 
FIN (y) FIN (F)* 
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The effect of nucleon compositeness is removed from the reduced form factor. QCD 

then predicts the scaling 

i.e. the same scaling law as a meson form factor. Diagrammatically, the extra power 

of l/Q2 comes from the propagator of the struck quark line, the one propagator not 

contained in the nucleon form factors. Because of hadron helicity conservation, the 

prediction is for the leading helicity-conserving deuteron form factor (X = X’ = 0.) 

As shown in Fig. 7, this scaling is consistent with experiment for Q = PT X 1 

GeV. 

2 4 6 

Q2 (GeV2) 
4475A2 

Figure 7. Scaling of the deuteron reduced form factor. The data are summarized in (Brodsky 
and Hiller, 1983). 

The distinction between the QCD and other treatments of nuclear ampli- 

tudes is particularly clear in the reaction yd + np; i.e. photo-disintegration of 

the deuteron at fixed center of mass angle. Using dimensional counting (Brod- 

sky and Farrar, 1975), the leading power-law prediction from QCD is simply 
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r1 &rd + v> N F&ds . A comparison of the QCD prediction with the recent 

experiment of (Belz et al., 1994) is shown in Fig. 8, confirming the validity of the 

QCD scaling prediction up to E, N 3 GeV. One can take into account much of 

the finite-mass, higher-twist corrections by using the reduced amplitude formal- 

ism (Brodsky and Hiller, 1983). The photo-disintegration amplitude contains the 

probability amplitude (i.e. nucleon form factors) for the proton and neutron to 

each remain intact after absorbing momentum transfers pP - 1/2pd and pn - 1/2pd, 

respectively (see Fig. 6(b)). After the form factors are removed, the remaining 

“reduced” amplitude should scale as F(tl,,)/p~. Th e single inverse power of trans- 

verse momentum pT is the slowest conceivable in any theory, but it is the unique 

power predicted by PQCD. 

II-94 

1.5 

1 .o 

0.5 

I 

8 c.m.= 84"-90" ;- 
, L , 

l Present Work *” 
Experiment NE8 

I 

1 2 3 

E, (MeV) 7842Ai 

Figure 8. Comparison of deuteron photodisintegration data with the scaling prediction which 
requires s”da/dt(s, Q,,) t o e a most logarithmically dependent on energy at large momentum b t 

transfer. The data and predictions from conventional nuclear theory in are summarized in (Belz 
et al., 1994). 

There are a number of related tests of QCD and reduced amplitudes which 
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require p beams (Ji and Brodsky, 1986), such as j?d + yn and pd + rp in the 

fixed 8,, region. These reactions are particularly interesting tests of QCD in 

nuclei. Dimensional counting rules predict the asymptotic behavior $$ (pd -+ 

“P) N &2 
f(0,,) since there are 14 initial and final quanta involved. Again one 

notes that the Fd -+ rp amplitude contains a factor representing the probability 

amplitude (i.e. form factor) for the proton to remain intact after absorbing mo- 

mentum transfer squared r = (p - 1/2pd)2 and the XN time-like form factor at 

j: = (F +‘1/2~d)~. Thus MFd+rp N FIN(~) FIN(~) M,, where M, has the same 

QCD scaling properties as quark meson scattering. One thus predicts 

dRp du (-d --+ rp) f(O) 

FFN(i) F:,(Z) N T$- * 

Conclusions 

As we have emphasized in these lectures, QCD and relativistic Fock methods 

provide a new perspective on nuclear dynamics and properties. In many some 

cases the covariant approach fundamentally contradicts standard nuclear assump- 

tions. More generally, the synthesis of QCD with the standard nonrelativistic 

approach can be used to constrain the analytic form and unknown parameters in 

the conventional theory, as in Bohr’s correspondence principle. For example, the 

reduced amplitude formalism and PQCD scaling laws provide analytic constraints 

on the nuclear amplitudes and potentials at short distances and large momentum 

transfers. 
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