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Abstract

We discuss rescattering effects that can be measured in e+e− annihilation to three jets

through a single gauge boson, by using triple product (“event handedness”) correlations of

the Z (γ∗) polarization with jet momenta. The gauge boson polarization may be produced

either by polarized beams or through the natural polarization (left-right asymmetry) of the

Z. QCD rescattering does not generate triple product correlations at one loop for massless

quarks. We therefore calculate the QCD contribution for massive quarks, as well as the

contribution of W and Z exchange loops for massless quarks. Due to various cancellations,

the standard model predictions for triple-product correlations at the Z are very small,

making such measurements potentially sensitive to physics beyond the standard model.

For example, the effects of a new gauge boson that couples only to baryon number may

be larger than the standard model contributions; however the effects would probably still

be too small to effectively constrain it.
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1. Introduction

The standard model has withstood experimental scrutiny remarkably well, even as precision

measurements at LEP, SLC and the Tevatron are becoming sensitive to electroweak radiative

corrections. It is important to test the standard model with as many observables as possible.

Observables that vanish identically at tree level are special, in that any nonzero measurement

of such a quantity simultaneously probes higher-order standard model corrections and potential

physics beyond the standard model. Examples of such observables include the GIM-protected

processes K0 → K̄0 and b→ sγ, as well as many CP-violating quantities.

It is also possible to construct tree-vanishing observables in jet physics. Consider the following

observable in e+e− annihilation into three jets,

k̂e · (k1 × k2), (1.1)

where k1 and k2 are the momentum vectors of jets 1 and 2, labeled according to the energy-ordering

E1 > E2 > E3, and k̂e is the electron beam direction. A triple product correlation may be defined

as the expectation value of (1.1),

〈k̂e · (k1 × k2)〉. (1.2)

On the Z pole, (1.2) is proportional to the Z boson polarization, which may be produced either with

longitudinally polarized beams (such as the ∼ 60−80% polarized electrons available at SLC [1]), or

with unpolarized beams [2], utilizing the natural Z polarization induced by the left-right asymmetry

A
(e)
LR ∼ 14% [1]. In both cases the polarization vector of the Z boson sample points along the beam

direction.

In the case of e+e− annihilation into a virtual photon, i.e. in the absence of axial vector

couplings, one needs longitudinally polarized beams to get a nonzero value of (1.2). This case was

first discussed in [3,4].

The observable (1.1) is even under CP, and odd under TN, where TN reverses spatial momenta

and spin vectors. TN does not exchange initial and final states, and so it is not the true time

reversal operation T. Because of the distinction between TN and T, a nonzero value of (1.2) does

not signal CPT violation. It can be produced by final-state rescattering, even in a theory that

respects CP and T [5].

There are other variations on (1.1), with the same symmetry properties, which will be discussed

in due course. In particular, instead of the expectation value (1.2), one can discuss the asymmetry



     

associated with it, namely

N (k̂e · (k1 × k2) > 0) − N (k̂e · (k1 × k2) < 0)

N (k̂e · (k1 × k2) > 0) + N (k̂e · (k1 × k2) < 0)
. (1.3)

where N (k̂e · (k1 × k2) > 0) is the number of three jet events for which k̂e · (k1 × k2) > 0, etc. In

the following, we will use the terms triple product correlation and asymmetry interchangeably.

The large number of polarized Z bosons now available, at both SLC and LEP, allows for sensi-

tive tests of rescattering effects, through measurement of triple product correlations such as (1.2).

It is therefore important to calculate the standard model predictions, and that is the main goal of

this work.

Triple product correlations in e+e− annihilation into jets were also proposed for the study of

CP violation [6,7] and (in e+e− →W+W−) for the study of weak gauge boson couplings [8].

The triple product correlation (1.2) could also be termed “event handedness”, by analogy

to “jet handedness” observables [9] in which k̂e is replaced by the axis of a jet produced by a

longitudinally polarized parton, and ki become momenta of particles inside that single jet, rather

than jet momenta. At the event level, as opposed to the jet level, one probes rescattering phases

generated at much shorter distance scales, where perturbative techniques may be applied.

In a covariant framework, a nonzero triple product correlation in e+e− → three jets is produced

by terms in the differential cross-section that are proportional to the Levi-Civita tensor εµνσρ

contracted with four of the five momentum vectors in the problem. (Up to a sign, different choices

of the four momenta give the same contraction, due to momentum conservation.) The contracted

Levi-Civita tensor must be multiplied by the imaginary part of some loop integral, in order to

contribute to the differential cross-section.

A first guess for how a triple product correlation might be generated in the standard model

is via QCD rescattering of the final-state partons in e+e− → (γ∗, Z) → qgq̄. Indeed, in crossed

channels such as qq̄ → g(γ∗, Z)→ g`+`−, which contribute to Drell-Yan production in (polarized)

proton-proton scattering, it has been shown [10,11] that one loop QCD generates a nonvanishing

single spin asymmetry, very much like (1.2). Similar effects occur in semi-inclusive deep-inelastic

scattering, e−p→ e−hX, where h is a single hadron [12].

Amusingly, however, rescattering effects in QCD with massless quarks do not generate the

triple product correlation at one loop. The various cuts conspire to precisely cancel each other

in the fully time-like kinematics of e+e− annihilation through a vector boson, unless some of the

particles propagating around the loop are massive [12,3]. As we show in appendix I, this vanishing

holds for e+e− → (γ∗, Z)→ n-partons at one loop. Though we do not have a proof, we expect —

and we will assume here — that the argument goes through to all orders in αs perturbation theory



   

for massless partons. We expect the argument to break down at the nonperturbative level, due to

the dynamical generation of particle masses in QCD at this level.

In the standard model, there are three possible sources for the particle masses needed to

generate the 3-jet triple product correlation:

1) In QCD rescattering, one can include the effects of nonzero quark masses, in diagrams such

as figure 1. These effects were first calculated by Fabricius, Kramer, Schierholz and Schmitt [4]

in the case of a virtual photon (no quark axial coupling contributions); they presented numerical

results for two choices of mq/
√
s. At the Z peak, the only significant quark mass is mb. A naive

estimate of the size of the triple product (1.2) generated by the b quark mass in e+e− → bb̄g is

Ncαs
m2
b

M2
Z

M2
Z ≈ 10−3M2

Z , (1.4)

where Nc = 3 is a color factor, αs comes from the additional strong coupling constants, beyond

those present in the tree-level 3-jet production rate, and
m2
b

M2
Z

reflects the fact that the effect must

vanish as mb → 0. (It cannot vanish as mb, since the suppression is a kinematic effect, independent

of whether the b is a fermion or a scalar.) Of course the corresponding contribution would be even

smaller for u, d, s, c.

2) There is another type of QCD “rescattering” where the massive quark annihilates and is not

an external state, first studied by Hagiwara, Kuruma and Yamada [13]. This contribution requires

a triangle diagram with two external gluons (see figure 2); due to Furry’s theorem the third vector

boson must have an axial coupling to the quark in the triangle loop, i.e. it must be the Z rather

than the photon. Naively this contribution is of the same order (1.4), except that it lacks the factor

of Nc. Also, it can contribute to non-b final states, so one might expect a compensating factor of

nf = 5. However, the relative contributions of up- and down-type quarks in the final state turn

out to be opposite in sign and almost equal in magnitude, so one does not get the nf enhancement,

and we will see that this contribution is much smaller than the first one at all energies below the

tt̄ threshold.

3) A final possibility is electroweak rescattering, the exchange of a W or a Z between the

outgoing quark-antiquark pair (see figure 3). In this case the naive estimate is just

αWM
2
Z ≈

1

30
M2
Z . (1.5)

Electroweak rescattering can only compete with QCD rescattering because of the quark mass

suppression in equation (1.4).

As we show, all of these naive estimates turn out to be overestimates, due largely to phase

space factors, and the standard model contributions are quite small. We will also consider one



   

beyond-the-standard-model effect that might be seen or constrained by this observable. In order

to generate a triple-product asymmetry, at least two of the particles propagating around the loop

must be on-shell. But if the new particles one wants to probe must be produced on-shell to generate

an asymmetry, it may be easier to constrain them based on their direct production rather than by

using the asymmetry. Thus, one does not expect large contributions from supersymmetry effects.

For example, one loop diagrams involving squarks and gluinos would not contribute to a three-jet

asymmetry at the Z pole, since the squark propagators would be off-shell, given current bounds on

squark masses. The asymmetries may be more sensitive to the exchange of a single new particle.

If a gauge boson B couples to baryon number, and therefore does not couple directly to leptons,

then it is hard to detect by other means even if it is as light as 10-20 GeV [14,15]. Yet in this

mass range it would give a result like the electroweak result, except potentially scaled up by a large

factor, if the coupling constant αB is larger than the electroweak coupling constant and if the B

mass is significantly less than the W and Z masses. The contribution of this hypothetical B boson

is simply obtained from the electroweak calculation.

Three types of standard model contributions to the triple product (1.2) in e+e− annihilation

are not investigated in this paper. In the first two, the e+e− annihilation does not proceed through

a single gauge boson, so the kinematic invariants appearing in the loop integrals are not all timelike.

Therefore the argument in appendix I does not apply, and non-vanishing triple product correlations

can be generated even when all particle masses are set to zero.

1) The electron-positron annihilation can produce a γγ pair, or a γZ pair, which then rescatter

into the qq̄g final state. (See figure 4.) This contribution is likely to be very small at the Z pole,

because it is proportional to αQED and one does not get the advantage of the Z pole (unless the

photon in the γZ intermediate state is very soft).

2) Another possibility is two-photon physics, γγ → qq̄g, where the photons are produced as initial-

state radiation. (See figure 5.) At a real γγ collider the analogous triple product may be sizable.

In e+e− annihilation at the Z pole, however, the initial-state radiation is likely to be too small to

make this contribution observable.

3) All of the above contributions are those of short-distance physics. In addition there may be

long-distance, nonperturbative QCD effects. (Such contributions to spin-momentum correlations

in e+e− → 4π were discussed in [16].) These should be suppressed by some power of ΛQCD/
√
s,

but in the absence of an operator product expansion we do not know the precise power, let alone

the prefactor. Some nonperturbative effects can be estimated using a hadronization Monte Carlo,

but this one seems particularly difficult because of the need to keep track of phases to get the effect.

Finally, we note that the Z width, or more generally, imaginary parts of vacuum polarization



     

and vertex corrections in the leptonic part of the cross-section, do not contribute to (1.2). These

only renormalize the tree amplitude, and therefore, as in the case of the soft singularities discussed

in appendix I, cannot generate the triple product asymmetry.

2. Notation

The e+e− → (γ∗, Z) → qq̄g differential cross-section at center-of-mass energy
√
s, assuming

no transverse beam polarization, can be written as follows (we adopt the notation of ref. [13]):

d4σ

dx dx̄ d cos θ dφ
=

3

4π

αs
π
σpt ×

[
F1(1 + cos2 θ) + F2(1− 3 cos2 θ) + F3 cos θ

+ F4 sin 2θ cosφ+ F5 sin2 θ cos 2φ+ F6 sin θ cosφ

+ F7 sin 2θ sinφ+ F8 sin2 θ sin 2φ+ F9 sin θ sinφ
]
,

(2.1)

where

σpt = σ(e+e− → γ∗ → µ+µ−) =
4πα2

3s
. (2.2)

The only kinematic variables appearing in the functions Fi are the scaled quark and antiquark

energies in the e+e− center-of-mass frame, x = 2Eq/
√
s and x̄ = 2Eq̄/

√
s. The angle between the

electron direction and the quark direction is θ (see figure 6), and the (signed) angle between the

e+e−q plane and the qq̄g plane is φ. Denote by θ
(qq̄)
n the angle between the electron direction and

the normal to the qq̄g event plane,

cos θ(qq̄)
n =

k̂e · (kq × kq̄)

|kq × kq̄|
. (2.3)

This angle is related to (θ, φ) by

cos θ(qq̄)
n = sin θ sinφ, (2.4)

so the observable (1.1) derives from the function F9. Functions F7 and F8 are also odd under TN,

but in a CP invariant theory they give vanishing contribution to observables in which the quark

and antiquark are not distinguished from each other [7], and so we will not consider them further

at this time.

The distribution in the normal angle θ
(qq̄)
n , after integrating over the remaining angle, is

d3σ

dx dx̄ d cos θ
(qq̄)
n

=
3

2

αs
π
σpt ×

[
F1(1 + 1

2 sin2 θ(qq̄)
n ) + (F2 − F5)(1− 3

2 sin2 θ(qq̄)
n )

+ F9 cos θ(qq̄)
n

]
,

(2.5)

We assume that the electrons have longitudinal polarization Pe, with Pe = +1 for right-

handed electrons, while the positrons are taken to be unpolarized, although polarized positrons can

be treated easily as well.



      

The denominator of the expectation value (1.2) is found (to lowest order in αs) by integrating

the tree approximations to F1 and F2−F5 over the Dalitz plot with some three-jet cut, e.g. on the

thrust T or on the invariant masses of parton pairs.

The tree-level approximations to Fi are given by

Fi(x, x̄) = g
(0),v
i F

(0),v
i (x, x̄) + g

(0),a
i F

(0),a
i (x, x̄) + O(αs), (2.6)

where the tree-level coupling factors for P-even terms are

g
(0),v
i =

(
(V 2
e +A2

e)− 2VeAePe

)
V 2
q |χ(s)|2 − 2Q(Ve −AePe)VqReχ(s) + Q2,

g
(0),a
i =

(
(V 2
e +A2

e)− 2VeAePe

)
A2
q|χ(s)|2,

g
(0)
i = g

(0),v
i + g

(0),a
i

=
(

(V 2
e +A2

e)− 2VeAePe

)
(V 2
q +A2

q)|χ(s)|2 − 2Q(Ve −AePe)VqReχ(s) + Q2,

i = 1, 2, 4, 5.

(2.7)

Here Q is the charge of the quark, Ve, Ae, Vq, Aq are the vector and axial-vector couplings of the

Z to the electron and (external) quark,

V = 1
2I3 − q sin2 θW , A = 1

2I3 ,

χ(s) =
1

sin2 θW cos2 θW

s

s−M2
Z + iMZΓZ

,
(2.8)

with I3 and q the third component of isospin and charge of the electron or quark.

At or around the Z resonance, it is an excellent approximation to set the external quark masses

to zero in the tree cross-section. The kinematic functions are then

F
(0),v
1 = F

(0),a
1 =

x2 + x̄2

2(1− x)(1− x̄)
,

F
(0),v
2 − F (0),v

5 = F
(0),a
2 − F (0),a

5 = 0,

(2.9)

and only the coupling g
(0)
1 contributes in the denominator of (1.2). The full expressions, keeping

quark masses, which are needed to estimate the effects at energies below the Z resonance, are more

complicated. They are given in appendix II and agree with the results of [17].

3. Contributions to F9

Now we compile the one loop contributions to F9(x, x̄) from the various sources. All the

contributions are proportional to

|kq × kq̄| =
s

8

√
(1− x)(1− x̄)(x+ x̄− 1)− z(2− x− x̄)2 , (3.1)



   

so it is convenient to factor out the square-root appearing in (3.1) from the expressions to follow.

Note that in the center-of-mass system, it does not matter which two of the outgoing parton

momenta appear on the left hand side of (3.1).

1. QCD e+e− → (γ∗,Z)→ bb̄g Contribution

Write

F9,QCD(x, x̄) =
αs
π

√
(1− x)(1− x̄)(x+ x̄− 1)− z(2− x− x̄)2

[
g

(1),v
9 fvQCD + g

(1),a
9 faQCD

]
, (3.2)

where

g
(1),v
9 =

(
−2VeAe + (V 2

e +A2
e)Pe

)
V 2
q |χ(s)|2 − 2Q(VePe −Ae)VqReχ(s) + Q2Pe,

g
(1),a
9 =

(
−2VeAe + (V 2

e +A2
e)Pe

)
A2
q|χ(s)|2.

(3.3)

The functions fvQCD, faQCD can be decomposed into leading-color and subleading-color contributions,

fvQCD = 3 fv,1 + 1
3 f

v,2,

faQCD = 3 fa,1 + 1
3 f

a,2,
(3.4)

whose rather lengthy expressions are given in formulae (II.2) through (II.10) of appendix II.

Numerical results for the vector part of F9,QCD (in the notation used here), as a function of

the thrust and the angle between quark and antiquark momenta, were presented in ref. [4] for two

values of mq/
√
s. Our results have the opposite sign. The absolute values presented in figure 3 of

ref. [4] also differ slightly from ours.

2. QCD e+e− → Z→ g∗g→ qq̄g Contribution

In this case the quarks in the loop may differ from the external quark; denote the internal quark

masses by mi, where i runs over u, d, s, c, b if we are at the Z pole. Write

F9,Zg∗g(x, x̄) =
αs
π
g

(1)
9,Zg∗g

(x̄− x)(x+ x̄− 1)

2(1− x)(1− x̄)

√
(1− x)(1− x̄)(x+ x̄− 1)− z(2− x− x̄)2 Im f,

(3.5)

where

g
(1)
9,Zg∗g =

(
2VeAe − (V 2

e +A2
e)Pe

)
Aq|χ(s)|2 (3.6)

and

Im f ≡
∑

i=flavors

(2Ii3) Im f i. (3.7)



   

For 4m2
i > s, Im f i = 0. (The top quark does not contribute in the loop here.) For 4m2

i < s, let

zi = m2
i /s. Then there are two kinematical cases,

Im f i =
π

4(2− x− x̄)2

[
4zi

(
ln
(√
x+ x̄− 1 +

√
x+ x̄− 1− 4zi

)
− ln

(
1 +
√

1− 4zi
))

−
√

1− 4zi
x+ x̄− 1

+
√

1− 4zi

]
, x+ x̄ > 1 + 4zi,

Im f i =
π

4(2− x− x̄)2

[
4zi

(
ln
(√

4zi
)
− ln

(
1 +
√

1− 4zi
))

+
√

1− 4zi

]
, x+ x̄ < 1 + 4zi.

(3.8)

Setting z = 0 we recover the results of ref [13]. Note that (3.5) is proportional to the axial coupling

of both the internal quark and the final-state quark. In particular, the contributions of the (u, d)

and (c, s) isospin doublets in the final state cancel, up to the small effects of mass-splittings. If

the final-state flavor is not tagged, one may therefore keep only bb̄g final-state contributions to the

triple-product asymmetries.

In the limit of small internal quark mass, zi → 0, Im f i vanishes like zi, except for the small

kinematical strip where x+ x̄ < 1 + 4zi, where Im f i is O(1). If we also neglect the external quark

mass (set z = 0), then we get

F9,Zg∗g(x, x̄) ≈ αsg
(1)
9,Zg∗g(2I

i
3) zi

√
x+ x̄− 1

(1− x)(1− x̄)

(x̄− x)
(

(x+ x̄− 1) ln(x+ x̄− 1) + 2− x− x̄
)

4(2− x− x̄)2
,

x+ x̄ > 1 + 4zi,

≈ αsg
(1)
9,Zg∗g(2I

i
3)

√
x+ x̄− 1

(1− x)(1− x̄)

(x̄− x)(x+ x̄− 1)

8(2− x− x̄)2
,

x+ x̄ < 1 + 4zi.
(3.9)

3. Electroweak e+e− → (γ∗, Z)→ qq̄g Contribution

We neglect all external quark masses in this contribution. Denote the mass of the exchanged vector

boson by Mi, i = Z,W , and let ξi ≡M2
i /s. At the Z pole, ξZ = 1, ξW = 0.774. Write

F9,EW(x, x̄) = − α

sin2 θW cos2 θW

√
x+ x̄− 1

(1− x)(1− x̄)

×
∑

i=Z,W

g
(1),i
9,EW

[
fZqq̄(ξi) + fgq̄(ξi) Θ(1− x− ξi) + fqg(ξi) Θ(1− x̄− ξi)

]
,

(3.10)



   

where Θ(y) is the Heaviside step function, Θ(y) = 0 for y < 0, Θ(y) = 1 for y > 0. The function

fqg represents the contribution from rescattering in the qg channel (the channel with momentum

kq + kg flowing through it). Since (kq + kg)
2 > M2

i is required for a nonzero contribution in

this channel, only the W contributes to the fqg term, and likewise to the fgq̄ term, which arises

from rescattering in the gq̄ channel. Finally, fZqq̄ comes from the sum of the Z channel (carrying

momentum ke+ + ke−) and the qq̄ channel contributions; both Z and W contribute here.

The couplings g
(1),i
9,EW are given by

g
(1),i
9,EW =

((
V (i)
q

)2
+
(
A(i)
q

)2)[(−2VeAe + (V 2
e +A2

e)Pe

)
(V 2
q +A2

q)|χ(s)|2

− 2Q(VePe −Ae)VqReχ(s) + Q2Pe

]
,

+
(
−2VeAe + (V 2

e +A2
e)Pe

)
× 4VqAqV

(i)
q A(i)

q |χ(s)|2 ,

(3.11)

where the Z vector and axial couplings are given by V
(Z)
q = Vq and A

(Z)
q = Aq, as listed in

formula (2.8), and the corresponding expressions for W exchange are

V (W )
q = A(W )

q =
−1

2
√

2
cos θW , q = u, d, s, c, (3.12)

and

V
(W )
b = A

(W )
b = 0. (3.13)

In the above we neglect the small off-diagonal CKM matrix elements. The special equation (3.13)

is due to the fact that producing a b̄ pair after a W exchange requires a tt̄ to be present in an

intermediate state; but below the tt̄ threshold such a graph cannot have an imaginary part.

The kinematic functions are

fZqq̄(ξ) = −3(1− x̄)

ξ2
`3

(
x

ξ

)
+

3(1− x)

ξ2
`3

(
x̄

ξ

)
− (1− x̄)

[
(1− x̄)

ξ(x+ x̄− 1)
+

2

ξ2

]
`2

(
x

ξ

)
+ (1− x)

[
(1− x)

ξ(x+ x̄− 1)
+

2

ξ2

]
`2

(
x̄

ξ

)
+

(1− x̄)2

(x+ x̄− 1)(x+ x̄− 1 + ξ)
`2

(
1− x̄

x+ x̄− 1 + ξ

)
− (1− x)2

(x+ x̄− 1)(x+ x̄− 1 + ξ)
`2

(
1− x

x+ x̄− 1 + ξ

)
,

(3.14)



    

fgq̄(ξ) =
3(1− x̄)(1− x− ξ)4

ξ2
`3

(
x(1− x− ξ)

ξ

)
+

(2− ξ)(1− x̄)(1− x− ξ)3

ξ2
`2

(
x(1− x− ξ)

ξ

)
+

(1− x̄)(1− x− ξ)2

x+ x̄− 1
`1

(
x(1− x− ξ)

ξ

)
− (x+ ξ)(x+ x̄− 1)(1− x− ξ)2

ξ(1− x)
`1

(
(1− x− ξ)(x+ x̄− 1)

ξ

)
+

(x+ x̄− 1 + ξ)2

(1− x̄)(x+ x̄− 1)
ln

(
ξ + (1− x− ξ)(x+ x̄− 1)

(x+ ξ)(1− x)

)
− (1− x− ξ)

[
(1− x)(1− x̄)

ξ
− ξ

x+ x̄− 1
+
x(1− x− ξ)

(1− x)2
− ξ(1 + x̄) + 2x̄

2(1− x)
− 3

2
(1− x̄)

]
,

(3.15)

fqg(ξ) = −fgq̄(ξ)|x↔x̄, (3.16)

where

`1(y) =
ln(1 + y)− y

y2
,

`2(y) =
ln(1 + y)− y + y2/2

y3
,

`3(y) =
ln(1 + y)− y + y2/2− y3/3

y4
.

Note that the `i(y) are nonsingular as y → 0.

4. Non-standard-model “B” Gauge Boson Exchange Contribution

As in the electroweak case, we neglect all external quark masses. Denote the mass of the exchanged

vector boson by MB , and following the conventions of [14,15], let it couple vectorially to quarks with

strength αB/9 (since quarks have baryon number 1/3). Let ξB ≡ M2
B/M

2
Z . Then the electroweak

formulas can be modified to give,

F9,B(x, x̄) = −αB
9

√
x+ x̄− 1

(1− x)(1− x̄)

× g(1)
9,B

[
fZqq̄(ξB) + fgq̄(ξB) Θ(1− x− ξB) + fqg(ξB) Θ(1− x̄− ξB)

]
.

(3.17)

The couplings g
(1)
9,B are now given by

g
(1)
9,B =

(
−2VeAe + (V 2

e +A2
e)Pe

)
(V 2
q +A2

q)|χ(s)|2 − 2Q(VePe −Ae)VqReχ(s) + Q2Pe ,

(3.18)

and the functions fZqq̄(ξ), fgq̄(ξ), fqg(ξ) are exactly as in (3.14)–(3.16).

4. Numerical Results

In this section, we present numerical results for the sizes of the triple product correlations, and

their dependence on the center-of-mass energy and the three-jet cut. These results are obtained by



    

identifying jet momenta with parton momenta. Several different “event handedness” correlations

can be constructed for the process we are considering. Here we discuss the different contributions of

section 3 to the triple product correlation introduced in (1.2), 〈k̂e · (k1 × k2)〉, and the expectation

value of the normal angle, as signed by the two fastest jets,

cos θn =
k̂e · (k1 × k2)

|k1 × k2|
, (4.1)

where ki are the energy-ordered momentum vectors (E1 > E2 > E3). As the two observables

are qualitatively similar, we only give numerical results for 〈cos θn〉. Other variations, such as

k̂e · (k1 × k2)/ (|k1| |k2|), lead to similar or smaller signals.

The normal angle θn, defined by the energy ordering, is equal to the normal angle θ
(qq̄)
n , defined

by the quark and anti-quark, up to a sign

η = sign
(

(x− x̄)(x− xg)(x̄− xg)
)
, (4.2)

where xg = 2− x− x̄ is the gluon energy fraction.

Performing the angular integrals, the cos θn expectation value is expressed in terms of F9 and

F1 by

〈cos θn〉 =
1

4

∫
Dc
dx dx̄ η F9(x, x̄)∫

Dc
dx dx̄ F1(x, x̄)

, (4.3)

where Dc is the domain in (x, x̄) after making some kind of a three-jet cut. Similarly,

〈k̂e · (k1 × k2)〉 =
s

8

∫
Dc
dx dx̄ η

√
(1− x)(1− x̄)(x+ x̄− 1)− z(2− x− x̄)2 F9(x, x̄)∫

Dc
dx dx̄ F1(x, x̄)

. (4.4)

On the Z pole, the asymmetries (4.3) and (4.4) are proportional to the Z polarization,

PZ =
Pe −A(e)

LR

1− PeA(e)
LR

, (4.5)

where A
(e)
LR = 2VeAe/(V

2
e +A2

e). For example, at s = M2
Z ,

〈k̂e · (k1 × k2)〉QCD

= PZ
αs
π

M2
Z

8

∫
Dc
dx dx̄ η

(
(1− x)(1− x̄)(x+ x̄− 1)− z(2− x− x̄)2

)(
V 2
q f

v
QCD +A2

qf
a
QCD

)
(
V 2
q +A2

q

) ∫
Dc
dx dx̄ F

(0),v
1

.

(4.6)

Through most of our analysis, we use the standard cut yij ≥ ycut, where yij ≡ (ki +kj)
2/M2

Z .

Then, for massless quarks Dc is given by

Dc : x ≤ 1− ycut, x̄ ≤ 1− ycut, x+ x̄ ≥ 1 + ycut.



  

With this cut, and if one neglects quark masses, the leading order contribution to F1 can be

integrated analytically,

ID(ycut) ≡
∫
Dc

dx dx̄ F
(0),v
1 (x, x̄) =

∫
Dc

dx dx̄
x2 + x̄2

2(1− x)(1− x̄)

= ln2

(
1− ycut

ycut

)
− 3

2
(1− 2ycut) ln

(
1− 2ycut

ycut

)
+ 2 Li2

(
ycut

1− ycut

)
− π2

6
+

5

4
− 3ycut −

9

4
y2

cut.

(4.7)

We evaluate the remaining x, x̄ integrals numerically. As input for our results we use αs(MZ) =

0.116, mb = 4.5 GeV, sin2 θW = 0.232, MZ = 91.17 GeV and MW = 80.1 GeV. We always assume

complete right-handed electron polarization: Pe = +1. It is easy to scale the results to other values

of Pe at the Z pole (using equation (4.5)) and well below the Z pole (where the observables are

directly proportional to Pe).

At the Z-pole and below it, the largest standard model effects arise from the QCD contribution

of section 3.1, which is dominated (for
√
s > 2mb) by the bb̄g final state. The F9,QCD contribution

to 〈cos θn〉 is shown in figure 7 as a function of the center-of-mass energy
√
s, with ycut = 0.04, for

b production only. If the final state is not flavor tagged, then one should average over final state

flavors, and the result would be diluted by the fraction of hadronic events containing b quarks. (At

the Z, the b fraction is Rb = Γb/Γhadron ≈ 0.22.)

As expected, the signal decreases with increasing s, roughly as m2
b/s. A further suppression

arises because the vector and axial components of the signal have opposite signs. The dotted line

shows the vector component of the result, obtained by setting the Zbb̄ axial coupling to zero. At

small energies, the signal is dominated by the vector component, which is positive. At larger ener-

gies, the axial component sets in with an opposite sign, and exactly cancels the vector component

just below the Z mass. At energies above the Z mass, the signal is dominated by the axial com-

ponent. Notice that for center of mass energies below 30 GeV, one would have to increase ycut in

order to effectively cut soft gluons, since yij is always larger than m2
b/s.

Near the Z pole, the combined W and Z exchange contribution to 〈cos θn〉 (from F9,EW),

is about +30% of the QCD contribution in an untagged sample. This is partly due to the nf

enhancement of the electroweak contribution; all final state flavors contribute to the asymmetry

(except the b in W exchange), whereas, practically, only b quarks contribute in the QCD case. The

resulting 〈cos θn〉, assuming b quarks are not tagged, and summing over all flavors contributing to

the asymmetry in the electroweak contributions, is shown in figure 8 for
√
s of 70–200 GeV. For high

energies, the W exchange contribution becomes dominant. However, recall that we have neglected

the contributions with γγ and γZ intermediate states (figure 4); and above the W -pair threshold,



    

additional diagrams with WW intermediate states will contribute as well. At these energies, pure

hadronic decays of real W pairs will form a large “background” to the measurement. (Triple product

correlations in e+e− →W+W− via electroweak rescattering are discussed in ref. [8].) Here we only

plot the center-of-mass energy dependence of the particular contributions we studied.

The second type of QCD rescattering, via the Zg∗g effective vertex discussed in section 3.2,

gives rise to asymmetries that are two to three orders of magnitude smaller than the contributions

mentioned above. At the Z, with ycut = 0.04 for example, 〈cos θn〉Zg∗g = −0.95 × 10−8. We

therefore neglect this contribution in the remainder of the section.

As can be seen, the standard model prediction for the asymmetry at the Z is tiny. One might

wonder whether it would change significantly with the choice of the three-jet cut. The TN-odd

correlations should be small both for large values of ycut, which imply an almost symmetric three-

jet event, and for small values of ycut, which include soft or collinear regions, where the event is

two-jet like. Indeed, at the Z, the QCD contribution to 〈cos θn〉 peaks slightly below ycut = 0.02,

and the electroweak contributions peak near ycut = 0.04.

However, the relevant quantities to consider in order to determine the optimal cut are not

the values of the observables themselves, but rather the corresponding signal-to-noise ratios, which

describe the statistical significance of a measurement. The noise comes from root-mean-square

fluctuations in the TN-even cross-section. At lowest-order in αs (tree-level), and neglecting quark

masses, these can be calculated analytically. We find,

∆ cos θn ≡
√
〈cos2 θn〉 − 〈cos θn〉2 ≈

√
〈cos2 θn〉 =

√
3

10
, (4.8)

and

∆k̂e · (k1 × k2) ≈
√
〈(k̂e · (k1 × k2))2〉

=
s

20

√
3(1− 3ycut)2(2− 3ycut + 4y2

cut + y3
cut)

2ID(ycut)
.

(4.9)

The corresponding signal-to-noise (S/N) ratio for 〈cos θn〉, is then given by

S/N(cos θn) ≡ |〈cos θn〉|
∆ cos θn

√
N3−jet,

and similarly for the triple product, where N3−jet is the number of three-jet events in the data

sample.

The signal-to-noise ratios for 〈cos θn〉, from QCD and electroweak rescattering at the Z, are

shown in figure 9 as functions of ycut. In the range shown, the ratios increase monotonically as ycut

decreases. They eventually start to fall off as expected, but this happens for very low values of the

cut, where the perturbative calculation cannot be trusted. It is easy to understand why the S/N



     

ratio peaks at a lower ycut as does 〈cos θn〉. The F9 integrals are finite for small ycut, whereas the

F1 integrals diverge as double logarithms for massless quarks, or logarithmically for b production.

(The b mass cuts off the collinear divergences). The signal to noise ratio is proportional to the F9

integral divided by the square root of the F1 integral, and so falls off more slowly than 〈cos θn〉 for

small ycut. The QCD signal-to-noise ratio continues to grow down to ycut = 0.003, even though

the F9 integral is finite in the soft gluon region. This suggests that it receives large contributions

in regions where two of the jets are close to collinear. We will return to this point later. We note

that replacing ycut by a cut on the smallest jet energy leads to a smaller asymmetry.

We now turn to the effects of the hypothetical B-boson of section (3.4). The contribution of

the B boson to 〈cos θn〉 at the Z, is given by the solid line in figure 10, as a function of ξ = m2
B/M

2
Z .

Here we take the B coupling to be αB = 0.2/9. Up to overall factors which involve the couplings,

the Z and W contributions can be read off this plot, at ξ = ξZ = 1 and ξ = ξW = 0.774 respectively.

The asymmetry is most sensitive to the B boson if its mass is around 25–30 GeV. But even for a

mass in this range the signal is probably too small to be observed (〈cos θn〉 ∼ 3× 10−5 or less).

The asymmetries (4.3) and (4.4) involve integrating F9 with the sign η. Kinematic regions

with different energy orderings contribute with different signs and potentially cancel each other.

Such cancellations would be avoided if the gluon jet could be identified, so that the asymmetries

could be defined according to the energy ordering of the q, q̄ jets only. (For example, taking k1, k2

in (1.1) to be the q, q̄ momenta, with E1 > E2, so that η = sign(x− x̄) in (4.2).) This leads to little

improvement for the QCD contribution: 〈cos θn〉 hardly changes, and 〈k̂e · (k1 × k2)〉 increases by

a factor of two to three, depending on the cut. The effect is more significant for the electroweak

and hypothetical B-boson contributions to the asymmetries, which increase by a factor of around

six. The B-boson contribution to 〈cos θn〉 at the Z, assuming the gluon jet is identified, is given

by the dashed line in figure 10. Without gluon identification, the maximum signal-to-noise ratio

obtained is 0.17
√
L/fb−1, where L is the integrated luminosity in inverse femtobarns. If the gluon

is identified with efficiency εg, this becomes 0.6
√
εgL/fb−1, assuming 100% purity.

Another way of enhancing the asymmetry is to use an “optimized” observable [18], i.e., an

observable that maximizes the signal-to-noise ratio. If the identity of the particles making up the

jets is not known, then the optimized observable is given by:

Õ(x1, x2) =
cos θn

( 3
2 − 1

2 cos2 θn)
×
∑6
p=1 ηp F9(xp, x̄p)∑6
p=1 F1(xp, x̄p)

, (4.10)

where x1, x2 are the energy fractions of the highest energy and intermediate energy jet respectively,

p sums over the six different ways of assigning x1, x2, and 2− x1 − x2 to x, x̄ and xg = 2− x− x̄,

and ηp is η of (4.2), evaluated with x = xp, x̄ = x̄p.



   

The optimized observable signal-to-noise ratios are only 20–30% bigger than the 〈cos θn〉 signal-

to-noise ratios for the W , Z and B-boson exchange contributions. This holds whether or not

the gluon is identified. The same enhancement occurs for the QCD contribution, with no gluon

identification. If the gluon is identified, the enhancement is much bigger. As mentioned above,

the QCD asymmetries receive large contributions from regions where two of the jets are close

to collinear. An “upper limit” estimation of the signal-to-noise that can be produced by the

QCD contribution at the Z is obtained by studying the optimized observable, assuming gluon

identification, and replacing ycut by a cut on the jet energies: Ei ≥ Emin. For Emin = 5− 10 GeV

we find, for b production only,

〈Õ〉
〈Õ2〉1/2

= (1.5− 1.9)× 10−4 and
〈cos θn〉
〈cos2 θn〉1/2

= (0.6− 1.0)× 10−4 ,

giving signal-to-noise ratios of about

S/N(Õ) = 0.33
√
εgεb

√
L/fb−1 and S/N(cos θn) = 0.15

√
εgεb

√
L/fb−1 ,

where εg, εb are the gluon identification and b-tagging efficiencies.

Somewhat higher sensitivity to the QCD-induced asymmetry can be achieved at low center-

of-mass energies. For
√
s = 30 GeV, the signal-to-noise ratio for 〈cos θn〉, with ycut = 0.04, is

0.3
√
εb

√
L/fb−1, assuming that the b is tagged with efficiency εb and 100% purity. With gluon

identification, this result becomes 0.4
√
εbεg

√
L/fb−1. If ycut is replaced by Ei ≥ 2 GeV, one finds

S/N(cos θn) = 0.55
√
εbεg

√
L/fb−1, and S/N(Õ) = 0.7

√
εbεg

√
L/fb−1. In any case, integrated

luminosities in at least the tens of inverse-femtobarn range will be required for measurements of

these standard model contributions to be statistically significant.

5. Conclusions

Beam polarization, or the natural Z polarization, can be used to construct “event handedness”

correlations in e+e− → 3-jets that are directly sensitive to rescattering effects. In this paper we have

identified and calculated the dominant standard model contributions to several such correlations

in e+e− annihilation at or below the Z pole.

QCD rescattering of massless quarks does not produce any “event handedness” correlations

at one loop in the purely time-like kinematics of e+e− annihilation through a single gauge boson.

The dominant standard model contributions to these correlations are therefore produced by QCD

rescattering of massive quarks, which is suppressed by m2
b/M

2
Z at the Z resonance, and by elec-

troweak rescattering, via W and Z exchange loops. We have presented analytic results for the



  

different contributions. We have studied the dependence of the resulting asymmetries on different

kinematic variables of the process considered, including the center-of-mass energy and the three-jet

cut. Due to various cancellations, the standard model does not generate large effects; even for

“optimized observables” the signal-to-noise ratios are quite small.

Thus, a measurement of event handedness correlations may serve as a probe of physics beyond

the standard model and/or nonperturbative effects in jet physics.

We have investigated the asymmetry generated in quark rescattering through the exchange of

a hypothetical gauge boson, coupling to baryon number only. The effects are the largest, but would

still be difficult to observe, if the mass of this boson lies in the range of 25–30 GeV.
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Appendix I. Vanishing of Event Handedness Correlations in Massless QCD

In this appendix we show that the one-loop QCD contribution to triple-product correlations in

e+e− annihilation through a single gauge-boson vanishes, unless some of the partons propagating

around the loop are massive.

A nonzero triple-product correlation is produced by terms in the differential cross-section that

are proportional to the Levi-Civita tensor εµνσρ contracted with four of the five momentum vectors

in the problem. The contraction must be multiplied by the imaginary part of some loop integral,

in order to contribute to the differential cross-section.

The loop integrals may be defined by analytic continuation from the unphysical, Euclidean

region, to the physical region. Denote the external kinematic invariants by sij = (ki + kj)
2, with

ki the momentum of the i-th particle. All the sij are negative in the Euclidean region, and all

loop integrals are manifestly real there. Upon going into the physical region, some of the invariants

may change sign, and the integrals may develop imaginary parts. However, the dependence of

the integrals on the kinematic invariants is through analytic functions of dimensionless ratios, of

the form f((−sij)/(−skl)). The kinematics of e+e− annihilation through a single gauge boson is

purely timelike — all the invariants appearing in the loop integrals are positive in the physical

region. Therefore, ratios of invariants do not change sign upon going from the Euclidean region to

the physical region. As a result, the integrals do not develop any imaginary parts in the physical

region, and the loop amplitude has no absorptive part.

This ceases to be true if some particle propagating around the loop has a non-zero mass M .

In this case the dimensionless functions appearing in the amplitude are of the form

f(
−sij
−sjk

,
M2

−sij
) .

Since M2 is positive in both the Euclidean region and the physical region, the ratios M2/(−sij)
flip sign as one goes from Euclidean to physical, and imaginary parts are now permitted.

In the above, we ignored one source of a “mass scale”, which is present in perturbation theory

even when all the particles are massless, namely, the renormalization scale µ. The renormalized one-

loop amplitude for producing n final state partons, A1−loop
n , can be written as a sum of two pieces:

an infrared-divergent piece, and a leftover finite piece. (This separation has some arbitrariness

associated with it.) The finite piece of A1−loop
n depends only on the kinematic invariants sij and on

particle masses, and as we saw above, it has no absorptive part in the purely time-like kinematics

of the process we are considering. In contrast, the infrared-divergent piece of A1−loop
n contains

logarithms of the form ln(µ2/(−sij)), which may and do develop imaginary parts in physical regions,

including the fully time-like region. But, as we now show, these imaginary parts do not contribute

to the cross-section at one loop.



   

When interfered with Atree
n , the infrared-divergent piece of A1−loop

n cancels soft and collinear

phase-space integrations of the tree-level cross-section |Atree
n+1|2 for producing n+ 1 partons, where

one of the partons is unobserved. Its form can therefore be inferred from the soft and collinear

structure of the cross-section for producing n + 1 partons. It can be written as a sum of terms,

where each term is given by a corresponding term in the tree amplitude Atree
n , multiplied by a

factor that depends on a single invariant sij (see for example [19]). This factor is universal — it

only depends on the identity of partons i and j, i.e., on whether they are quarks or gluons.

The soft singularities can be written, using dimensional regularization with D = 4−2ε, as [19]

A1−loop,soft
c1···cn = γ

∑
i<j

Sij t
a
cic′i

tacjc′j
Atree
c1···c′i···c′j ···cn , (I.1)

where ci is the color index of the i-th parton, ta are the SU(N) generators, γ is a real constant,

and

Sij =
1

ε2

(
µ2

−sij

)ε
. (I.2)

When expanded around ε = 0, the factor Sij contains the logarithm ln(µ2/(−sij)) which develops

an imaginary part in the physical region.

But for each term that contains Sij in the interference A1−loop
n Atree

n
∗
, there corresponds an

identical term in A1−loop
n

∗
Atree
n , in which Sij is replaced by S∗ij . The imaginary part of Sij therefore

drops out in the cross-section. Specifically, the interference A1−loop
n Atree

n
∗

contains the term

Sij t
a
cic′i

tacjc′j
Atree
c1···c′i···c′j ···cn

(
Atree
c1···cn

)∗
, (I.3)

while the interference Atree
n A1−loop

n
∗

contains the term

Atree
c1···cn

(
Sij t

a
cic′i

tacjc′j
Atree
c1···c′i···c′j ···cn

)∗
= S∗ij t

a
cic′i

tacjc′j

(
Atree
c1···cn

)∗
Atree
c1···c′i···c′j ···cn , (I.4)

where in the last line we used the hermiticity of ta to exchange ci ↔ c′i, cj ↔ c′j . Thus, only the

real part of Sij contributes in the sum of (I.3) and (I.4).

This argument can be repeated for the collinear singularities, which have the simpler form

A1−loop,coll
c1···cn =

∑
i<j

γij
1

ε

(
µ2

−sij

)ε
Atree
c1···cn , (I.5)

where again c1 · · · cn are the color indices of the partons and γij are real constants that depend on

the identity of partons i and j.

Notice that the argument does not rely on the fact that (I.3) and (I.4) contain the interference

of two tree amplitudes. The amplitudes appearing on the two sides of the interference could in

principle be different — the crucial point is that the singular factor can appear on the two sides of

the interference, multiplying the same structure. It appears possible to generalize this argument

beyond one loop, but we have not yet done so.



   

Appendix II. Kinematic Functions for QCD Massive Quark Contributions

In this appendix we give the kinematic functions that contribute to the tree-level denominator

of the expectation value (1.2), keeping the quark mass nonzero [17], followed by the functions

appearing in the one-loop QCD (γ∗, Z)→ bb̄g contribution to F9. In both cases we define z = m2
q/s

with mq the external quark mass.

The tree-level e+e− → qq̄g kinematic functions appearing in (2.6) are

F
(0),v
1 =

x2 + x̄2

2(1− x)(1− x̄)
+
z
(
2xx̄(x+ x̄)− 3x2 − 3x̄2 + 8(x+ x̄− xx̄)− 6

)
(1− x)2(1− x̄)2

− 2z2(2− x− x̄)2

(1− x)2(1− x̄)2
,

F
(0),a
1 =

x2 + x̄2

2(1− x)(1− x̄)

+
z
(
−(x+ x̄)2(x+ x̄− xx̄) + 8(x2(1− x̄) + x̄2(1− x)) + 24xx̄− 12(x+ x̄) + 4

)
(1− x)2(1− x̄)2

+
4z2(2− x− x̄)2

(1− x)2(1− x̄)2
,

F
(0),v
2 − F (0),v

5 =
2z
(
(1− x)(1− x̄)(x+ x̄− 1)− z(2− x− x̄)2

)
(1− x)2(1− x̄)2

,

F
(0),a
2 − F (0),a

5 =
z(2− x− x̄)2

(1− x)2(1− x̄)2
,

(II.1)

with z = m2
q/s. For zero mass these expressions reduce to equations (2.9).

Next we give the functions appearing in equations (3.2), (3.4) for the QCD e+e− → (γ∗, Z)→
bb̄g contribution to F9. We first decompose fv,1, fv,2, fa,1 and fa,2 into sums of imaginary parts

of scalar integrals, multiplied by coefficient functions,

fv(a),1 = d
v(a)
D=6ImDD=6

0

+ c
v(a),1
134 ImC0(1, 3, 4) + c

v(a),1
234 ImC0(2, 3, 4)

+ b
v(a),1
13 ImB0(1, 3) + b

v(a),1
24 ImB0(2, 4) + b

v(a),1
34 ImB0(3, 4),

fv(a),2 = d̃
v(a)
D=6Im D̃D=6

0 + d̃′
v(a)

D=6Im D̃′
D=6

0

+ c
v(a),2
134 ImC0(1, 3, 4) + c

v(a),2
234 ImC0(2, 3, 4)

+ c̃
v(a)
123 Im C̃0(1, 2, 3) + c̃

v(a)
134 Im C̃0(1, 3, 4) + c̃

v(a)
234 Im C̃0(2, 3, 4)

+ b
v(a),2
13 ImB0(1, 3) + b

v(a),2
24 ImB0(2, 4) + b

v(a),2
34 ImB0(3, 4)

+ b̃
v(a)
24 Im B̃0(2, 4).

(II.2)

Here B0 stands generically for a bubble integral, C0 for a triangle integral, and DD=6
0 for a “D = 6”

box integral; the usual D = 4 scalar box integral D0 has been eliminated in favor of a linear

combination of DD=6
0 and four C0’s [20].



  

The explicit formulae for the imaginary parts of the integrals are

ImDD=6
0 =

−π
s

[
ρ(1− 2xs+) + (1− x̄)xs+`

ρ(xs+)

(xs+ − xs−)(xs+ − xt+)(xs+ − xt−)
+
ρ(1− 2xs−) + (1− x̄)xs−`

ρ(xs−)

(xs− − xs+)(xs− − xt+)(xs− − xt−)

+
ρ(1− 2xt+) + (1− x)(1− xt+)`ρ(xt+)

(xt+ − xs+)(xt+ − xs−)(xt+ − xt−)
+
ρ(1− 2xt−) + (1− x)(1− xt−)`ρ(xt−)

(xt− − xs+)(xt− − xs−)(xt− − xt+)

]
,

ImC0(1, 3, 4) =
−π

s
√
x̄2 − 4z

(`ρ(xs+)− `ρ(xs−)),

ImC0(2, 3, 4) = ImC0(1, 3, 4)|x↔x̄,

ImB0(1, 3) =
π(1− x̄)

(1− x̄+ z)
,

ImB0(2, 4) = ImB0(1, 3)|x↔x̄
ImB0(3, 4) = π

√
1− 4z,

Im D̃D=6
0 =

π

2s((x+ x̄− 1)(1− x)(1− x̄)− z(2− x− x̄)2)

×
{

(x+ x̄− 1)(1− x̄)(1− 2ρ′)[2 ln(1− x̄)− 4 ln(1− ρ− ρ′) + 3 ln(1− ρ′)− ln(ρ′)]

+
(1− x̄)(x̄(x+ x̄− 1)− 2z(x+ x̄))√

x̄2 − 4z
[`ρ(xs+)− `ρ(xs−)]

+ ((x+ x̄− 1)(1− x̄)− 2z(2− x− x̄))

[
ln

(
z

1− x̄+ z

)
− ln

(
ρ

1− ρ

)
+ ln

(
ρ′

1− ρ′
)]}

,

Im D̃′
D=6

0 = Im D̃D=6
0 |x↔x̄,

Im C̃0(1, 2, 3) =
π

s(1− x̄)
ln

(
z

1− x̄+ z

)
,

Im C̃0(1, 3, 4) = Im C̃0(1, 2, 3)|x↔x̄,

Im C̃0(2, 3, 4) =
π

s(2− x− x̄)

[
ln

(
ρ

1− ρ

)
− ln

(
ρ′

1− ρ′
)]
,

Im B̃0(2, 4) = π

√
1− 4z

x+ x̄− 1
,

(II.3)

where

ρ =
1−
√

1− 4z

2
,

ρ′ =
1

2

(
1−

√
1− 4z

x+ x̄− 1

)
,

xs± =
x̄±
√
x̄2 − 4z

2
,

xt± = 1− x∓
√
x2 − 4z

2
,

`ρ(y) = ln

(
(1− y)(y − ρ)

y(1− y − ρ)

)
.

(II.4)



  

The coefficient functions are

dvD=6 =
−zs(x− x̄)(2− x− x̄)

(1− x)2(1− x̄)2
,

cv,1134 =

[
− x̄

2 − 4z

(1− x̄)
− x̄+ 2xx̄2 − 3xx̄+ 2x− 2x̄2

(1− x)(1− x̄)
+

3xx̄− 7x+ 2x̄3 − x̄− x̄2 + 4

2(x̄2 − 4z)

+
3x̄(1− x̄)(2(1− x− x̄) + x̄2 + xx̄)

2(x̄2 − 4z)2

]
zs

2(1− x)
,

cv,1234 = −cv,1134|x↔x̄,

bv,113 =
−1

32(1− x)(1 + z − x̄)

[
(x̄2 − 4z)3

(1− x̄)2
− (x̄2 − 4z)2(8 + 4x̄2 − 9x̄)

(1− x̄)2

+
(x̄2 − 4z)(12x̄4 − 51x̄3 + 44 + 3xx̄2 − 10xx̄− 91x̄+ 92x̄2 + 7x)

2(1− x̄)2

− −45x̄5 + 8x̄6 − 50xx̄3 + 16 + 88x̄2 + 109xx̄2 − 133x̄3 + 106x̄4 + 9xx̄4 + 36x− 104xx̄− 38x̄

2(1− x̄)2

+
(2− x̄)(2x̄6 − 3x̄5 + 9xx̄4 − 13x̄4 + 54x̄3 − 43xx̄3 − 80x̄2 + 78xx̄2 + 60x̄− 64xx̄− 16 + 16x)

2(x̄2 − 4z)(1− x̄)

+
3x̄2(2− x̄)3(2(1− x− x̄) + x̄2 + xx̄)

2(x̄2 − 4z)2

]
,

bv,124 = −bv,113 |x↔x̄,

bv,134 =
4xx̄2 − 7xx̄− 3x̄2 + 2x̄+ 2x̄3 + 2x̄4 + 4− 4x

8(1− x)(1− x̄)(x̄2 − 4z)

− 4x2x̄− 7xx̄− 3x2 + 2x+ 2x3 + 2x4 + 4− 4x̄

8(1− x)(1− x̄)(x2 − 4z)

+
3x̄2(2(1− x− x̄) + x̄2 + xx̄)

8(1− x)(x̄2 − 4z)2
− 3x2(2(1− x− x̄) + x2 + xx̄)

8(1− x̄)(x2 − 4z)2

− (x− x̄)((x+ x̄)(2(1− x− x̄) + xx̄) + 2z(x+ x̄+ xx̄) + 8z2)

2(1− x)(1− x̄)(x2 − 4z)(x̄2 − 4z)

+
(x− x̄)(x+ x̄− 1)

4(1− x)(1− x̄)
,

(II.5)



  

daD=6 =
−zs(x− x̄)(3(1− x− x̄) + x2 + xx̄+ x̄2)

(1− x)2(1− x̄)2
,

ca,1134 =

[
x̄2 − 4z

(1− x̄)
+
−9x̄2 + 16x̄− 10xx̄+ 5xx̄2 + 7x− 9 + 2x2x̄− 2x2

2(1− x)(1− x̄)

− −10xx̄+ 5xx̄2 + 9x− 13x̄2 + 11x̄+ 6x̄3 − 6

2(x̄2 − 4z)

+
3x̄(1− x̄)2(2(1− x− x̄) + x̄2 + xx̄)

2(x̄2 − 4z)2

]
zs

2(1− x)
,

ca,1234 = −ca,1134|x↔x̄,

ba,113 =
−1

32(1− x)(1 + z − x̄)

[
− (x̄2 − 4z)3

(1− x̄)2
+

(x̄2 − 4z)2(2xx̄+ 9 + 9x̄2 − 18x̄)

2(1− x̄)2

− (x̄2 − 4z)(26 + 18x̄4 − 73x̄3 − 27xx̄2 + 9xx̄3 + 114x̄2 − 91x̄− 21x+ 43xx̄)

2(1− x̄)2

+
(
−60x+ 382x̄2 − 297xx̄2 + 208xx̄+ 20x̄6 − 479x̄3 + 332x̄4

+ 223xx̄3 − 125x̄5 − 87xx̄4 + 15xx̄5 + 24− 158x̄
) 1

2(1− x̄)2

−
(

12x̄6 − 67x̄5 + 11xx̄5 − 60xx̄4 + 161x̄4 − 212x̄3 + 131xx̄3

− 150xx̄2 + 172x̄2 − 84x̄+ 88xx̄+ 16− 16x
) 2− x̄

2(1− x̄)(x̄2 − 4z)

+
3x̄2(1− x̄)(2− x̄)3(2(1− x− x̄) + x̄2 + xx̄)

2(x̄2 − 4z)2

]
,

ba,124 = −ba,113 |x↔x̄,

ba,134 = −23x̄2 + 6xx̄3 − 4− 19xx̄2 − 8x̄+ 7x̄4 − 20x̄3 + 13xx̄+ 4x

8(1− x)(1− x̄)(x̄2 − 4z)

+
23x2 + 6x3x̄− 4− 19x2x̄− 8x+ 7x4 − 20x3 + 13xx̄+ 4x̄

8(1− x)(1− x̄)(x2 − 4z)

+
3x̄2(1− x̄)(2(1− x− x̄) + x̄2 + xx̄)

8(1− x)(x̄2 − 4z)2
− 3x2(1− x)(2(1− x− x̄) + x2 + xx̄)

8(1− x̄)(x2 − 4z)2

+
(x− x̄)

(
−(x+ x̄)(2(1− x− x̄) + xx̄) + 2z

(
x+ x̄− 2(x2 + x̄2)− 3xx̄

)
+ 8z2

)
2(1− x)(1− x̄)(x2 − 4z)(x̄2 − 4z)

− (x− x̄)(4(x+ x̄)− 1)

8(1− x)(1− x̄)
,

(II.6)



  

d̃vD=6 =

[
−(x+ x̄− 1)− z(−3x+ 2x2 + x̄− x̄2 + xx̄)

(x+ x̄− 1)(1− x̄)
+

4z2(2− x− x̄)

(x+ x̄− 1)(1− x̄)

]
s

2(1− x)(1− x̄)
,

d̃′
v

D=6 = −d̃vD=6|x↔x̄,

cv,2134 =

[
(2− x− x̄)(x̄2 − 4z)2

(x+ x̄− 1)(1− x̄)
+

(x̄2 − 4z)(−3 + 6x̄+ 2x− 8x̄2 + 3x̄3 + 3xx̄2 − 3xx̄)

(x+ x̄− 1)(1− x̄)

+
(3(1− x− x̄) + x̄3 + xx̄)(3x̄− 2 + 2x)

(x+ x̄− 1)(1− x̄)

− −5x̄− 6xx̄+ 2x̄2 − 5x− 5x̄3 + 4 + 6x̄4 + 3xx̄2

2(1− x̄)

− x̄(x̄4 + x̄3 − 7x̄2 + 3xx̄2 + 10x̄− 8xx̄− 3 + 3x)

(x̄2 − 4z)

− 3x̄3(1− x̄)(2(1− x− x̄) + x̄2 + xx̄)

2(x̄2 − 4z)2

]
s

8(1− x)
,

cv,2234 = −cv,2134|x↔x̄,

c̃v123 =
−zs(x+ 4z)

2(x+ x̄− 1)(1− x)(1− x̄)
,

c̃v134 = −c̃v123|x↔x̄,

c̃v234 =
−zs(x− x̄)

(1− x)2(1− x̄)2

[
5(1− x− x̄) + x2 + 3xx̄+ x̄2

2− x− x̄ +
2z(2− x− x̄)

x+ x̄− 1

]
,

bv,213 =
1

32(1− x)(1 + z − x̄)

[
(x̄2 − 4z)3

(1− x̄)2
− (x̄2 − 4z)2(4x̄2 − 9x̄+ 9)

(1− x̄)2

+
(x̄2 − 4z)(12x̄4 − 51x̄3 + 48 + 3xx̄2 − 10xx̄− 91x̄+ 92x̄2 + 7x)

2(1− x̄)2

− −45x̄5 + 8x̄6 − 50xx̄3 + 24x̄2 + 109xx̄2 − 101x̄3 + 100x̄4 + 9xx̄4 + 36x− 104xx̄+ 18x̄

2(1− x̄)2

+
(2− x̄)(2x̄6 − 3x̄5 + 9xx̄4 − 17x̄4 + 74x̄3 − 43xx̄3 − 112x̄2 + 78xx̄2 + 76x̄− 64xx̄− 16 + 16x)

2(1− x̄)(x̄2 − 4z)

+
3x̄2(2− x̄)3(2(1− x− x̄) + x̄2 + xx̄)

2(x̄2 − 4z)2

]
,

bv,224 = −bv,213 |x↔x̄,
(II.7)



  

bv,234 = −4xx̄2 − 7xx̄− 3x̄2 + 2x̄+ 2x̄3 + 2x̄4 + 4− 4x

8(1− x)(1− x̄)(x̄2 − 4z)

+
4x2x̄− 7xx̄− 3x2 + 2x+ 2x3 + 2x4 + 4− 4x̄

8(1− x)(1− x̄)(x2 − 4z)

− 3x̄2(2(1− x− x̄) + x̄2 + xx̄)

8(1− x)(x̄2 − 4z)2
+

3x2(2(1− x− x̄) + x2 + xx̄)

8(1− x̄)(x2 − 4z)2
− (x− x̄)(x+ x̄− 1)

4(1− x)(1− x̄)

+

(
−2(x4 + x̄4) + (x3 + x̄3)(xx̄+ 10)− (x2 + x̄2)(13xx̄+ 16) + (x+ x̄)(3x2x̄2 + 38xx̄+ 8)

− 23x2x̄2 − 36xx̄+ 2z
(

3(x3 + x̄3) + xx̄(x2 + x̄2) + (x+ x̄)
(
5xx̄− 12(x+ x̄) + 20

)
+ 2x2x̄2 − 8

)
+ 8z2

(
(x+ x̄)(x+ x̄− 4) + 2

)) x− x̄
2(2− x− x̄)2(1− x)(1− x̄)(x2 − 4z)(x̄2 − 4z)

,

b̃v24 =
x− x̄

2(2− x− x̄)2(1− x)(1− x̄)
,

(II.8)



  

d̃aD=6 =

[
(x+ x̄− 1)2 − z(2x3 − 7x2 + x2x̄+ 16x− 11xx̄− xx̄2 + 20x̄− 8x̄2 − 12)

(1− x̄)

+
4z2(14x− 6x2 + x3 + 16x̄− 10xx̄− 6x̄2 + x2x̄− 10)

(x+ x̄− 1)(1− x̄)
− 16z3(2− x− x̄)

(x+ x̄− 1)(1− x̄)

]
× s

2(1− x)(1− x̄)(1 + 4z − x− x̄)
,

d̃′
a

D=6 = −d̃aD=6|x↔x̄,

ca,2134 =

[
(x̄2 − 4z)2

(1− x̄)
− (x̄2 − 4z)(−6x− 8x̄+ 2xx̄+ 1 + 7x̄2)

2(1− x̄)

+
−29x̄3 + 11x̄4 + 19xx̄+ 7xx̄3 − 25xx̄2 − 11x̄+ 3x+ 29x̄2 − 2

2(1− x̄)

+
x̄(9x̄4 + 8xx̄3 − 27x̄3 − 26xx̄2 + 34x̄2 − 16x̄+ 20xx̄+ 2x− 2)

2(x̄2 − 4z)

− 3x̄3(1− x̄)2(2(1− x− x̄) + x̄2 + xx̄)

2(x̄2 − 4z)2
+

(x̄2 − 4z)3

(x+ x̄− 1)(1 + 4z − x− x̄)(1− x̄)

+
(x̄2 − 4z)2(4x− 5x̄2 + 8x̄+ x2 − 6)

(x+ x̄− 1)(1 + 4z − x− x̄)(1− x̄)

+
(

3x2x̄+ 2x3 − 25x̄+ 21xx̄− 23x̄3 − 17x+ 33x̄2 + 5x2 + 10 + 8x̄4 − xx̄3 − 4x2x̄2 − 11xx̄2
)

× (x̄2 − 4z)

(x+ x̄− 1)(1 + 4z − x− x̄)(1− x̄)

−
(

11x2x̄2 + 50xx̄− 2xx̄5 + 52x̄2 + 46x̄4 + 6 + 18x2 + 42xx̄3 − 67xx̄2 − 5x2x̄4 + 5x̄6

− 25x̄+ 4x3x̄2 − 6x3 − 9xx̄4 − 21x̄5 + 6x2x̄3 − 18x− 25x2x̄− 62x̄3
)

× 1

(x+ x̄− 1)(1 + 4z − x− x̄)(1− x̄)

+
x̄(1− x̄)(x+ x̄− 1− x̄2)(2xx̄+ 4x− x̄2 + 2x̄− 4)

(1 + 4z − x− x̄)(x̄2 − 4z)

]
s

8(1− x)
,

ca,2234 = −ca,2134|x↔x̄,

c̃a123 =

[
−2x2 + 2xx̄− 5x− 5x̄+ 4 + x̄2

2(1− x)(1− x̄)

− z(5xx̄2 + 5x2x̄− 6x2 − 10 + 3x̄3 + 23x̄− 18xx̄+ x3 − 16x̄2 + 13x)

(x+ x̄− 1)(1− x)(1− x̄)2

+
4z2(2xx̄+ 4 + x2 − 3x− 5x̄+ x̄2)

(x+ x̄− 1)(1− x)(1− x̄)2

]
zs

1 + 4z − x− x̄ ,

c̃a134 = −c̃a123|x↔x̄,
(II.9)



  

c̃a234 =

[
−2(x4 + x̄4)− 15(x3 + x̄3) + (x2 + x̄2)(7xx̄+ 43)− (x+ x̄)(43xx̄+ 52) + 10x2x̄2 + 84xx̄+ 22

2(2− x− x̄)

+
2z
(
x4 + x̄4 − 9(x3 + x̄3) + 3(x2 + x̄2)(xx̄+ 10)− 5(x+ x̄)(8 + 5xx̄) + 4x2x̄2 + 58xx̄+ 18

)
(2− x− x̄)(x+ x̄− 1)

+
8z2(2− x− x̄)

x+ x̄− 1

]
z(x− x̄)

(1− x)2(1− x̄)2

s

1 + 4z − x− x̄ ,

ba,213 =

[
− (x− x̄)(x̄2 − 4z)3

(1− x̄)3
+

(x̄2 − 4z)2(4x+ xx̄2 − 6x̄3 − 21x̄+ 5 + 19x̄2 − 2xx̄)

(1− x̄)3

+
(x̄2 − 4z)(−28xx̄3 + 207x̄3 + 62xx̄2 + 6xx̄4 + 197x̄+ 21x+ 15x̄5 − 277x̄2 − 64xx̄− 54− 85x̄4)

(1− x̄)3

−
(

60x− 72 + 1293x̄3 − 1055x̄4 + 523x̄5 − 520xx̄3 + 306xx̄4 − 98xx̄5 − 956x̄2

+ 505xx̄2 − 268xx̄− 149x̄6 + 19x̄7 + 398x̄+ 14xx̄6
) 1

(1− x̄)3

−
(

12x̄6 + 11xx̄5 − 71x̄5 + 185x̄4 − 60xx̄4 − 264x̄3 + 131xx̄3 − 150xx̄2

+ 220x̄2 − 100x̄+ 88xx̄+ 16− 16x
) 2− x̄

(1− x̄)(x̄2 − 4z)

+
3x̄2(1− x̄)(2− x̄)3(2(1− x− x̄) + x̄2 + xx̄)

(x̄2 − 4z)2

]
1

64(1− x)(1 + z − x̄)
,

ba,224 = −ba,213 |x↔x̄,

ba,234 =
23x̄2 + 6xx̄3 − 4− 19xx̄2 − 8x̄+ 7x̄4 − 20x̄3 + 13xx̄+ 4x

8(1− x)(1− x̄)(x̄2 − 4z)

− 23x2 + 6x3x̄− 4− 19x2x̄− 8x+ 7x4 − 20x3 + 13xx̄+ 4x̄

8(1− x)(1− x̄)(x2 − 4z)

− 3x̄2(1− x̄)(2(1− x− x̄) + x̄2 + xx̄)

8(1− x)(x̄2 − 4z)2
+

3x2(1− x)(2(1− x− x̄) + x2 + xx̄)

8(1− x̄)(x2 − 4z)2

+

(
−2(x4 + x̄4) + (x3 + x̄3)(xx̄+ 10)− (x2 + x̄2)(13xx̄+ 16) + (x+ x̄)(3x2x̄2 + 38xx̄+ 8)

− 23x2x̄2 − 36xx̄

− 2z
(
−2(x4 + x̄4) + 5(x3 + x̄3) + (x2 + x̄2)(−5xx̄+ 4)

+ (x+ x̄)(3xx̄− 20)− 6x2x̄2 + 24xx̄+ 8
)

− 8z2
(

3(x+ x̄)(x+ x̄− 4) + 14
)) x− x̄

2(2− x− x̄)2(1− x)(1− x̄)(x2 − 4z)(x̄2 − 4z)

+
(x− x̄)(4(x+ x̄)− 1)

8(1− x)(1− x̄)
,

b̃a24 = b̃v24.
(II.10)
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[7] W. Bernreuther, U. Löw, J.P. Ma and O. Nachtmann, Z. Phys. C43:117 (1989).
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Figure Captions

Figure 1:

Sample Feynman diagram for the QCD rescattering contribution, with mq 6= 0 required for a

nonvanishing result.

Figure 2:

Triangle diagram for QCD rescattering contribution via quark annihilation; again mq′ 6= 0 is

required for a nonvanishing result.

Figure 3:

Sample diagram for electroweak rescattering contribution.

Figure 4:

Sample diagram for contribution of γγ and γZ intermediate states.

Figure 5:

Sample diagram for contribution from real γγ initial state.

Figure 6:

Definition of the angles θ, φ and θ
(qq̄)
n for e+e− → qq̄g. The unit vector n is the (signed) normal to

the qq̄g plane.

Figure 7:

〈cos θn〉 from QCD rescattering, normalized for b-final states only, as a function of the center-of-

mass energy, for ycut = 0.04. The dotted line gives the contribution of the vector component of the

result. The one loop running of αs is included.

Figure 8:

QCD (dotted line), W -exchange (dot-dashes) and Z-exchange (dashes) contributions to 〈cos θn〉 as

functions of the center-of-mass energy, for ycut = 0.04. The one loop running of αs is included.

The solid line gives the sum of the three contributions.

Figure 9:

QCD (solid line), W -exchange (dot-dashes) and Z-exchange (dashes) contributions to the signal-

to-noise ratio, divided by the square-root of the number of 2-jet events, for 〈cos θn〉, as functions of

ycut at the Z.

Figure 10:

B boson exchange contribution to 〈cos θn〉 as a function of ξ ≡ M2
B/M

2
Z , with (dashed line) and



  

without (solid line) gluon identification, at the Z, for αB = 0.2/9 and ycut = 0.04.



  

5–95 7953A7

e–

e+

q

g

q

γ, Z

Fig. 1

5–95 7953A9

e–

e+

q'

g

Z

q

q

Fig. 2

5–95 7953A8

e–

e+

q

g

q
γ, Z

W, Z

Fig. 3

1



  

5–95 7953A6

qe–

e+ q

g

γ, Z

γ

Fig. 4

5–95 7953A10

γ

γ

q

q

g

Fig. 5

2



  

q

g

5–95
7953A5

n

θ e+

e–

q

nθ(qq)

φ

Fig. 6

3



  

40

0

0.5

1.0

60

s   (GeV)5–95 7953A1

80 100

co
sθ

n 
  (

x 1
03 )

Fig. 7

100 150

5–95 7953A2

200

0

0.5

–0.5

s   (GeV)

co
sθ

n 
  (

x 1
05 )

Fig. 8

4



  

0.02 0.04

1

2

3

4

0

yc5–95 7953A3

S
/N

/ 
  

N
2 

je
ts

   
(x

1
06 )

0.06 0.08 0.10

Fig. 9

0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

ξ5–95 7953A4

co
sθ

n 
  (

x 1
04 )

Fig. 10

5


