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Since nonlinear effects can impose strict performance

limitations on modern colliders and storage rings, future performance

improvements depend on further understanding of nonlinear beam

dynamics. Experimental studies of nonlinear beam motion in three-

dimensional space have begun in SPEAR using turn-by-turn transverse

and longitudinal phase-space monitors. This paper presents preliminary

results from an on-going experiment in SPEAR.
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I .   I N T R O D U C T I O N 

Nonlinear effects have always demanded special consideration in the field of

charged particle acceleration.  For example, to achieve low-emittance beams, storage

rings must be built with strong focusing fields.  However, strong focusing fields

produce more chromatic error that must be corrected using sextupoles placed in

dispersive regions of the storage ring. The strong focusing forces also reduce the

dispersion. Therefore, the effectiveness of sextupole fields in correcting chromatic

errors decreases. When stronger sextupoles are used, they reduce the dynamic aperture

of the storage ring, and limit its performance.

The dynamics of charged particles in nonlinear fields has been analyzed by

various theoretical studies [1]. Although much progress has been made in recent

experiments [2], the need to verify these theoretical results, especially those related to

the 6-dimensional phase-space of a particle, still exists. This article presents the recent

progress of the SPEAR nonlinear dynamics experimental program. The goal is to

develop a 6-dimensional phase-space monitor to study turn-by-turn single-bunch

dynamics.  Such a monitor  also is useful as an on-line diagnostic tool for SPEAR.

The following sections discuss details of this program, including modeling work,

phase-space monitor development, and typically obtained data.  Analysis of the data is

on-going.

I I .  S P E A R  M O D E L I N G 

The racetrack configuration of the SPEAR storage ring has a modified FODO

cell structure with a circumference of 234 m, operating energy of 3.0 GeV, and

emittance of 0.127π mm-mrad. At the injection energy of 2.3 GeV, the smaller

emittance beam closely approximates the single-particle motion. In addition, large
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perturbations can be induced in all three dimensions. These features make SPEAR

an ideal environment for investigating amplitude dependent effects.

Beam-control experiments require an accurate model (at least a linear model)

of the accelerator. For the SPEAR storage ring, a procedure has been developed using

the response matrix to calibrate the quadrupole strengths, the corrector strengths, and

the beam position monitor (bpm) gains [3]. The orbit response matrix M  of an

accelerator satisfies the relation, x = Mθ, where x is a vector whose elements are the

horizontal and vertical displacements at each bpm, and θ is a vector whose elements

are the horizontal and vertical corrector strengths. One can measure Mmeas of the

as-built machine and calculate Mmod of the design lattice. Generally, Mmeas and

Mmod do not agree because the bpm gains may not be known accurately, the corrector

strengths may not be calibrated, the quadrupole strengths may not be exactly at the

design values, and so on. These factors can be formulated as parameters in a weighted

χ-square fitting between Mmeas and Mmod to obtain a more faithful representation

of the accelerator.

For example, let V  be a vector whose elements represent the difference

between Mmeas and Mmod [4]. In the absence of x–y coupling, the number of

elements, m, in V equals the number of horizontal and vertical correctors times the

number of bpms. Assuming that the main parameters are the bpm gains Gj,

the corrector strengths θj, and the quadrupole strengths Kj, a first order equation for V

can be written as

V = 
∂V
∂Kj

δKj + 
∂V

∂θj

δθj + 
∂V
∂Gj

δGj +  
∂V

∂ ∆p/p j
δ ∆p/p j ,

(1)
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where (∆p/p)j is the electron energy shift due to the jth corrector strength θj. For a

general set of n parameters aj, Eq. (1) can be written

Vi = 
∂Vi

∂aj
 δaj∑

j=1

n

 , (2)

and the weighted χ-square fitting equation for this problem has the form

χ2 = Vi
σi

 - 
∂Vi

∂aj
 δaj∑

j=1

n 2
∑
i=1

m

, (3)

where σi is the rms measurement noise of the ith bpm. The least χ-square solution of

Eq. (3) can be obtained conveniently using the singular value decomposition (SVD)

method of linear algebra [5]. This technique has been used on SPEAR and on the

NSLS x-ray ring [6] to calibrate the linear optics model.

I I I .  T R A N S V E R S E  P H A S E - S P A C E  M O N I T O R 

Once we had calibrated the SPEAR model, the next step was to develop a

6-dimensional phase-space monitor. This monitor consisted of two principal units:

(1) the transverse phase-space unit described here, and

(2) the longitudinal phase-space unit that will be discussed in the next section.

The transverse phase-space monitor is an expanded version of a device first used in

SPEAR to measure betatron phase advance [7]. Given the horizontal beam

displacements x1 and x2 measured at bpm1 and bpm2, respectively, and assuming that

there are only quadrupoles and/or bends between these two bpms, then x 1 and x2 are

related by [8]

x2 = β2/β1 cos µ12 + α1sin µ12  x1 + β1β2 sin µ12  x' 1 , (4)
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where x'1 is the angle the beam made with respect to the design orbit at bpm1, βi is

the value of the betatron amplitude function at the ith bpm, αi  = - β'i/2, and µ12 is the

betatron phase advance between bpm1 and bpm2.  Equation (4) can be solved for x'1,

x'1 = 
x2 - β2/β1 cos µ12 + α1sin µ12  x1

β1β2 sin µ12  . (5)

However, analysis of phase-space data is more convenient using the Courant-

Snyder normalized coordinates (x,px), where px = α xx + βxx'. In the normalized

coordinate system, linear motions are characterized by the equation of a circle,

px2 + x2 = 2βxJ , (6)

where

J = 1
2

γxx2 + 2αxxx'  + βxx' 2
 (7)

is the Courant-Snyder invariant with γx = (αx + 1)/βx. Thus, by measuring the single-

turn horizontal displacements x1 and x2 at two bpms, the normalized momentum px1

at bpm1 can be derived using Eq. (5) and the definition of px. Data from multi-turn

measurements can then be used to map out the horizontal phase space of a single-

bunch. For small amplitude oscillations, one can fit the phase-space data to Eq. (6)

to obtain the ratio of the betatron amplitude function (β2/β1) and the betatron phase

advance (µ12). The equations for the vertical case are similar.

In practice, a signal generated by one of the four serially triggered 8-bit,

2-channel waveform digitizers (LeCroy 6840) initiates the transverse data acquisition

sequence. This signal is used to trigger either an injection kicker for horizontal

excitation of the beam, a pair of electrostatic separation plates for vertical excitation,

or both. The injection kicker pulse has a width of approximately 2 µs FWHM, and that



7

of the separation plates (whose power supply circuit is currently being redesigned)

will be roughly 800 ns. Once perturbed, the single-bunch beam executes coherent

betatron oscillation. The transverse position signals of the beam detected by each bpm

are stretched by passive filters and processed by hybrid junctions to produce four

signals: the horizontal difference ∆x, the vertical difference ∆y, the sum, and the

trigger. The latter is used to clock the LeCroy 6840 waveform digitizers to record

the amplitudes of the other signals. The ratios (∆x/sum) and ( ∆y/sum) give single-turn

current-independent horizontal and vertical displacements. Figure 1 shows a block

diagram of the turn-by-turn transverse phase-space data acquisition system.
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FIGURE 1.  Block diagram of the transverse phase-space system.
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I V .  L O N G I T U D I N A L  P H A S E - S P A C E  M O N I T O R 

The longitudinal phase-space can be studied by analyzing relative oscillations

in the longitudinal phase and momentum error. These variables are acquired by a

technique similar to the one used at the IUCF [9].

Under ideal conditions, a particle (to be approximated by a bunch centroid)

with the design momentum arriving at a reference point  along the storage ring will

have a constant phase, called the synchronous phase, relative to the rf. When a particle

is excited longitudinally (as is the case when the rf frequency is phase shifted

momentarily), it executes longitudinal phase oscillation. To measure the relative

phase, a stripline signal is applied to a band-pass filter (BPF) with a center frequency

identical to that of the rf [10]. To avoid the problem of current-dependent stripline

signal, the BPF outputs are amplified to saturation by limiting amplifiers.

The difference between the amplified BPF output and the reference rf is then

measured by a phase detector. Figure 2 shows a schematic layout of the longitudinal

phase detection system.
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To obtain turn-by-turn momentum error data, note that the total horizontal dis-

placement xtotal consists of a betatron component xβ and a dispersive component ηδ,

xtotal = xβ + ηδ
.  (8)

The momentum error of a longitudinally excited particle is obtained by band-

pass filtering the horizontal turn-by-turn data at the synchrotron frequency. This

process is accomplished using off-line software.

V .   D A T A  S A M P L E S 

Samples of turn-by-turn data of the single-bunch motion in SPEAR are

presented in this section. The data were obtained using the phase-space monitor

discussed above. Figure 3 shows the phase oscillation of a longitudinally excited

 

12-94
7856A2

~

Delay & Pulse 
Width Select for 

Tracking

Digital Delay
Generator 1.28 MHz

Bust Filter
IF 

(60 MHz)

IF 
(60 MHz)

Limiting
amp

LPF 
30 MHz

Buffer
amp

Limiting
amp

~2 ns RF

LO

LO

358.54 MHz

Stripline
RF

Output

SPEAR MO
358.54 MHz

SPEAR
1.28 MHz

Track/Hold
LPF

100 KHz

BPF

FIGURE 2.  Block diagram of the SPEAR relative longitudinal phase detector.
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electron bunch in SPEAR. The bunch can be simultaneously excited in all three

dimensions. Figure 4 illustrates a typical horizontal betatron motion, and the derived

transverse phase-space tracking.
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FIGURE 3.   The measured longitudinal phase as a function of time.
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FIGURE 4.  Typical turn-by-turn data measured by the transverse phase-space monitor:
 (a) turn-by-turn horizontal betatron motion data, and (b) horizontal phase-space tracking.

V I .   C O N C L U S I O N 

We have initiated a nonlinear dynamics experimental program at SSRL. In the

process, we have calibrated the SPEAR model using a χ-square fitting procedure based

on the response matrix and have developed a 6-dimensional phase-space monitor.
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Turn-by-turn data collected using the phase-space monitor will be used to study fully

coupled nonlinear particle motion.
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