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1. Introduction

I am delighted to have had the opportunity to bring to this Symposium the

question of whether recent work connecting relativistic quantum mechanics to the

classical relativistic theory of fields sets the interpretation of “deterministic chaos”

in a rather different—and possibly illuminating—context. My title comes from the

fact that I had already raised this point at the 15th annual international meeting

of the Alternative Natural Philosophy Association.
[1]

I did not gain much enlight-

enment on the significant and difficult issues raised from the resulting discussion.

I hope that, thanks to the passage of time, subsequent work with L.H.Kauffman
[2]

and the different types of expertise present at this Symposium, I will gain a broader

perspective from your comments.

The first argument I mount against the relevance of “chaos research” to the

issue of determinism rests on the fact that physics is a science of measurement. If

one accepts the operational methodology implied by this statement, and recognizes

that the smallest space interval ∆x and time interval ∆t which one can measure

is always bounded from below by the current state of technology, then there is a

limit to the accuracy to which the initial conditions for prediction using a clas-

sical, deterministic system of equations can be stated. What chaos research has

demonstrated is that there are many non-linear classical systems which require as

much input information to obtain a “prediction” as can be obtained from the re-

sult “determined” by solving the deterministic equations. Hence the issue becomes

irresolvable from the point of view of physics once one is asked to make a “pre-

diction” that requires more accuracy in the input than is available from current

technology. The next section tries to spell this out by invoking NO-YES events,

and in particular the not-firing or firing of a recording counter as the paradigm for

measurement in physics.

So far, this states a point of view, and may not sound particularly compelling.

But when one asks where the classical equations come from, the argument can be

tightened. So far as I can see, the only classical systems of equations which do
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not depend in detail on the structure of matter — and hence on quantum effects

— are electromagnetism and gravitation. Here an ancient piece of work by Feyn-

man, recently resurrected by Dyson
[3]

and extended by Tanimura,
[4]

comes to our

aid. Dyson derives electromagnetism and Tanimura also derives gravitation from

Newton’s second law and the commutation relations of non-relativistic quantum

mechanics! This paradoxical result is shown by our analysis to depend only on the

assumption that measurement accuracy is finite, fixed and bounded from below. By

an appropriate and significant extension of the calculus of finite differences to a

non-commuting discrete ordered calculus (DOC), due to Etter and Kauffman,
[5]

this

derivation becomes rigorous in a very general context. Accepting this derivation,

the classical equations require finite and discrete measurement accuracy to ground

them in physics. But then, to treat them as deterministic goes beyond the range

of applicability of their foundation. This puts bite into the argument that classi-

cal, deterministic equations are always approximate, and hence that the context in

which chaos research is usually set has no validity within the world of physics as I

understand the term. This argument is presented in more detail in Section 3.

A second reason for taking the classical equations to be approximate is the

underlying non-determinism of quantum mechanics. Strictly speaking classical

equations apply only at large enough distances so that the particles which probe

the fields are decoherent in the quantum mechanical sense. Hence, we argue that

“deterministic chaos” is always an approximation, and that any fundamental dis-

cussion of determinism must be conducted at the quantum level. This pushes the

discussion back to the level of Bell’s Theorem, which is often interpreted as show-

ing that demonstrable laboratory effects (e.g. Aspect’s experiment) preclude the

possibility of a local, deterministic description of natural science. The relationship

between measurement accuracy and “decoherence” in our context is discussed in

Section 4.

The conflict between quantum mechanics and Einstein locality raises a third

issue about the approximate character of classical physics. This is the problem of

how to construct a relativistic quantum mechanics which has classical field the-
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ory as a well defined correspondence limit. The specific measurement limitation

involved is clearly the fact that when one attempts to measure distances shorter

than h̄/2mec, either directly or indirectly, one must take proper account of the

degrees of freedom corresponding to electron-positron pair creation. We note that

going below these bounds requires a relativistic quantum mechanical analysis. This

provides a third reason why the deterministic interpretation of classical physics can

never be more than an approximation. We explore, briefly, in Section 5 how a novel

theory based on bit-strings might meet this problem. Our concluding section re-

turns to the philosophical issues.

2. NO-YES EVENTS AS A RELATIVISTIC

MEASUREMENT PARADIGM

My approach to the questions of law and prediction in physics—rather than

in the broader context of (Natural) Science used in the title of this Symposium—

starts from the trite comment that physics is a science of measurement. I take

this characterization of physics as a methodological requirement. Unfortunately,

from my operational and pragmatic point of view, this dictum is much more often

honored in the breach than in the observance. In my practice of physics I do not

allow my fundamental paradigms for how theoretical physics should be connected to

laboratory experience to rest on considerations that are not in some sense bounded

by the actual experimental accuracy of current measurements.

This statement of methodological principle is unabashedly taken from Bridg-

man’s heroic attempt
[6]

to rescue physics from the philosophers. It is usually as-

sumed that his program failed to provide a proper conceptual foundation for the

startling and enormously fruitful developments in relativistic cosmology and ele-

mentary particle physics which have provided contemporary scientists with such

a rich picture of the physical world accessible to precise measurement. But the

actual reconciliation of quantum mechanics with relativity, and in particular the

creation of a theory of “quantum gravity” that commands consensus among the

4



    

specialists, still eludes us as this century draws to a close. I have argued in more

detail elsewhere
[7]

why a return to Bridgman’s principles might help resolve some

of the thorny problems that still face us.

My approach is also informed by the S-Matrix program of Chew and Heisen-

berg, which—according to Schweber
[8]

—really started with Dirac. The basic point

for me is that by going to large enough distances (and hence, necessarily, times) in

the experimental setup, momentum and energy can always be measured to arbi-

trarily high accuracy using essentially classical physics techniques and concepts. In

contrast, direct space-time measurement at short distance is always restricted by

the uncertainty principle and looses direct operational meaning. Hence the formal

symmetry between position and momentum measurement in quantum mechanics

is destroyed in practice. As Chew used to put it, short distance space-time is an

artifact of Fourier transformation and cannot have physical significance. Unfortu-

nately, from my point of view, he did not take the next step and reject continuum

mathematics as well.

This next step has, for me, a long history which is briefly explained in my

contribution to PhysComp’94.
[9]

The fundamental mathematical position comes

from a necessary aspect of the practice of computer science, namely that you must

name a largest integer N and the fixed, finite memory size in advance. If you need

or wish to introduce larger numbers into the calculation, or change the size of the

memory, you must re-examine everything you have done up to that point. This

obvious fact has been particularly emphasized by David McGoveran;
[10]

in effect,

he makes it into a methodological principle. Note that this not only rules out the

continuum, but also mathematical induction. Few theoretical physicists and almost

no mathematicians are willing to take such a drastic step. In elementary particle

physics, whenever a theory is examined empirically, the events analysed, the model

of the apparatus used in the analysis, and the theories under consideration are

necessarily reduced to a finite number of bits on magnetic tape or some other

digital form of memory. That this procedure must be used in order to test any

empirical aspect of any theory may, perhaps, make our methodological purity seem
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less outrageous.

This much discussion seems necessary to justify my measurement paradigm

based on what I call NO-YES events. The model I have in mind is a laboratory

counter and associated memory storage which records whether an event did not

take place in a time interval ∆t in a volume ∆x3 with relevant linear dimension ∆x

(a NO event) or did take place (a YES event). I emphasize that, when it comes to

precise measurement, the absence of a counter firing is often more important (eg in

measuring “background”) than its presence. For our paradigm we assume that the

temporal resolution of the measurement ∆t and the spacial resolution ∆x are the

best that can be achieved with current technology either by direct measurement, or

indirectly as when one uses a Michelson interferometer to measure relative positions.

Note that in order to relate such relative measurements to macroscopic laboratory

coordinates, we would have to discuss the measurement accuracy with which we

can connect the different space-time scales.

Up to this point we have treated length and time measurement as distinct.

But the System International, employed universally by physicists in reporting the

results of measurement, defines the ratio of space to time units by the integer

c ≡ 299 792 458 meter/second (2.1)

Thus, following current practice, we are no longer allowed to define ∆x and ∆t

separately when specifying our lowest bound on measurement accuracy. In fact,

we must make the scale invariant statement that

∆x

c∆t
= 1 (2.2)

in any system of units which allows us to talk about NO-YES events in a precise

way.

We can summarize the content of this section by the phrase:

PHYSICS IS COUNTING
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3. Classical Relativistic Fields from DOC

In 1948 Richard Feynman showed Freeman Dyson a remarkable “proof” of the

Maxwell Equations starting from the non-relativistic quantum mechanical commu-

tation relations and Newton’s second law.
[11]

Dyson no longer retains contemporary

records of this conversation, but was able to reconstruct and publish the proof using

notes he had made at a later date.
[12]

Although Dyson finds the proof paradoxical,

we have claimed
[13]

that in fact it makes good sense in terms of the new, funda-

mental theory discussed in Ref. 9.

Briefly, the argument goes as follows. The Feynman postulates are that

[xi, xj ] = 0; [xi,mẋj ] =
h̄

i
δij ; Fi(x, ẋ; t) = mẍi; i, j ∈ 1, 2, 3 (3.1)

However, the use made in the proof of the second postulate (i.e. of the commutation

relation between position and velocity) in no way requires the constant on the right

hand side to be imaginary, or scaled by Planck’s constant. The linearity in the

mass parameter m allows us to divide through by m and replace it by the postulate

[xi, ẋj ] = κδij (3.2)

with κ any constant with dimensions of area per unit time. For a particle acting

under any force which obeys Newton’s third law with respect to a reference particle,

we know that the area (measured in units of ∆x2) swept out by the line from some

appropriate center to the particle in a constant time interval (measured in units of

∆t) is constant. This observation fixes κ in an scale invariant manner. Note that

this generalization of Kepler’s second law is kinematic rather than dynamic. It

leaves both the mass standard and the mass ratio between the particle of interest

and the reference particle arbitrary. Similarly, since Newton’s second law is linear

in mass, we can replace it by the assumption that the acceleration (ẍ) is a function

only of position, velocity and time. Finally, for any single particle for which the

charge per unit mass is a Lorentz invariant, we can also divide the mass out of
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Maxwell’s Equations, and find that the whole derivation is scale invariant because

it depends only on fixing, arbitrarily, the units of length and time.

As is noted in Ref.2:

“.... this aspect of scale invariance had already been introduced into the subject

by Bohr and Rosenfeld in 1933.
[14]

In their classic paper, they point out that be-

cause QED depends only on the universal constants h̄ and c, the discussion of the

measurability of the fields can to a large extent be separated from any discussion

of the atomic structure of matter (involving me and e2). Consequently, they are

able to derive from the non-relativistic uncertainty relations the same restrictions

on measurability (over finite space-time volumes) of the electromagnetic fields that

one obtains directly from the second-quantized commutation relations of the fields

themselves. Hence, to the extent that one could “reverse engineer” their argu-

ment, one might be able to get back to the classical field equations and provide an

alternative to the Feynman derivation based on the same physical ideas.”

This point of view is also discussed in more detail elsewhere.
[15]

Unfortunately, this physical argument has not proved compelling for many

people in the relevant professional communities. We have therefore been forced to

invoke the aid of a first rate mathematician and to go deeper into the mathematical

foundations of the calculus of finite differences (see Ref. 2) than might be expected.

This suggested further developments to T. Etter, which are now being pursued (see

Ref. 5).

The basic physical point from which the discussion of the impact of finite

measurement accuracy on the relation between position and velocity starts is that

velocity has to be defined as the ratio of a finite space interval to a finite time inter-

val. We also restrict the problem to the “trajectory” of a single particle, and a finite

shift along that trajectory. Then measurement of velocity must involve either first

the specification of position and then the finite shift to a new position from which

the velocity can be calculated, or first the shift from a previous position at some

velocity and then the specification of the new position consistent with that velocity.
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These two velocities will not, in general, coincide. Note that this operational defi-

nition of velocity precludes the possibility of specifying both position and velocity

at the same time. Thus the possibility of non-commutativity arises, and careful

investigation of the possibilities leads to the discrete ordered calculus (DOC) of

Etter and Kauffman. This (non-commutative) calculus of finite differences does,

indeed, provide a rigorous mathematical context for the Feynman-Dyson “proof”,

allowing us to drop the quotation marks.

Exploring the mathematical niceties of this generalization of the calculus of

finite differences would distract us from the thrust of this paper. When I recently

showed Ref. 2 to my colleague, M.Peskin, he noted that the “shift operator J” de-

fined by Kauffman is, in our context of a single particle, isomorphic to the operator

U = exp(−iH∆t representing a finite time shift in the Heisenberg representation.

Then the formal steps in Kauffman’s rigorous version of Feynman-Dyson-Tanimura

“proof”go through easily. The difficulty with adopting Peskin’s approach is that

what operational context the Heisenberg formalism fits into is by no means ob-

vious. So, for mathematical and physical clarity, one needs to invoke the DOC

and discuss the relationship between measurement accuracy and the DOC. I am

indebted to Peskin
[16]

for allowing me to quote his rewritten proof below.

Define

Ẋ = XU − UX = [X,U ] (3.3)

where U is the time shift operator from X to X ′ in time ∆t (eg U = e−iH∆t).

Notice that

(AB)· = [AB,U ] = [A,U ]B + A[B,U ] = ȦB + AḂ (3.4)

as required.

Postulate:
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1. [Xi, Xj ] = 0

2. [Xi, Ẋj ] = κδij

Rewrite 2 as

[Xi, [Xj , U ]] = −[Xj , [U,Xi]]− [U, [Xi, Xj ]] (3.5)

and noting that [U, [Xi, Xj ]] = [U, 0] = 0 we find that

κδij = [Xi, [Xj , U ]] symmetric in i, j (3.6)

Now define

Hl =
1

2κ
εjkl[Ẋj , Ẋk] (3.7)

Then

∇lHl =
1

2κ
εjkl[[Ẋj , Ẋk], Ẋl] (3.8)

But this cyclic sum vanishes by the Jacobi identity. Thus

∇lHl = 0 (3.9)

which is one of the two Maxwell equations we set out to derive.
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Finally, define

Ei = Ẍi − εijkHk (3.10)

We wish to prove that

∂Hi

∂t
+ εijk∇jEk = 0 (3.11)

First we need to define ∂/∂t by

Ḣ =
d

dt
H =

∂H

∂t
+ (Ẋ · ∇)H (3.12)

Then

∂Hi

∂t
= Ḣi − Ẋj∇jHi

=
1

2κ
εikl([Ẋk, Ẋl])

· − Ẋj
1

κ
[
εikl
2κ

[Ẋk, Ẋl], Ẋj ]

=
1

κ
εikl[Ẋk, Ẍl]−

1

2κ2
Ẋjεikl[[Ẋk, Ẋl], Ẋj ] (3.13)

εijk∇jEk = εijk
1

κ

[(
Ẍk − εklmẊlHm

)
, Ẋj

]
=

1

κ
εijk

[
ẊjẌk

]
· (−1)− εijkεklmεmab

1

2κ2

[
Ẋl

[
Ẋa, Ẋb

]
, Ẋj

]
= −1

κ
εijk

[
Ẋj , Ẍk

]
− (δilδjm − δimδjl) εmab

1

2κ2

([
Ẋl, Ẋj

] [
Ẋa, Ẋb

]
+ Ẋl

[[
Ẋa, Ẋb

]
Ẋj

])
= −1

κ
εijk

[
ẊjẌk

]
+

1

2κ2
εiabXj

[[
ẊaẊb

]
, Ẋj

]
− εjab

1

2κ2

[
Ẋi, Ẋj

] [
Ẋa, Ẋb

]
(3.14)
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now

εjab

[
Ẋi, Ẋj

] [
Ẋa, Ẋb

]
=
[
Ẋi, X1

]
[X2, X3]

+
[
Ẋi, Ẋ2

] [
Ẋ3, Ẋ1

]
+
[
Ẋi, Ẋ3

] [
Ẋ1, Ẋ2

] (3.15)

for i = 1, eg

=
[
Ẋ1, Ẋ2

] [
Ẋ3, Ẋ1

]
+
[
Ẋ1, Ẋ3

] [
Ẋ1, Ẋ2

]
= 0 (3.16)

so

εijk∇jEk = −1

κ
εijk

[
Ẋj , Ẍk

]
+

1

2κ2
εiabXj

[[
Ẋa, Ẋb

]
Ẋj

]
= −∂H

∂t
QED .

(3.17)

We conclude that the free field Maxwell Equations are a formal consequence of

assuming finite time shifts along a single particle trajectory and showing that the

changes in velocity (accelerations) have the form of the Lorentz force law (i.e. eq.

3.10 or mF = eE + ev × H) for electromagnetic fields acting on a particle. This

formula allows us to separate the acceleration into a vector which is a function of

position and time (electric field) and produces an acceleration in that direction,

and a second vector — also a function of position and time — which acts at

right angles to the velocity and is proportional to the magnitude of the velocity

(magnetic field).

We emphasize that given the fields, we can calculate the motion of a single

particle passing through them, or given the trajectory, we can calculate the fields

which would produce that trajectory. Invoking Newton’s third law, and treating

the field as a carrier of both energy and momentum, we can treat this second

calculation as either the absorption of the radiation by the particle producing its

motion or as the emission of the field by the particle when its motion is known.

This language then allows us to treat single particle trajectories as either the

sources or sinks of the fields but not both at once. The (insoluble) “self energy”
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problem cannot be met this way. One can achieve consistency at the classical level

only by separating sources and sinks, as was done by Feynman and Wheeler in

their “relativistic action at a distance” theory.
[17]

But then, in a closed system,

the source and sink are made macroscopically (and non-locally) coherent by the

energy-momentum conservation laws. Thus, treating the field as a locally defined

and causally efficacious agent is only possible in the decoherent approximation in

which we can ignore where the radiation is coming from and where it is going.

We will discuss this intricate question of coherence and decoherence further

in the next section. For the moment, we emphasize that our derivation of the

field equations from measurement accuracy necessarily limits their applicability as

deterministic predictors to situations in which the boundary conditions and the

predictions are made to less accuracy than the ∆x = c∆t restriction which allows

us to derive the “differential” form of the field equations in the first place. Hence, if

our understanding of the classical electromagnetic field is accepted, “deterministic

chaos” cannot enter the system, and the distinction between determinism and

indeterminism eludes us.

To complete the argument of this section, we need to extend the argument to

the only remaining classical field, namely gravitation. At least within the frame-

work of the Feynman-Dyson “proof”, this has already been done by Tanimura in

Ref. 4. Tentatively, at least, we accept this extension, but will not be sure of our

conclusion until we have a rigorous equivalent using the DOC. The novelty here is

that we must consider not only non-commutativity between position and velocity

but the connectivity between oriented areas. This gives (at least formally) the

usual tensor field in free space and the resulting non-locality of general relativity.

Again, the field as a local, causal agent appropriate to think of as “determinis-

tic” can only be a decoherent approximation. Thus, independent of details, we

again find the phenomena of “deterministic chaos” irrelevant to what we can know

physically.
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4. DECOHERENCE; PERIODICITY

FROM MEASUREMENT ACCURACY

[Spelling out in operational terms just what we mean by “decoherence” requires

some care. I have already done this in Ref.1. The next four sub-sections repeat

these considerations with a few modifications.]

4.1 The Geometrical Paradigm for Decoherence

To give form to our discussion of coherence and decoherence, we use the devices

schematically illustrated in figure 1. We assume, initially, that the “source” labeled

by a question mark emits charged particles with a unique charge-to-mass ratio and

a unique velocity v. Note that these particles, taken one at a time, fit into our

understanding of “particle” and “field” as established in Section 3. Devices which

we will use to insure that, to some finite accuracy, these assumptions are true are

included in the figure, and will be discussed in more detail subsequently. For the

moment we omit the “path extender”.

We start from the case when the detection screen beyond the double slit
[18]

ex-

hibits a double slit interference pattern whose envelope is the single slit diffraction

pattern for a slit of width ∆w and a distance D from the detector array. We set

the parameters such that the spacing from the center of the pattern to the first

interference fringe is s. Then the “wavelength” λ exhibited by this coherent inter-

ference between the beams from the two slits is measured and can be calculated

from the equation

λ =
ws

D
(4.1)

We note that w, s and D are length intervals that can be measured by conventional

macroscopic methods such as rods calibrated against international standards. We

take this as the paradigmatic case for specifying what we mean by “coherence”.

We emphasize that, so far, only length measurements are implied and hence that

our diagram is scale invariant.
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In order to measure the “coherence length” we insert into the hypothetical

“path” of the particle coming from one of the slits a “path extender”, schematically

represented by a wedge whose sides are mirrors. One face of the wedge reflects the

beam to a second mirror which returns it to the second face of the wedge, which in

turn returns it to the direction it followed in the paradigmatic case. The distance

C from the wedge to the mirror is adjustable. C = 0 corresponds to the simplest

double slit paradigm (wedge omitted). We find experimentally that for a source of

a particular type the (double slit) fringe system disappears when we reach a value

Cmax or larger. We can then define the coherence length Ccoh by

Ccoh ≡ 2Cmax (4.2)

Note that the definition still depends directly on geometrical measurements. Indi-

rectly the specification depends on the sensitivity of the detector array, since the

intensity of the pattern along the detector array and (if the array records indi-

vidual particulate events) the probability of a particular region of the array being

activated decreases as C increases. The disappearance of the interference pattern

is our paradigm for decoherence.

To go further in our analysis, we must measure the velocity v, or if this velocity

is close to the limiting velocity for information transfer — for which we use the

conventional symbol c — the momentum. Then we can define a second critical

parameter called the coherence time and symbolized by Tcoh by the relationship

Ccoh = vTcoh (4.3)

Here we assume that the measurement of v using the recording counters in the first

counter telescope and the time from the firing of the first counter telescope to the

firing of one counter in the detector array are consistent with each other, and that

all three clocks associated with the counters are synchronized using the Einstein

convention.
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In the situation where the interference fringes have disappeared, we can distin-

guish two paths emerging from the double slit by noting that all particles which

follow the longer path arrive at the detector with a time delay greater by at least

Tcoh = Ccoh/v compared to the particles which traverse the shorter path. Then we

know that the two trajectories are decoherent and (in the stated context) are classi-

cal, decoherent trajectories of classical particles (ignoring the single slit interference

pattern which takes higher precision to see).

Various checks on the confidence with which we can make the above state-

ments can depend on the measurement accuracy to which we can establish all the

relevant parameters. Several such checks will occur to any experimental particle

physicist. Since these checks are irrelevant to our main theme, we stop our artic-

ulation of the basic paradigm at this point, and focus on the accuracy to which

we can measure velocity or momentum. The main point we wish to establish is

simply that in a carefully specified context, outside of some coherence length or

coherence time, particles can be said to follow two (or more) distinct trajectories

for at least part of their history between production and detection. Inside that

length, two coherent beams of the same type of particle can be made to interfere

with a characteristic wavelength that can be measured geometrically. But asking

where within that pattern of two coherent trajectories the “particle” is located

cannot find an answer within the experimental setup. This is an example of the

“complementarity” between the wave and the particle description in our discrete

context.

4.2 Space-time velocity measurement

The “counter telescope” we have included in figure 1 consists of two devices

which record the time of firing or of not firing during some time interval. This is

the next step in bringing the measurement paradigm presented in Section 2 closer

to laboratory practice. The distance between the two counters is L and the time

delay between the two recordings is T . These two recordings are NO-YES events

in that whether the individual counters do not fire (“NO”) or do fire (“YES”) is
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recorded by two distinguishable symbols in two correlated records. These records

can be repeatedly examined without destroying this distinction or the sequential

ordering. In this context the velocity of a particle v is measured by a Y ES1, Y ES2

pair of events and is calculated by the ratio

v =
L

T
(4.4)

The accuracy to which this constitutes — or can constitute — a measurement

of this velocity cannot be adequately discussed in an article of this length. We

simply note that what are called “particles” in high energy elementary particle

physics have never been demonstrated to have velocities greater than the scale

parameter c ≡ 299 792 458 m sec−1. Further, there is no accepted situation in

which information in the physical or computer science sense has been transferred

at a velocity greater than this value. Demonstrable exceptions to these statements

would be of extreme interest to the physics and computer science communities.

4.3 Energy-Momentum velocity measurement

The “magnetic selector” using a magnetic field H perpendicular to the plane

of figure 1 can also be considered to be a device capable of measuring velocity

when it is properly calibrated. Its action is compatible with the Lorentz force

law we explained in Section 3. The calibration procedures are more complicated

than the direct calibration of rods and clocks which suffice for space-time velocity

measurement. It is here that our restriction to a particular type of particle begins

to become important.

If the particle is electromagnetically neutral, or if the space-time velocity is not

distinguishable from c (up to the maximum value ofH available to us), no deflection

is observed and the inverse radius of curvature ρ−1 is indistinguishable from zero.

We exclude these cases for the moment because the measuring device invoked gives

no information not already provided by the counter telescope. However, when a
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deflection (finite, non-null ρ) is observed, we find that for fixed H the radius of

curvature ρ changes with velocity. To cut a long story short, we find that if we

measure velocity in units of c by defining

v ≡ β(v)c (4.5)

and keep the magnetic field fixed,

ρ2(v) ∝ β2

1− β2
; ρ−2(v) ∝ 1− β2

β2
(4.6)

This clearly allows us to calibrate our magnetic field to space-time measurements

and, for a particular class of particles, to specify higher and lower magnetic fields

over some range by the velocity-independent (over that range) definition

H =
ρ(v)

ρ0(v)
H0 (4.7)

leaving open the units in which we ultimately decide to measure magnetic fields.

If, as is often the case in high energy physics, it is more convenient to measure

radius of curvature rather than space-time velocity, we can relate this approach to

the space-component of the “four velocity” (u0, ~u) = (γ, γ~β) with γ2β2 = γ2 − 1

and

β2(u) =
u2

1 + u2
; γ2(u) = 1 + u2; u = ±|~u| (4.8)

For a particular type of particle, this tells us that u2 is proportional to ρ2, and in

a more articulated theory allows us to measure momentum by radius of curvature

in a calibrated magnetic field. In this context we can ignore the (fixed) rest-mass

of our “test particles” and keep our “momentum” measurements restricted to the

“space-component of four velocity” or “momentum per unit mass”.

Similarly, if we measure energy by the temperature rise in a calorimeter cali-

brated to the ideal gas law for particles of the same mass, i.e. measure pressure
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per unit mass rather than pressure, we can verify that this is consistent with the

usual relativistic single particle kinematics

E2

m2
= 1 + u2;

E2

m2
− p2

m2
= 1 (4.9)

and so on.

4.4 Scale invariance

We have been at some pains to remove the mass scale from our basic paradigm

for “coherence” and “decoherence” because the basic argument by which we gave

meaning to classical electromagnetic fields Section 3. used only measurement of

space and time with accuracy bounded from below. To break scale invariance

requires us to model some physical phenomenon involving Planck’s constant and the

reconstruction of relativistic quantum mechanics consistent with our operational

methodology. Quantum mechanics can be arrived at in a number of ways, eg

historically by the analysis of black body radiation, photo-effect, line spectra of

atoms, finite size and stability of atoms measured using deviations from the ideal

gas law, and so on. This is possible because the whole idea of a “test-particle” is

basic to the classical definition of “fields”, and is consistent with the understanding

of electromagnetic fields we developed in Section 3. But why the same constant h̄

should appear in these diverse empirical contexts remains unanswered.

The cleanest breakpoint for the relativistic quantum mechanics which concerns

us is the creation of electron-positron pairs or the less direct but predicted and con-

firmed effects (eg Lamb shift, vacuum polarization in p-p scattering,...) of these

degrees of freedom (Ref. 8). Once the degrees of freedom due to the possibility

of particle-antiparticle pair creation have to be included in the theory, even the

concept of a “test particle” generates nonsense. This is obvious in the case of pair

creation in a system containing electrons because, thanks to the indistinguishability

of electrons, in any system which contains one or more electrons initially whether
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the electron in the created pair and some initial electron are on the same or differ-

ent trajectories becomes ambiguous and empirically irresolvable at distances less

than h̄/2mec. That this parameter occurs and can be measured even when there

are no electrons in the system under examination is evidenced by the “vacuum po-

larization” contribution to both the energy and the angular distributions measured

in proton-proton scattering below 3 Mev.

4.5 Velocity Resolution, Periodicity and “wavelength” in a discrete

theory

As already noted, we assume that information cannot be transmitted from one

distinct location to another at a velocity greater than c = 299 792 458 m/sec. By

information we mean anything which reduces the number of possibilities at the

second location relative to a previously accepted, understood, finite and countable

number of possibilities. This allows us to specify velocities v in units of c by

rational fractions β(N, n) = v/c = n/N with N a fixed, finite positive definite

integer which can be context sensitive. We distinguish massive particles from

other modes of communication by the requirement that n be an integer in the

range −N + 1 ≤ n ≤ N − 1.

We can now define velocity resolution by ∆v = c/N . This is, clearly, a context

sensitive definition, which requires a careful investigation of the experimental tools

at our disposal in that context, and can have unexpected consequences such as the

connection between fixed measurement accuracy and the formal structure of the

classical, relativistic field equations we discussed in Section 3.

The context which we wish to explore first is when velocity is measured by the

distance between two counters at positions x1∆x and x2∆x which fire sequentially

at times t1∆t and t2∆t. We assume finite and fixed measurement accuracy to mean

that x1, x2, t1, t2 are integers, as discussed in Section 2. Then these four integers

can be related to our previous definition of velocity by

β(N, n) =
n

N
=
x2 − x1

t2 − t1
(4.10)
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Because we took N > 0 in our earlier definition, we will use the definitions

If t2−t1 > 0 then N = t2−t1, n = x2−x1; else N = t1−t2, n = x1−x2 (4.11)

This convention specifies positive spacial directions to be x2 > x1 and positive

time evolution to be t2 > t1 in a finite and discrete 1+1 “space-time” with origin

(x0, t0) = (0, 0).

It is important to realize that, provided ∆v(N) ≡ c/N is not the best velocity

resolution we can achieve in the context of interest, and a resolution ∆v(NX) ≡
c/2Nx is at least conceivably within our grasp, β(N, n) defines a periodic function

with up to 2NT periods, provided NNT < Nx. To see this, we need only note that

β(N, n) = β(ntN, ntn) = β(ntN, n+ (nt − 1)n) =
n+ (nt − 1)n

ntN
(4.12)

But this “periodicity” can have some unexpected restrictions, if we take our phys-

ical restriction on ∆v seriously. In particular, for the two counter firings specified

in the last paragraph, and the ∆v(Nx) = c/2Nx just assumed, we are restricted to

space and time intervals between the two firings which satisfy the constraint

|x2 − x1

t2 − t1
| > c∆t

2Nx∆x
(4.13)

Otherwise the two counter firings would measure a velocity to a resolution better

than c/2Nx, contrary to hypothesis. We also have the further restriction ∆x
c∆t = 1

from the general argument given in Section 2 justifying Eq. 2.2. Then we can define

an event horizon Rx = Nx∆x, and a time boundary Tx = Nx∆t which restrict the

1+1 integer coordinate space-time points we consider to the integer square in 1+1

space-time

−Nx ≤ t ≤ +Nx; −Nx ≤ x ≤ +Nx (4.14)

Thus any velocity measurement we consider restricts the “integer coordinate inter-
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vals” we consider by the equations

|x2 − x1| = ntN < |t2 − t1| = ntN (4.15)

Our next concern is to understand in more detail the “state” of a particle with

“constant velocity” implied by the concept of fixed, finite velocity resolution we

are developing. In a continuum theory the two “point events” (x1, t1), (x2, t2)

determine a line in 1+1 space-time which, according to Newton’s first law, can be

extrapolated to include all points between −∞ and +∞ outside the interval so

defined, and interpolated to include all points within this interval, so long as no

“force” acts on the particle. In contrast, our assumption of fixed velocity resolution

restricts the positions where a constant velocity particle can appear, once the two

counter firings are measured, to a very small set of integers. Assume first that n and

N have no common integer factor other than 1. Then no interpolated positions

between the two counter firings are allowed for the velocity state β(N, n). The

only coordinate pairs we are allowed (by the construction developed so far) are the

extrapolated event positions

(x(N, n;nt), t(N, n;nt)); (4.16)

where

x(N, n;nt) = x1 + n(nt − 1); t(N, n;nt) = t1 + n(nt − 1) (4.17)

Here we allow nt as well as n to be negative, so long as the event horizon constraints

−Nx < x(N, n;nt) < +Nx; −Nx < t(N, n;nt)) < +Nx (4.18)

are met.
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Note that this periodic sequence of space-time positions where a third counter

might (but need not) fire also need not include the “origin” (0, 0). A naive inter-

pretation of our formalism would allow us to include this origin as “physical”; in a

more detailed discussion we would show why we must use caution in making this

part of our construction. When we have shown how measure quantum interference

phenomena using only counter firings as our paradigm, we will see that the inabil-

ity to locate the origin “absolutely”, but only with an uncertainty |x2 − x1|nt∆x,

and positions “relative” to some unique reference event only with an uncertainty

|x2−x1|∆x is the analog in our theory of the inability to measure “absolute phase”

in conventional quantum mechanics.

Here we can take only the preliminary step of relating this finite and discrete

model of positions where counters can fire sequentially to the paradigmatic case of

the measurement of coherence length illustrated in Figure 1. Suppose (x1, t1) and

(x2, t2) are the space-time coordinates for the firing of the entrance and exit counter

before the magnetic selector, and that the counters are thin enough and the clocks

accurate enough so that all four numbers are integers in units of ∆x or ∆t = c∆x,

making N12 ≡ L/∆x and D12 = T/∆t integers and β(D12, N12) a rational fraction.

If N12 and D12 have a common factor NT , so that N12 = NTn12, D12 = NTd12

and β12 = n12/d12, we could obviously postulate that the signal emerging from the

counter telescope is a periodic phenomenon with NT periods, spacial periodicity

λ = n12∆x and temporal periodicity τ = d12∆t and start articulating this model

in such a way that the phenomena described in our paradigm defining coherence-

decoherence can be reproduced.

We cannot flesh out this model in detail here, and stick to a few elementary

points, confined to modeling the positions of the peaks in the double slit interference

pattern. Two cases need to be distinguished. If the source contains a pseudo-

random distribution of particle velocities which happens to include cases with v12,

the coherence time is Tcoh = NTd12∆t. On the other hand, the source may be

independently specified using some other part of the theory (eg. the decay of an

excited atom). We must insure that our model properly includes both possibilities.
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Another complication is that we must distinguish in our modeling the fact that

there are two kinds of space and time periodicities corresponding to the group

velocity (v12) of the “wave packet” and the “phase velocity” defined by v12vph = c2.

A third is that the interference pattern wave length is given by h/p(β12) and must

be computed using the proper relativistic formula given above relating β to 4-

velocity u. Spelling all this out will take a textbook—which is being written.
[19]

We

take a few steps in the next sub-section toward specifying what we mean by finite

and discrete Lorentz invariance in a theory which takes measurement accuracy

seriously.

4.6 Initial Steps Toward Constructing Finite and Discrete 1+1 Lorentz

boosts in “space-time”

Keeping in mind the fact that we must eventually return to an examination of

the experimental context in which our “origin” of coordinates is specified, we now

develop “Lorentz boosts” between two velocity states βi(Ni, ni), βf (Nf , nf ) under

the assumption that the corresponding event coordinates are

ti = Ni, xi = βiti = ni; tf = Nf , xi = βf tf = nf (4.19)

for a boost velocity β(N, n) = n/N . The obvious constraint we must satisfy is that

βf =
β + βi
1 + ββi

(4.20)

The less obvious constraint is, that is the minimum number of periods of each of

the three velocities must allow us to insure that all three events are “physical”

when referred (as we implicitly have) to a fourth “reference event” at (0, 0) and

that the counter firings which allow the velocity to be measured lie within the event

horizon. This we start to work out here and will complete elsewhere.

By assigning (integer) coordinates (x1, t1) and (x2, t2) in a theory with a lim-

iting velocity c, we have implicitly assumed that the clocks which record t1 and
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t2 at these two distinct locations have been synchronized using the Einstein con-

vention. We now include the possibility of this synchronization explicitly in our

construction. We let x2 − x1 = 2X > 0, t2 − t1 = 2T > 2X > 0 and (formally) fix

the space time coordinates of firings 1 and 2 at (−X,−T ) and (X,T ) respectively.

Then the two counter firing bracket our (formal) “origin” (0, 0). To synchronize

the clocks, we place a “mirror” at some position (−TX) with TX > T > 0, and

require that a light signal sent from (−X,−T ) to this mirror and reflected back

along the same line will arrive at (+X,+T ). Then the time it takes for the signal

light signal launched at the time of the first firing to reach the mirror is TX − T ,

while the time interval from the reflection to the arrival in coincidence with the

second counter firing is TX + T . This insures that the time interval between the

two firings is, in fact 2T , consistent with our formal assignment of coordinates,

independent of where along the line we place our reference “mirror” (−TX) and

consistent with the Einstein synchronization convention. Note that the velocity

measured by the two sequential counter firings is β(T,X) = X/T .

In a continuum, classical theory of space-time measurement, it is possible to

specify both position and velocity simultaneously at any instant of time t. In our

context, which we have constructed by paying careful attention to the constraints

imposed by finite velocity resolution, this is no longer possible. If we use the

times of the two counter firings and their previously measured positions (and clock

calibrations) to measure the velocity, all we can say from the point of view of

measurement is that the particle position and time (x, t) during the measurement

of velocity is subject to the constraints −X ≤ x ≤ +X, −T,≤ T ≤ +T (with both

x and t integer). If we are willing to assume that a third counter placed on the

line between the first two does not interfere with the velocity measurement — an

assumption that can only be checked “statistically” by repeated measurement —

we can reduce this uncertainty considerably and check the assumption of “constant

velocity” between the counters to limited accuracy. Place this counter at a position

x which satisfies the position constraint, and assume it fires at time t, and hence

with the time intervals T− = T + t, T+ = T − t. We have now made two, rather
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than one, velocity measurements which give the values

β− =
X + x

T + t
; β+− =

X − x
T − t (4.21)

Of course, if we can place our counter precisely at x = 0 and it always fires

at t = 0, we will confirm the classical, continuum model. But this assumption

would violate our initial hypothesis of finite velocity resolution. Clearly the detailed

exploration of what we mean by finite and discrete Lorentz invariance would take

us too far afield. We intend to develop it elsewhere (see Ref. 19).

4.7 Conclusions about decoherence in a discrete theory

We hope that the discussion in this section at least gives the flavor of how

we intend to develop a complete relativistic quantum mechanics of single particle

phenomena which will give precision to question of where the limitations on the

Feynman-Dyson-Tanimura- Kauffman derivation of the classical relativistic fields

will arise due to quantum effects. In a more conventional vein, we could say that

we can only apply classical considerations to systems where the “collapse of the

wave function” has changed quantum states from a coherent superposition to a

mixture. Lacking our own theory for this, and noting that there is considerable

controversy in the literature both about the “correspondence limit” of relativistic

quantum mechanics and whether there is such a thing as “quantum chaos”, we

again conclude that whatever the outcome of research pursued on current lines, it

is bound to remove the question of the physical meaning of “deterministic chaos”

still farther away from the practice of physics when examined operationally at the

level of fundamental theory.

In the next section we describe a promising theory which does have correspon-

dence limits in non-relativistic quantum mechanics, relativistic (classical) particle

physics, and (if the derivation of classical relativistic field theory given in Section

3 is accepted) in the classical relativistic field theories of electromagnetism and

gravitation.
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5. Bit-String Physics: A novel relativistic quantum theory

[Since we have recently completed (in Ref. 9) a fairly complete and systematic

presentation of our “theory of everything” we content ourselves here with quoting

the introduction to that paper and the essential results, and refer the reader to the

longer publication, and references therein, for details.]

“Although currently accepted relativistic quantum mechanical theories incor-

porate many discrete phenomena, they are embedded in an underlying space-time

continuum in a way which guarantees the creation of infinities. Despite many phe-

nomenological successes, they have as yet failed to achieve a consensus theory of

‘quantum gravity’. We believe that these two difficulties are connected, and that

both can be circumvented by basing fundamental physical theory directly on the

computer tools of bit-strings and information theory based on bit-strings. This

has the further advantage that we can base our model for space and time on fi-

nite intervals between events (eg. counter firings) measured to finite (and fixed in

any particular context) accuracy. This operational methodology then allows us to

avoid such metaphysical questions as whether the ‘real world’ is discrete or con-

tinuous (see Ref.7), or whether the ‘act of observation’ does or does not require

‘consciousness’.
[20]

“By a ‘theory of everything’ (ToE), we mean a systematic representation of

the numerical results obtained in high energy particle physics experiments and by

observational cosmology. The representation we use employs a growing but always

finite assemblage of bit-strings of finite length constructed by a simple algorithm

called program universe explained [in Ref. 9].

“More conventional ToE’s are based on the mathematical continuum and the

structures of second quantized relativistic field theories (QFT). They ignore the

flaws of QFT (infinite answers to physically sensible questions, unobservable ‘gauge

potentials’, and no well defined correspondence limit in either classical relativistic

field theory, non-relativistic quantum mechanics or nuclear physics). The most

ambitious of these theories assume that non-Abelian gauge theories in the form of
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‘string theory’ succeed in explaining “quantum gravity”. Comparison with practi-

cal metrology is made by identifying h̄, c and GNewton in their theoretical struc-

tures. It is then an act of faith that everything else is calculable. Less ambitious

ToE’s (eg. GUT’s = grand unified theories) fix the third parameter as a universal

coupling constant at an energy of about a thousandth of the Planck mass-energy

and then ‘run’ it down in three different ways to energies a factor of 1015 smaller

where these three distinct values are identified as the measurable fine structure

constant (α = e2/h̄c), weak interaction constant (GFermi) and strong coupling

constant αs; because the strong (QCD) coupling ‘constant’ is supposed to diverge

at zero energy, models must include its energy dependence over a finite energy

range. In practice, such theories contain a fairly large number of phenomenologi-

cal parameters.

“In contrast, we employ a structure in which we need only identify h̄, c and

mp (the proton mass) in order to make contact with standard MLT metrology,

using the kilogram, meter and second as arbitrary but fixed dimensional units. α,

GFermi, GNewton and a number of other well measured parameters can be computed

and the quality of the fit to experiment evaluated in a less problematic way. While

these comparisons are very encouraging, with accuracies ranging from four to seven

significant figures, they are not perfect. So far as we can see the discrepancies

could arise from the concatenation of effects we know we have so far not included

in the calculations, but we are prepared to encounter ‘failure’ as we extend the

calculations. However, the quality of the results achieved to date lead us to expect

that such ‘failure’ would point to where to look for ‘new physics’ in our sense.

Since we leave no place for ‘adjustable parameters’, such a crisis should be more

clear cut for us than in a conventional ToE. We do not believe that it is possible

to make a ‘final theory’, and might even welcome a failure serious enough to allow

us to abandon this whole approach and turn to more conventional activities.

“We start from a universe of bit-strings of the same length which grow in

length by a random bit, randomly chosen for each string whenever XOR between

two strings gives the null string; else the resulting non-null string is adjoined to
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the universe. Then recurse. Because of closure under XOR,
[21]

and a mapping we

present [in Ref. 9] of the quantum numbers of the 3-generation standard model

of quarks and leptons onto the first 16 bits in these strings, we can model dis-

crete quantum number conservation (lepton number, baryon number,charge, weak

isospin and color) using a bit-string equivalent of 4-leg Feynman diagrams. Quarks

and color are necessarily confined. All known elementary fermions and bosons are

generated, and no unknown particles are predicted. The scheme implies reason-

ably accurate coupling constants and mass ratios, calculated assuming equal prior

probabilities in the absence of further information. The combinatorics and the

standard statistical method of assigning equal weights to each possibility provide

an alternative interpretation of results previously obtained from the combinatorial

hierarchy,
[22−24]

including the closure of these bit-string labels at length 256, and

the prediction of the Newtonian gravitational constant. Baryon and lepton num-

ber conservation then gravitationally stabilizes the lightest charged (free) baryon

(the proton) and lepton (the electron) as rotating black holes of spin 1/2 and unit

charge.

“The growing portion of the bit-strings beyond the quantum number conserv-

ing labels can be interpreted as describing an expanding 3-space universe with a

universal (cosmological) time parameter. Within this universe pairwise collisions

produce products conserving relativistic 3-momentum (and, when on mass shell,

energy) in terms of quantized Mandelstam parameters and masses. The baryon

and lepton number, ratio of baryons to photons, fireball time, and ratio of dark

to baryonic matter predicted by this cosmological model are in rough accord with

observation. The model contains the free space Maxwell equations for electro-

magnetism and the free space Einstein equations for gravitation as appropriate

macroscopic approximations for computing the motion of a single test particle.”
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Table I. Coupling constants and mass ratios predicted by the finite and
discrete unification of quantum mechanics and relativity. Empirical Input: c, h̄ and
mp as understood in the “Review of Particle Properties”, Particle Data Group,
Physics Letters, B 239, 12 April 1990.

COUPLING CONSTANTS

Coupling Constant Calculated Observed

G−1 h̄c
m2
p

[2127 + 136]× [1− 1
3·7·10 ] = 1.693 31 . . .× 1038 [1.69358(21)× 1038]

GFm
2
p/h̄c [2562

√
2]−1 × [1− 1

3·7 ] = 1.02 758 . . .× 10−5 [1.02 682(2)× 10−5]

sin2θWeak 0.25[1− 1
3·7 ]2 = 0.2267 . . . [0.2259(46)]

α−1(me) 137× [1− 1
30×127 ]−1 = 137.0359 674 . . . [137.0359 895(61)]

G2
πNN̄

[(2MN

mπ
)2 − 1]

1
2 = [195]

1
2 = 13.96.. [13, 3(3), > 13.9?]

MASS RATIOS

Mass ratio Calculated Observed

mp/me
137π

3
14

(
1+

2
7+

4
49

)
4
5

= 1836.15 1497 . . . [1836.15 2701(37)]

m±π /me 275[1− 2
2·3·7·7 ] = 273.12 92 . . . [273.12 67(4)]

mπ0/me 274[1− 3
2·3·7·2 ]= 264.2 143 . . . [264.1 373(6)]

mµ/me 3 · 7 · 10[1− 3
3·7·10 ] = 207 [206.768 26(13)]

COSMOLOGICAL PARAMETERS

Parameter Calculated Observed

NB/Nγ
1

2564 = 2.328....× 10−10 ≈ 2× 10−10

Mdark/Mvis ≈ 12.7 Mdark > 10Mvis

NB −NB̄ (2127 + 136)2 = 2.89...× 1078 compatible

ρ/ρcrit ≈ 4×1079mp

Mcrit
.05 < ρ/ρcrit < 4
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[This paper ends with the following caveat]

“We warn the reader that detailed and rigorous mathematical proof of some of

the statements made above is still missing. We wish to thank David McGoveran for

pointing out to us that this caveat is particularly relevant for the use we make of the

corrections he derived in the context of the combinatorial hierarchy construction.

For him, constructing our bit-strings using program universe and bringing in the

identification of the labels from ‘outside’—i.e. from known facts about quantum

number conservation in particle physics—amounts to creating a different theory.

While we have confidence that mixing up the two approaches in this way can,

eventually, be justified in a compelling way, it may well turn out that our confidence

in this outcome is overly optimistic.

“To summarize, by using a simple algorithm and detailed physical interpre-

tation, we believe we have constructed a self-organizing universe which bears a

close resemblance to the one in which physicists think we live. It is not ‘self-

generating’—unless one grants that the two postulates with which Parker-Rhodes

begins his unpublished book on the ‘inevitable universe’, namely: ‘Something ex-

ists! ’ and ‘This statement conveys no information’ suffice to explain why our

universe started up.”

6. PHILOSOPHICAL IMPLICATIONS

We now return to the question of how this work in foundations of particle

physics and physical cosmology relates to the question determinism versus indeter-

minism in physics. Since the theory we present is, to put it mildly, controversial, it

is obvious is that any conclusions must be tentative. Nevertheless, we believe that

the fact that a “theory of everything” (i.e. of particle physics and physical cosmol-

ogy) using only finite and discrete observations and sticking to this methodology

is at least possible is relevant to the issue of determinism versus indeterminism.

Clearly the theory is computational, and in that sense “deterministic”. Yet, be-
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cause it rigorously excludes both the continuum and mathematical induction, it

provides a physical theory in which “deterministic chaos” simply cannot arise.

Of course the operational methodology on which our approach to physics is

based cannot be argued for to the exclusion of more conventional approaches. But

even those approaches provide three reasons why “deterministic chaos” should not

be considered a fundamental theory and hence relevant to metaphysical conclu-

sions. The first is that the classical theories of electromagnetism and gravitation

can be derived by accepting a lowest, finite and fixed bound on the accuracy to

which space and time intervals can be measured. Hence assuming boundary con-

ditions known to an accuracy needed to reach “deterministic chaos” is logically

inconsistent with using these equations to establish it. The second is that the non-

relativistic uncertainty principle removes “deterministic chaos” from consideration

as a physical theory in any case. The third is that once we take into account the

observed phenomenon of electron-positron pair creation, any theory which tries to

specify distances to better than h̄/2mec is ipso facto operationally meaningless.

Patrick Suppes has argued on quite general grounds in his paper entitled “The

Transcendental Character of Determinism”
[25]

that modern work on what are called

“deterministic systems” has shown that “Deterministic metaphysicians can com-

fortably hold to their view knowing that they cannot be empirically refuted, but

so can indeterministic ones as well.” He then proposes a fundamental reinterpre-

tation of Kant’s Third Antinomy, claiming that “Both Thesis and Antithesis can

be supported empirically, not just the Antithesis.” We offer this paper as support

to his claim, using a very different body of physical theory and experimentation as

our context.
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at the XXX Internationale Universitätswoken für Kernphysik, Schladming,

Austria, 1991 and SLAC-PUB-5411.

33



    

14. N.Bohr, and L. Rosenfeld, Det. Kgl. Danske Videnskabernes Selskab., Mat.-

fys. Med. XII, (8) (1933).

15. H.P.Noyes, “On the Measurability of Electromagnetic Fields: A New Ap-

proach”, in Marshak Memorial Volume, E. G. Sudarshan, ed., World Scien-

tific (in press).

16. M.Peskin, private communication, Nov. 4, 1994.

17. R.P.Feynman and J.A.Wheeler, Rev. Mod. Phys. 17, 157 (1945); see also

discussion in Ref. 8 and in S,S.Schweber, Rev. Mod. Phys. 58, 449 (1986).

18. See H.P.Noyes, “An Operational Analysis of the Double Slit Experiment”,

in Studies in the Foundations of Quantum Mechanics, P.Suppes, ed., man-

ufactured by Edward Brothers for the Philosophy of Science Association,

East Lansing, Michigan, 1980, pp 77-108, for a detailed discussion of the

conventional experiment.

19. H.P.Noyes, “DISCRETE PHYSICS: A New Fundamental Theory”, J.C. van

den Berg, ed. (in preparation).

20. H.P.Noyes, “STAPP’s QUANTUM DUALISM: The James/Heisenberg

Model of Consciousness”, in Mind-Body Problem and the Quantum; Proc.

ANPA WEST 10, F. Young, ed.; published by ANPA WEST, 112 Blackburn

Ave., Menlo Park, CA 94025.

21. J.Amson, Appendix in T.Bastin, H.P.Noyes, C,W.Kilmister and J.Amson,

Int.J.Theor.Phys., 18, 455 (1979).

22. T.Bastin, “On the Scale Constants of Physics”, Studia Philosophica Gan-

densia, 4, 77 (1966).

23. H.P.Noyes and D.O.McGoveran, Physics Essays, 2, 76 (1989).

24. D.O.McGoveran and H.P.Noyes, Physics Essays 4, 115 (1991).

25. P.Suppes, Midwest Studies in Philosophy, XVIII, 242-257 (1993).

34



   

FIGURE CAPTIONS

1) Measurement of coherence and decoherence of de Broglie waves using a

counter telescope, magnetic selector, and a double slit with a path exten-

der in one arm.
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