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1 Introduction

1.1 The SLC Final Focus System

The final focus system of the Stanford Linear Collider (SLC) consists of two

telescopes, Upper and Final Transformer (abbreviated in the following as UT

and FT), separated by a Chromatic Correction Section (CCS) that accom-

modates two interleaved −I sextupole pairs [1, 2, 3]. For convenience, we

denote the sextupoles by s0, s1, s2 and s3, in the order of their position. The

pair (s0, s2) is used to control the horizontal chromaticity; the second pair

(s1, s3) compensates the vertical chromaticity. The −I separation between

the two sextupoles of each pair ensures that no third-order geometric aber-

rations are generated. However, the interleaved scheme gives rise to fourth-

order terms, which will play a role in the tolerance analysis. In 1994, an

upgrade to the SLC final focus system was installed to cancel the most im-

portant of the residual aberrations, and thereby to reduce the vertical spot

size at the Interaction Point (IP) by a factor of two [4]. At low current, the

expected spot size of about 450 nm is now routinely established.

In the case of an ideal alignment, the minimum spot size (as de-

termined by tracking with MAD [5]) is obtained for βx0 ≈ 9 mm and

βy0 ≈ 1.4 mm. For emittances of εx = 600 µm µrad and εy = 60 µm µrad,

this corresponds to an rms-value of the horizontal and vertical divergence of

θx0 ≈ 260µrad and θy0 ≈ 204µrad. The subindex ‘0’ denotes values at the

IP. Taking into account the effect (which is not chromatically corrected) of

synchrotron radiation in the last three bending magnets (two inside and one

behind the CCS), the beam sizes obtained from simulations are σy0 ≈ 450 nm

and σx0 ≈ 2.4 µm, in agreement with the measurements.
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1.2 The Lie Algebra Approach

Lie algebra techniques have been described in detail by Irwin [6]. Therefore,

we only quote the main ideas used in the following tolerance analysis. The

linear design optics between two locations of an arbitrary beam line can be

characterized by a 4×4– or 6×6–dimensional transfer matrix, the so-called

R–matrix [7, 8]. In the Lie algebra approach, the nonlinear deviation of a

beam line M from the linear optics is written as a succession of nonlinear

elements

M = . . . exp {−Hi(xi, pxi, yi, pyi, δ)}

exp {−Hj(xj, pxj, yj, pyj, δ)}

exp {−Hk(xk, pxk, yk, pyk, δ)} . . . , (1.1)

where the Hamiltonians Hm in the exponents are typically polynomials of

order three or four, and the arguments xm, pxm, . . . are the local coordinates

and momenta at the center of the element described by the Hamiltonian Hm.

As an example, the Hamiltonian of a sextupole magnet of integrated strength

Ks is to a good approximation given by

Hs(xs, pxs, ys, pys, δ) =
1

6
Ks(x

3
s − 3xs y

2
s) . (1.2)

Again, the subindex ‘s’ indicates coordinates at the center of the sextupole.

In Eq. (1.1), we have introduced the variable δ ≡ (∆p/p0) / {1 + (∆p/p0)},

p0 being the design momentum [6]. Note that, unlike Ref. [6], we do not use

the colon ‘:’ to indicate Lie generators. In this paper every expression that

appears in an exponent is implicitly understood to be a Lie generator. Now,

to determine the effect of the nonlinearities on the IP spot size, the operator

M has to be applied to the coordinates at the IP. For that purpose, the local
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coordinates xi, pxi, . . . are translated into IP coordinates via the inverse 4×4

or 6×6 R–matrices

~xi = R−1
i→0 ~x0 , (1.3)

using the abbreviation ~x ≡ (x, px, y, py, δ). Similarity transformations [6],

i.e.,

eA · eB · e−A = eC , where C ≡ eAB , (1.4)

and the Baker–Campbell–Hausdorff theorem [6],

eAeB = eA+B+ [A,B]/2 + ... , (1.5)

allow an approximate expression of the series M , Eq. (1.1), in terms of a

total nonlinear Hamiltonian

M ≈ exp{−Htot(x0, px0, y0, py0, δ)} . (1.6)

The nonlinear problem is then reduced to computing the Hamiltonian Htot

and evaluating its effect on the beam distribution at the IP. Later in this

report, the Hamiltonian Htot is calculated for several specific examples.

The change of the vertical coordinate y0 at the IP is

∆y0 = [−Htot, y0] +
1

2

[
Htot, [Htot, y0]

]
+ . . . , (1.7)

≈ ∂Htot,0

∂py0

, (1.8)

where the contribution from higher-order Poisson brackets can almost always

be neglected. The increase of the rms value of the vertical spot size is given

by

∆σ2
y0
≈

〈
(∆y0)2

〉
− 〈∆y0〉2 . (1.9)

In Eq. (1.9), the angle-brackets denote an average over the (initial) bunch

distribution, linearly propagated to the IP. It is often reasonable to assume
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that the initial distribution at the entrance of the final focus is Gaussian,

in which case higher order moments in Eq. (1.9) are nicely reduced to powers

of second-order moments. It should, however, be mentioned that the value

for the vertical rms beam size given by Eq. (1.9), though exact, does not

directly reflect the expected luminosity, because the beam shape at the IP

is generally non-Gaussian, due to nonlinear aberrations in the final focus

and also due to disruption [9].

2 Tolerance Criterion

In this report, we want to calculate the static alignment tolerances of

quadrupole and sextupole magnets. These tolerances are due to the beam

size increases that remain when all possible tuning algorithms, such as orbit

correction, dispersion and chromaticity correction, waist shift, decoupling,

etc., have been applied (see also Roy [10]). If these tolerance conditions are

violated, the only possible cure is an actual movement of magnets. Other

tolerances, such as those for vibrations or power supply jitter, refer to differ-

ent, shorter time scales. Since over these time scales, less tuning and correc-

tions can be performed, they are tighter than the static tolerances.

Guided by references [10, 11], the tolerances are deduced from the

following criterion. We would like to allow for, at most, a 2% increase of the

vertical spot size from each effect under consideration (such as horizontal or

vertical displacement of quadrupole magnets, horizontal or vertical sextupole

alignment, and so on). As is readily seen, this gives an upper limit on the

increase of the square of the beam size of

∆σ2
y0,pert < 0.04σ2

y0 (2.10)
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for each individual effect. The motivation for this approach is that, in total,

there may be about 5 to 7 effects contributing to the vertical spot size, which

then result in an overall beam size increase of about 10 to 15% . This is just

at the border of the present resolution of beam size measurements in the SLC.

All static alignment tolerances are caused by an increase of the vertical

beam size, compared with which the effects of induced aberrations on the

horizontal beam size (a factor 5 to 6 larger) are always unimportant.

3 Quadrupole Alignment

3.1 Dispersive Kicks

The residual effect of a quadrupole misalignment after orbit correction can be

represented by a dispersive kick. To see this, we note that the perturbative

Hamiltonian of a quadrupole horizontally displaced by a distance X is given

by

Hpert = −Kq

2
δ(xq −X)2 −KqXxq , (3.11)

where Kq denotes the strength of the quadrupole and xq is the horizontal

coordinate at the center of the magnet. The first part of the Hamiltonian

(3.11) contains a chromatic and a dispersion-like term, while the second part

represents a closed-orbit distortion. In the case of beam-based alignment,

the orbit is steered through the center of each quadrupole. A closed orbit

bump which would achieve this is described by the similarity transformation

exp {−pxqX(1− δ) + xqθ(1− δ)} exp
{
Kq

2
δ(xq −X)2 +KqXxq

}
(3.12)

× exp {pxqx(1− δ)− xqθ(1− δ)} = exp
{
Kq

2
δx2

q −KqXδ
2xq +KqXxq

}
.
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where θ represents the bump angle at the quadrupole and we have dropped

terms which do not depend on xq, since they do not affect the particle tra-

jectories. The resulting Hamiltonian consists of a chromatic term (which is

independent of the displacement), a second-order dispersion, and the closed-

orbit distortion. In practice, we remove the closed-orbit distortion by means

of another corrector, exp{−KqXxq(1− δ)}, which leads to the final transfor-

mation [12]

exp
{
Kq

2
δx2

q −KqXδ
2xq +KqXxq

}
exp {−KqX(1− δ)xq}

= exp
{
Kq

2
δx2

q −KqXδ
2xq +KqXδxq

}
. (3.13)

Hence, after optimum orbit correction, the displacement X gives rise to a

first- and a second-order horizontal dispersion. The latter can be neglected,

compared with the first-order contribution. Vertical misalignment is treated

analogously. The effect of displacing a quadrupole by X and Y horizontally

and vertically, respectively, is then to a very good approximation described

by a dispersive kick:

∆pxq = KqXδ

∆pyq = −Kq Y δ . (3.14)

3.2 Maximum Correctable Dispersion

The dispersive kicks, Eq. (3.14), induced by displaced quadrupoles give rise to

a finite value of the dispersion at the IP. To correct the horizontal and vertical

dispersion at the IP, a −I pair of quadrupoles and skew quadrupoles, respec-

tively, in the CCS is used. The two magnets in each pair are excited equally

with opposite sign. The maximum value of dispersion that can be corrected

7



  

is limited by third-order aberrations generated by these two magnet pairs,

and translates into an alignment tolerance for all other quadrupole magnets.

The third-order terms are caused by the interaction of the two dispersion-

correcting quadrupoles (or skew quadrupoles) with the CCS–sextupoles.

For the horizontal dispersion, the relevant Lie operators read

exp {−Hq1(xq1, yq1, δ)} exp {−Hs1(xs1, ys1, δ)} exp {−Hs2(xs2, ys2, δ)}

× exp {−Hq2(xq2, yq2, δ)} exp {−Hs3(xs3, ys3, δ)} , (3.15)

where the subindices q1, q2 refer to the two magnets of the normal quadrupole

pair, and s1, s2, s3 denote the last three sextupoles, as before. If we suppose

that the dispersion to be cancelled is generated downstream of the CCS, the

first sextupole s0 can be ignored. The Hamiltonians of the quadrupoles and

sextupoles are given by

Hqi ≈
Kqi

2

{
(xqi + ηqiδ)

2 − y2
qi

}
, (3.16)

Hsi ≈
Ksi

6

{
(xsi + ηsiδ]

3 − 3(xsi + ηsiδ)y
2
si

}
. (3.17)

Thanks to the −I-separation in the unperturbed linear optics, we have

xq1 = −xq2 and yq1 = −yq2. As a consequence, we can easily combine the

exponents in Eq. (3.15) to a single Hamiltonian using similarity transforma-

tions [6]. Under our assumption that the dispersion to be cancelled is gener-

ated downstream of the CCS, we have to propagate the dispersion terms to

the right, and thus arrive at

Htot ≈ Hs1 {xs1 −Kq1(xq1 + ηq1δ)R12,q1s1, ys1 +Kq1yq1R34,q1s1, δ}

+ Hs2 {xs2 −Kq1(xq1 + ηq1δ)R12,q1s2, ys2 +Kq1yq1R34,q1s2, δ}

+ Hs3 {xs3 − 2Kq1ηq1δR12,q1s3, ys3, δ} , (3.18)

8



  

where use has been made of ηq1 = ηq2, and R12,q1s1 denotes the (1,2) R–matrix

element from q1 to s1, etc. In this Hamiltonian, we have explicitly taken

into account the dispersion, so that the transformation to IP coordinates

(x0, px0, y0, py0) has to be performed via the 4×4 R–matrices (and not by

the 6×6 R–matrices, which will be used in some of the later paragraphs).

From Eq. (3.18), and assuming a typical momentum spread δ = 3 × 10−3,

the most important induced third-order aberrations are identified as the p2
y0δ

and the p2
y0px0 terms. Both terms contribute about equally to the final beam

size. The p2
y0δ contribution can, in principle, be corrected, but destroys

the orthogonality of chromaticity and dispersion correction, while the px0p
2
y0

coefficient cannot be corrected at all, in the present SLC final focus. The

maximum tolerable value of Kq1 due to these terms is about 5 × 10−4 m−1,

corresponding to a horizontal dispersion

|ηx0,max| ≈ 0.7 mm . (3.19)

The correction of the vertical dispersion is performed by use of the

skew quadrupole pair. Equation (3.15) also applies in this case, if we replace

the Hamiltonian Hqi by Hsqi,

Hsqi ≈ −Ksqi(xsqi + ηsqiδ) ysqi . (3.20)

Again assuming that the (vertical) dispersion to be corrected is induced

downstream of the CCS, the resulting total Hamiltonian is

Htot ≈ Hs1 {xs1 +Ksq1ysq1R12,sq1s1, ys1 +Ksq1(xsq1 + ηsq1δ) R34,sq1s1, δ}

× Hs2 {xs2 +Ksq1ysq1R12,sq1s2, ys2 +Ksq1(xsq1 + ηsq1δ)K34,sq1s2, δ}

+ Hs3 {xs3, ys3 + 2Ksq1ηsq1δR34,sq1s3, δ} . (3.21)
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After transforming to the IP, the two dominant beam-size increasing aberra-

tions are the py0δ
2 and px0py0δ terms, which give a maximum value for the

integrated skew-quadrupole strength Ksq1 of about 10−3 m−1. This amounts

to a maximum correctable dispersion of

|ηy0,max| ≈ 0.62 mm , (3.22)

which is similar to the horizontal value. The treatment of upstream-

dispersion correction is completely analogous, and results in about the same

value of correctable dispersion.

Tracking simulations have been performed using MAD [5] for compar-

ison and verification of the analytical estimate. In these simulations, a dis-

persive kick, Eq. (3.14), was applied at the center of a selected quadrupole

magnet in a model of the SLC final focus. After subsequent dispersion cor-

rection, 10,000 particles were tracked through this model. From the observed

increase of the vertical rms beam size at the IP as a function of the disper-

sive kick strength, a maximum displacement of the quadrupole magnet could

be deduced. The maximum displacement of several magnets was found for

|ηx,y,max| ≈ 0.65 mm, in satisfactory agreement with Eqs. (3.19) and (3.22).

However, for almost all magnets in the upper transformer, considerably larger

beam-size increases were obtained than could be explained by the dispersion

generated at the IP. The tolerances for these magnets are, in fact, not given

by the value of ηx0,y0, but instead by the value of the slope of the disper-

sion η′x0,y0, which may interact with other aberrations in the final focus. This

interaction is the subject of the next section.
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3.3 Interaction of Dispersion and Higher Order Aber-
rations

The residual aberrations in the 1994 final focus are mainly due to the inter-

action of the interleaved sextupoles with each other, while to some extent

they are also due to the long sextupole effect [6], and the interaction of the

sextupoles with the triplet and with other quadrupole magnets. Values for

the coefficients of these higher order terms have been obtained by a detailed

analysis [13, 14]. They are listed in Table 1.

Monomial Coefficient [m] (∆σ2
y)

1/2 [nm]

Linear — 290

px0 p
2
y0 δ −847 272

p2
x0 p

2
y0 −3124 153

p4
y0 646 91

p2
y0 δ

2 5 29

Table 1: Remaining aberrations in the 1994 SLC final focus [14] and their respective

contribution to the vertical spot size.

The SLC final focus can be approximately represented as

exp {−a p4
y0 − b px0 p

2
y0 δ − c p2

y0 p
2
x0} , (3.23)

where a ≈ 646 m, b ≈ −847 m, and c ≈ −3124 m, and the variables px0 and

py0 are the transverse momenta at the IP. A dispersive kick, exp {x0η
′
x0δ},

applied somewhere in the upper transformer will interact with the aberrations

in Eq. (3.23), resulting in

exp {x0η
′
x0δ} exp

{
−a p4

y0 − b px0p
2
y0δ − c p2

y0 p
2
x0

}
(3.24)

= exp
{
−a p4

y0 − b (px0 + η′x0δ) p
2
y0δ − c p2

y0 (px0 + η′x0δ)
2
}

exp {x0η
′
x0δ} .
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Here a similarity transformation, Eq. (1.4), has been performed. Notice that

the factor exp {x0η
′
x0δ}, i.e., the second operator, does not affect the vertical

beam size since [x0, y0] = 0. The total Hamiltonian of the first Lie operator is

Htot = a p4
y0 + px0 p

2
y0 δ(b+ 2c η′x0) + c p2

y0 p
2
x0 + (b η′x0 + c η

′2
x0) p2

y0 δ
2 . (3.25)

This Hamiltonian allows the following conclusions:

1. The terms depending on η′x0 will cause an alignment tolerance for the

magnets in the upper transformer.

2. It is evident that by proper choice of η′x0, the dominant remaining aber-

ration p2
y0 px0 δ may partly be cancelled, at the expense of generating

a p2
y0 δ

2 term—the very term that the upgrade was designed to cancel.

There will be an optimum value of η′x0, as generated at the start of the

final focus, which will yield a minimum spot size.

3. The Hamiltonian is asymmetric with respect to η′x0, meaning that for

zero incoming slope of dispersion, the alignment tolerances will be much

tighter for displacements in one direction than in the other.

Figure 1 shows the vertical beam size as a function of η′x0. The analytical

prediction obtained from the Hamiltonian (3.25) and the result of tracking

10,000 particles (dots) agree quite well, and confirm all three of the above

statements. The small discrepancy between the analytical curve and the

simulation is partly explained by the statistical error of the tracking, and is

partly due to a slightly different representation of magnets.

In the following, we assume that the incoming dispersion is somehow

adjusted close to its optimum value (η′x0 ≈ −19 mrad) and calculate all

12



   

σ y
  (

nm
)

600

500

400

11-94
7834A1

0

ηx0  (rad)

–0.05 0.05–0.10

'

Figure 1: Vertical beam size σy in nanometers as a function of the slope of the

incoming horizontal dispersion η′x0 (value propagated to the IP), according to the

analytical estimate (3.25) (curve), and as obtained by multiparticle tracking (dots).

tolerances with respect to this point. From Fig. 1, the tolerance on the

horizontal slope of dispersion is about

|η′x0,max| ≈ 13 mrad . (3.26)

This value determines the horizontal alignment tolerance of quadrupoles in

the upper transformer.

Figure 2(a) illustrates the improvement of the vertical spot size that

can be achieved by optimizing the incoming slope of dispersion, as a function

of momentum spread. In Fig. 2(b), the optimum value of η′x0 is depicted.

Overall, the spot size can be reduced by about 5% by proper tuning of

the horizontal dispersion. The results suggest a regular monitoring of the

dispersion in the upper transformer. The asymmetry of σy0(η′x0) in Fig. 1

disappears when octupole magnets are installed in a future upgrade, which

will cancel the p2
y0 px0 δ term in the Hamiltonian of Eq. (3.23) [4].

13



   

σ y
  (

nm
)

360

400 (a)

320

11-94
7834A2

η x
0,

op
t  

(r
ad

)
ηx0 = 0

ηx0,opt

–0.04

–0.08

–0.12

(b)

0

δ  (percent)

0.1 0.2 0.3

'
'

'

Figure 2: Effect of nonzero slope of horizontal dispersion, generated upstream of the

CCS, as a function of momentum spread; (a) optimum vertical beam size compared

with the case η′x0 = 0; (b) optimum value of η′x0.

Incoming vertical dispersion is treated similarly to the horizontal case.

The product of Lie operators now reads

exp
{
y0 η

′
y0 δ

}
exp

{
−a p4

y0 − b px0 p
2
y0 δ − c p2

y0 p
2
x0

}
, (3.27)

yielding

Htot = a p4
y0 + 4a η′y0 p

3
y0 δ + 6a η

′2
y0 p

2
y0 δ

2 + 4a η
′3
y0 py0 δ

3

+ b p2
y0 px0δ + b η′y0 py0 px0 δ

2 + b η
′2
y0 px0 δ

3

+ c p2
y0 p

2
x0 + 2c η′y0 py0 p

2
x0 δ + c p2

y0 p
2
x0 . (3.28)
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From this Hamiltonian, the vertical beam size increase due to an incoming

slope of the vertical dispersion η′y0 can be deduced. This is shown in Fig. 3,

together with the results of multiparticle tracking. No significant asymmetry

is observed, so that η′y0 ≈ 0 is the best choice. The vertical slope of disper-

sion gives rise to the vertical alignment tolerance of the upper transformer

magnets. According to Fig. 3, this is given by

|η′y0,UT,max| ≈ 13 mrad , (3.29)

which is the same value as for the horizontal dispersion.

σ y
  (

nm
)

500

540

420

460

11-94
7834A3

0

ηy0  (rad)

–0.02 0.040.02–0.04

'

Figure 3: Vertical beam size σy in nanometers as a function of the slope of the in-

coming vertical dispersion η′y0 (value propagated to the IP), according to the analytical

estimate (curve), Eq. (3.28), and as obtained by multiparticle tracking (dots).

3.4 Dispersion and Triplet Chromaticity

Tracking studies have revealed that still another effect is responsible for the

vertical alignment tolerance of several magnets in the final transformer and
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in the CCS: the interaction of exp{η′y0 y0 δ} with the uncompensated triplet

chromaticity that gives rise to second-order vertical dispersion. The vertical

chromatic aberration of one of the final quadrupoles can be written

exp
{
−c1 δ y

2
q − c2 δ p

2
yq

}
, (3.30)

where the yq, pyq are the coordinates at the center of the quadrupole. The

coefficients c1 and c2 for a thick quadrupole of length Lq are given by [6]

c1 =


1
4
Kq

[
1 +

(
sinh

√
KqLq

/√
KqLq

) ]
, if Kq > 0 ,

1
4
Kq

[
1 +

(
sin

√
|Kq|Lq

/√
|Kq|Lq

)]
, if Kq < 0 ,

(3.31)

c2 =


−1

4
Lq
[
1−

(
sinh

√
KqLq

/√
KqLq

)]
, if Kq > 0 ,

−1
4
Lq
[
1−

(
sin

√
|Kq|Lq

/√
|Kq|Lq

)]
, if Kq < 0 .

(3.32)

The Hamiltonian arising from the interaction with the incoming vertical dis-

persion η′y0 reads

Htot = −2c1 η
′
y0 δ

2 yq R34,q0 + 2c2 η
′
y0 δ

2 pyq R33,q0 . (3.33)

After transforming yq and pyq to the IP, the spot size can be evaluated as a

function of η′y0. The result is shown in Fig. 4, from which a maximum value

for η′y0 of about 0.51 mrad is expected. In the tracking, a 2% beam size

increase was found for η′y0 ≈ 0.52 mrad and η′y0 ≈ −1.05 mrad, respectively.

The dispersion was generated in the final transformer upstream of the triplet.

We have chosen

|η′y0,FT,max| ≈ 0.8 mrad (3.34)

as our tolerance. The same interaction occurs for dispersion generated inside

the CCS. For these magnets, however, about half the chromaticity of the
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Figure 4: Vertical beam size as a function of the slope of vertical dispersion, generated

between the CCS and the final triplet.

final triplet is corrected, so that the tolerance is loosened by about a factor

of 2, and we therefore assume

|η′y0,CCS,max| ≈ 1.6 mrad . (3.35)

This tolerance was also confirmed by tracking.

3.5 Summary of Quadrupole Alignment Tolerances

In the previous sections, the maximum correctable dispersion and the maxi-

mum tolerable slope of dispersion at the IP due to a quadrupole displacement

were calculated . The results are summarized by

|ηx0| < 0.65 mm, for all magnets , (3.36)

|ηy0| < 0.65 mm, for all magnets , (3.37)

|η′x0| < 13 mrad, for all magnets , (3.38)
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|η′y0| <


13 mrad, for UT magnets ,

1.6 mrad, for CCS magnets ,

0.8 mrad, for FT magnets .

(3.39)

Strictly speaking, the tolerance due to η′x0 only applies to magnets in the

UT. Extending it to all quadrupoles is thus very conservative. However,

the maximum value of η′x0 does not affect the total horizontal alignment

tolerance for any magnet outside the UT. It should be pointed out that

the tolerances for magnets in the UT may be looser than quoted, since the

dispersion generated in front of the CCS can, in principle, be corrected by

means of two quadrupoles and two skew quadrupoles located at the entrance

of the final focus system [15].

The horizontal and vertical alignment tolerances of the quadrupole

magnets are each determined by two terms in the Hamiltonian (dispersion

and slope of dispersion at the IP). In almost all cases, the two limitations

imposed by η and η′ differ by at least an order of magnitude, either in one

direction or the other. We take the maximum displacement allowed by the

tighter of these two terms as the final alignment tolerance for a specific

magnet.

The alignment tolerances for almost all magnets in the UT are due

to the interaction of η′x0,y0 with the residual aberrations of the final focus.

Interaction with the triplet chromaticity is responsible for the vertical align-

ment tolerance of some magnets in the CCS and in the FT, for which the R34

matrix element to the triplet is significant. All other tolerances are caused

by the maximum dispersion at the IP that can be corrected.

Even though the sources of the tolerances are quite different, the ac-

tual values are about the same, with the tightest tolerances being in the order
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of 100 µm for all three cases. It should be noted that we have attributed

equal weight to all magnets, and that the tightest tolerances may be slightly

loosened at the expense of reducing the other ones.

To verify the applicability of the derived alignment tolerances, multi-

particle tracking studies were performed for different random seeds of magnet

displacements and subsequent orbit correction. If our tolerance conditions

are met, the expected beam size increase is smaller than 4–8%. This was

confirmed in the simulation studies.

4 Sextupole Alignment

4.1 Bump Amplitudes

Horizontal and vertical orbit bumps can be used to steer through the cen-

ter of misplaced sextupole magnets. In actual SLC operation, symmetric

and antisymmetric displacements of the two sextupole pairs are measured

and corrected with orbit bumps through the sextupoles [16]. The following

analysis is based on a particular set of orbit bumps where those corrector

magnets closest to the sextupole have been chosen for generating a bump

through the center of a misaligned sextupole under the further restriction

that the bump amplitude is zero in the other three sextupoles.

When a bump is used to steer the beam through the center of a mis-

aligned sextupole, as a byproduct, the beam is steered off-center through the

(ideally aligned) quadrupoles. This generates the same dispersion as that

caused by a quadrupole displacement. Since the orbit bump typically extends

over several quadrupole magnets, the contributions from these quadrupoles
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to the IP dispersion (or slope of IP dispersion) add or cancel each other,

depending on the R-matrices between them, and on the sign and amplitude

of the bump at each quadrupole.

A simulation study has been performed according to the following

recipe: The orbit is steered through the center of a displaced sextupole by a

closed bump. The values of the displacements X and Y chosen correspond

to a beam size increase by 2%, as calculated from the displacements in the

quadrupoles alone, by evaluating the coherent contributions to ηx0,y0 and

η′x0,y0 separately, and adding their effect in quadrature. The dispersion at

the IP has then been corrected and, for a few cases, the vertical chromaticity

due to the interaction of the horizontal bump and the sextupole has also

been compensated. The beam size obtained in the tracking agrees well with

expectations, even though no attempt at further optimization and tuning

has been made. This confirms that the maximum bump amplitude is solely

caused by the generated orbit offsets in the quadrupole magnets, and is not

affected by the sextupole Hamiltonians. As an exception, a 20% increase of

the beam size for one particular orbit bump is due to the chromatic skew

quadrupole induced by the bump-sextupole interaction, which cannot easily

be corrected.

4.2 Orthogonality

If the beam is too much off center in the sextupole magnets, the orthogonal

control of chromaticity and waist motion is destroyed. This leads to an

upper bound on the allowable orbit offset in the sextupoles. We somewhat

arbitrarily require that for chromaticity changes corresponding to a beam size
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increase by a factor
√

3, the contribution from all other aberrations (except

chromaticity) caused by a horizontal or vertical offset in the sextupole is less

than 10% of the total beam size [17]. This criterion translates into

(∆σ2
x,y)

1
2 < 0.8σx0,y0 . (4.40)

In this case, the term σx0,y0 denotes the optimum design beam size, and

(∆σ2
x,y)

1
2 is the additional increase (due to terms other than chromaticity)

that accompanies the chromatic change of the beam size by a factor of
√

3.

The vertical chromaticity scan sets a tolerance for the Y-sextupoles s1 and

s3, while the limit for the X-sextupoles s0 and s2 is imposed by the horizontal

chromaticity scan.

Changing the strength of an off-center sextupole by ∆Ks gives rise to

the perturbative Hamiltonian

Hpert = −1

2
∆Ks X(x2 − y2) +

1

2
∆Ks X

2x

−1

2
∆Ks Y

2y + ∆KsY xy , (4.41)

where X and Y denote the displacement between sextupole and beam orbit.

The terms in this Hamiltonian can readily be identified as quadrupole, hori-

zontal and vertical kick, and skew quadrupole. The Hamiltonian (4.41) does

not explicitly contain dispersion and δ-dependence, so that the transforma-

tion to IP coordinates has to be performed via the inverse 6×6 instead of the

4×4 R–matrices. The resulting increase of the vertical beam size is obtained

from

∆σ2
y ≈ (∆Ks)

2 X2θ2
y0 R

−1 4
34,s0

+ (∆Ks)
2 Y 2θ2

x0 R
−1 2
12,s0R

−1 2
34,s0

+ (∆Ks)
2 Y 2 δ2 R−1 2

16,s0 R
−1 2
34,s0 . (4.42)
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The tolerances for s1 and s3 are deduced from this equation. A similar ex-

pression applies to the horizontal case, which limits the other two sextupoles.

4.3 Interaction with other Sextupoles

A second limitation on the tolerable orbit offset in a sextupole arises directly

from the additional aberrations introduced from destruction of the −I and

from the resultant spot size increase. If the orbit in a sextupole ‘si’ is hor-

izontally off center by a distance X, the perturbative Hamiltonian is an

additional quadrupole at the position of the sextupole

Hpert,X ≈ −
1

2
Ksi X(x2

si − y2
si) . (4.43)

This quadrupole may destroy the π phase advance between the sextupole

pairs, causing an alignment tolerance (specifically, how well the orbit bump

must be adjusted to the center of the magnet). This effect is important only

for the two inner sextupoles, since correction further upstream or downstream

can easily compensate for a quadrupole-like term at s0 or s3. The interaction

of the Hamiltonian (4.43) with another sextupole ‘sj’, gives

Hpert,X,ij ≈ −
1

2
KsiKsj X(R12,ij xsix

2
sj −R12,ij xsiy

2
sj + 2R34,ij ysi xsj ysj) ,

(4.44)

where we assume i < j. After transformation to IP coordinates by means

of the inverse 6×6 R–matrices, the Hamiltonian (4.44) contains monomials of

the form px0 p
2
y0 and δ p2

y0, which will affect the vertical spot size. The second

of these terms is identified as vertical chromaticity which can be tuned out.

The horizontal displacement tolerance is thus determined by the induced

geometric term px0 p
2
y0 alone.
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For a vertical offset Y at the ith sextupole, the perturbative Hamil-

tonian is a skew quadrupole

Hpert,Y ≈
1

2
Ksi Y (2xsiysi) . (4.45)

The treatment proceeds in analogy to the horizontal case, and the Hamilto-

nian due to an interaction with the jth sextupole is

Hpert,Y,ij ≈
1

2
KsiKsj Y (R12,ij ysi x

2
sj −R12,ij ysi y

2
sj − 2R34,ij xsi xsjysj) ,

(4.46)

where again i < j is assumed. Transforming to IP coordinates reveals four

relevant monomials, namely py0 p
2
x0, p3

y0, py0 px0 δ, and py0 δ
2. The first two

are purely geometric aberrations, the third is a chromatic skew quadrupole,

and the last corresponds to second-order dispersion. None of these can easily

be corrected, and they all contribute to the vertical tolerance.

4.4 Summary of Sextupole Alignment Tolerances

The maximum amplitude of the orbit bumps used to steer through the center

of a misaligned sextupole varies between a few millimeters horizontally and

values as low as 100–200 µm for the vertical bumps at s2 and s3. However,

another selection of corrector magnets may well lead to improved tolerance

limits. The maximum bump amplitudes are always imposed by the displace-

ment inside the quadrupoles and the resulting dispersion. These amplitude

values are a measure of the required absolute magnet alignment.

The second tolerance calculated is related to the accuracy to which the

beam orbit has to be steered through the center of the sextupoles. It spec-

ifies how well the magnets have to be positioned (in case of beam-based
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alignment), and the quality and stability of the orbit bumps and the beam

orbit. Two different contributions give rise to this tolerance: the destruction

of the −I between sextupole pairs, and the orthogonality criterion. The rel-

ative alignment tolerances for s0 and s3 are due to the orthogonal tuning

condition, and have typical values of a few hundred microns. The alignment

tolerances for the inner two sextupoles are, however, solely due to the addi-

tional aberrations. For these two magnets, the horizontal alignment has to

be of the order of 100 µm, while the vertical is even tighter (50–70 µm).

5 Conclusions

Lie algebra techniques were used to evaluate alignment tolerances for all

quadrupole and sextupole magnets in the 1994 SLC final focus. The analy-

tically calculated numbers were confirmed by multiparticle tracking.

Special attention should be paid to certain magnets with very tight

tolerances: the horizontal and vertical alignment tolerance of the final triplet,

as well as the vertical alignment tolerances of some quadrupoles in the final

transformer, the CCS, and the upper transformer are all only of the order of

100 µm. This is remarkable in so far as these tolerances are due to three com-

pletely different effects (maximum correctable dispersion, interaction with

the triplet chromaticity, and interaction with the remaining aberrations of

the final focus system, respectively). Furthermore, our analysis suggests it is

necessary to control the incoming slope of the horizontal dispersion, which,

if mismatched, could easily cause significant spot size increases.

While it seems possible to use orbit bumps to adjust the orbit in

misaligned sextupoles up to amplitudes between a few hundred microns or
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even several millimeters, the tolerance of these bumps is rather tight for

the two inner sextupoles: the adjustment has to be as good as 100 µm

horizontally, and about 50–70 µm vertically. The latter is, presumably, the

tightest tolerance in the final focus, apart from the unlikely displacement

of the final triplet quadrupoles with respect to each other.

In 1994, all quadrupoles and sextupoles of the SLC final focus were

aligned to the specified tolerances using beam-based procedures. The fact

that in the system so aligned, the design spot size could easily be achieved,

testifies to the validity of the calculations.

Finally, we point out that Lie algebra methods are an elegant tool

for analyzing nonlinear aberrations and limitations in final focus systems—

they allow a clear understanding of how different perturbations interact with

each other. In particular, similarity transformations are well suited for many

applications. Multiparticle tracking is, however, still a useful supplement,

since it can confirm the Lie algebra analysis, and thus ensure that all impor-

tant effects have been included in the Hamiltonians considered. Conversely,

as demonstrated, Lie algebra techniques may help to understand tracking

results.
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