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Abstract: The coherent beam-beam interaction in the absence of Ladau damping is studied with
a computer simulation of four, space-charge compensate colliding beams. Results are presented
for the modes, phase space structures, widths, and growth rates of coherent beam-beam
resonances. These results are compared with solutions of the Vlasov equation, and with
measurements made at the DCI storage ring which operated with space-charge compensated
colliding beams.

INTRODU~ION

The luminosity of storage ring colliders is limited by the effects of the electromagnetic
fields of one beam on the particles of the other beam. This beam-beam interaction is parametrized
by the beam-beam strength parameter,

(1)

where re is the classical electron radius, N is the number of particles in the beam, ~~ is the vertical
amplitude function at the interaction point, y is the beam energy in units of rest energy, md ax
and Oy are the rms horizontal and vertical bem sizes at the interaction point. The beam-beam
interaction is not linear in displacement, and, in the usual case of two colliding beams, those
nonlinearities inmoduce single particle nonlinear resonances and a spread in transverse oscillation
tunes. The vertical tune spread is equal to ~ which is sometimes denoted as Ey. The be~-beam
luminosity limit could be due to the nonlinear resonances and the tune spread which are single
particle, incoherent effats, or it codd be due to coherent instabihties.1

Coherent beam-beam instabilities are expected based on solutions of the Vlasov
equation.2~3~4~5 They are characterized by rapid, turn-by-turn, correlated variations of the beam
distributions. They have been seen in a two-beam simtiation that used particle-in-ce~ techniques
to calculate electromagnetic fields.6 k this simulation there was qutitative agreement with Vlasov
equation solutions for sixth and eighth order resonances, but higher order resonances were not
seen, presumably because of Landau damping from the beam-beam tune spread. The instabilities
that were observed occurred for ~ >0.05 and could be avoided by the appropriate choice of
operating point. This led to the conclusion that the coherent beam-beam effect was not Wely to k
important in operating or planned colfiders. h contras~ turn-by-turn variations of beam sizes have
been observed at LW using a novel detector capable of imaging the beam on successive turns.7
More data are needed before drawing any conclusion about the relation between these variations
and the beam-beam fimit.

Incoherent beam-beam effects can be eliminated by colliding four beams in the field
compensating cotilguratiofi sho-wn in Figure 1. Without incoherent effects there is a possibility of
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Figure 1: Four colliding beams in the field compensation configuration used in DCI. The four
beams are collinear and arrive at the interaction point at the same time. (Derbenev numbers the
beams differently than we do in this figure. This leads to some sign differences in the equations
summarizing his work.)

substantirdly irnprovd performance. However, there is no Landau damping from the beam-beam
tune spread, and coherent instabilities could be much more important. The DCI storage ring at the
Laboratoire de l’Acc~16rateur Lin6aire (Orsay, France) had four colliding, space-charge
compensated beams, and the beam-beam limit was not significandy different than with two
beams.s This is a strong indication of the importance of coherent beam-beam effects in this
cotilguration, and the DCI performance limit was attributed to them.

This paper reports the results of a computer simulation of four colfiding beams. Coherent
beam-beam resonances are observed, and their mode structures, phase space structures, widths
and growth rates are measured and comparti with solutions of the Vlasov equation to study the
underlying physics of the coherent-beam-beam interaction Other results are compard with DCI
measurements to understand the performance there.

SIMULATION

The simulation is a modification of that of Wshnagopd and Siemann.6 Test particles
were followed in transverse, four-dimensiond phase-space for a large number of turns with each
turn consisting of transport between the interaction points and beam-beam co~isions. The initial
phase space coordinates were chosen tim Gaussian distributions with the nominal sizes.

Different transport models were used based on the issue under study. For resonance
studies and for comparisons with the Vlasov theory i) the horizonti and vertical dimensions were .
independent, ii) centroid feedback set the mean coordinates to zero before the beam-beam
interaction, and iii) there was no radiation damping or quantum excitation. The DCI simulations
were intended for comparison with experiments, ad the transport had coupling between honzontd
and vertical motions, radiation damping, quantum excitation, and no centroid feedback. In
addition, either one or two interaction regions was possible, and the two interaction region model
had phase advance errors between the interaction regions. These errors were consistent with
estimates based on the DCI magnetic lattice with quadruple gradient errors.9

The electromagnetic fields at the coltision point were cdculatd by brentz transforming to
the rest frame of a pair of beams and solving for the electrostatic fields there. First, a circtiar mesh
was constructed for each pair of beams. The meshes had sixteen azimuthal bins and one hundred
radid bins each with a size & = (oxo +0% ) /20 where Oxo and a o are the nornind horizontal

{and vertical rms beam sizes. Each mesh was centerti; for examp e, the origin of the mesh for
beams 1 and 3 was centered at X= (Z1+ X3)/ 2 and ~ = (Y1+ ~3) / 2 where Z1 is the horizontal
centroidof beam 1, etc.

. Particles were lacti on this mesh by apportioning them to adjacent mesh sites with area
fweighting fractions 1 and taking their charge into account. The resultant array was Fourier
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analyzed in azimuth, and the red and imaginary parts of the Fourier coefficients were smwthed to
reduce the effects of statistical fluctuations in the number of test particles at individud mesh sites.
The smoothing was performed with the IMSL routine CSSCV11 that is based on a smoothing
sphne to approximate noisy data with the smoothing parameter found by cross-validation. 12 The
smoothed charge distributions together with the Green’s function for Poisson’s equation in polar
coordinates gave the electrostatic fields.

VLASOV ~ORY FOR COmREm INSTAB~~S
OF FOUR COLLDING BEAMS

Introduction
There are several Vlasov equation solutions for the coherent beam-beam interaction. The

initial work was by Derbenev and was devoted to four beams with transverse motion in two
spatial dimensions.2 Dikansky and Pestrikov considerd two beams, two transverse spatial
dimensions, and synchrotron motion.3 Chao and Ruth studied two beams, only one transverse
dimension, and no synchrotron motion.4 Zenkevich and Yokoya calculated the growth rates for
two beams and one-dimensional oscillations including Landau damping.5 They found that the
growth rates of low order resonances were diminished sign~lcantiy by Landau damping.

There are qualitative disagreements between Chao and Ruth and Dikansky and Pestrikov
when that calculation is restricted to one dimension. These disagreements arise from: i) different
treatments of the focusing of the equilibrium distribution when making action-angle
transformations (Chao and Ruth account for it while Dikansky and Pesrnkov do not), and ii) an
implicit assumption by Dikansky and Pestrikov that perturbations cannot be defocusing. These
disagreements do not affect the foti b calculation.

The Vlasov Equation Solution of Derbenev2
This section is a summary of the Derbenev paper. Neglecting radiation damping and

synchrotron oscfilations, the linearized Wasov equations maybe written in the form

(2)

where {qa, Ia } tie action-angle variables, T and Qu are the revolution period and betatron tune,
respectively, and there is a summation over index a. All four beams are assured to have the
same equilibrium distribution, F, and fq is the perturbation of the density distribution of beam q.
The Lagrangian for interaction of a particle with fields excited by collective oscillations of other
beams is Lq. For example, the Lagrangian of interaction of particle in beam 1 with the field of
beams 2 and 4 can be represented in the form:

(3)

where 6T is a periodic b-function with period equal to the revolution period, p~ and r~ are
transverse deviations from the equilibrium orbit, and WI is a phase space volume element.

The four beam system can have four modes

f: =[fl +f3]f[f2 +f4] and f: =[fl-f3]+[f2 -f4]. (4)

In~tability develops from differences in the densities of the two beams moving in the same
direction, so only two of these modes, the f_ modes, can be unstable. The “-” subscript is
dropped in the equations that follow. The equations for the individual beams can be addd and
subtracted leading to a set of uncoupled equations for f+ and f–. Stationary solutions of the form

3
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are sought. They are unstable if Ikl >1. The phase space distribution is Fourier tmnsformed in
angle

f(I) = ~fm(I)exp{im. q}. (6)

The charge den~ity is Fourier transformed

(7)

and the wuihbrium distribution is assured to be a Gaussian. The result is an integral ~uation for -
f(k) = c(k)/ k

ff(k)=+2i~ m. ~
~ 1– kexp(2tim. Q) jgm(k,k’~*(k’)d2k’

where

k2 + k’2
grn(k~k’) = &I~X (kxk~)ImY (kyk~)exp(– 2 ).

There are resonances when m.Q is close to an integer.
distance from resonance, and looking for eigenvalues of the form

k = exp(2ni(-m. Q + A))
with A<< 1 leads to

(8)

(9)

Defining &= m. Q - n as the

(lo)

(11)

where the minus sign inside the square root holds for f+, the plus sign holds for f–, and Cm is
the eigenvdue of

Cmf(k) = ~gm(k,k’~(k’)d2k’.

These eigenvalues are positive and satisfy .

~c~=~gm(k,k)d2k=~ln(m~ ‘ml)’ ; (Imxl,
J

n mx – my

where the sum is-over dl eigenvalues.
Equation (11) contains the essential result. The f-

resonance .

and the growth rate is

‘-1=2’-

(12)

myl >> 1) (13)

The f– mode is an unstable for tunes below the resonance when

mode is unstable for tunes above the :

(14)

(15)

(16)

with the,growth rate given by eq. (15).

Round Beams
Our simulations have been done for the one dimension case of nornindly round beams,

beam with equal sizes initially ( ~xo = 0% ❑ Oo), equal beam-beam strength parameters
(g. = ty = <), ~d equal ~tatron tunes (Qx = QY s Q). There is nothing to distinguish the two
transverse directions, and, therefore, mx = m~ = m. The resonance condition becomes
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2mQ=n. (17)
Ordy even order resonances are Wowd. The resonance widths expressd in units of tune are

lAQl<2~cm. (18)
n

Taking the fimit mx = mV eq. (13) becomes

EC j4”
m= (19)

.- nm2 .

Assurnin~ that the largest eigenvdue scales with the same power of m[21

cIAQI= ~. (20)

A straig~tfomard extension of the Chao and Ruth cdctiation which is basal on a waterbag
model for the equilibrium distribution gives

IAQI<
32~

n(4m2 – 1)
(21)

and

(22)81AQl~/ n – m2AQ2
for the one-dimensiond beam-beam interaction. We compare these equations to simdation results
for widths and growth rates although there are reservations in doing so: i) the waterbag
di tribution used to obtain these equations is approximate, and ii) we measure the growth rate of
02 2

– 60 which is beyond the scope of the linearized Vlasov equation, and in comparing our
measured growth rates with q. (22) we are primarily interested in the order of magnitude and
dependence on AQ.

Table 1:Parameters for Comparisons tith Vlasov Equation

Betatron Tune, Q = Q, = Q, -0.8
: Coup~ng hdependent Horizonti and Vertical Motions

Radiation No Radiation Damping Or ~uctuations
Fedback - Centroid Fedback, Xl = ~1 =...= O, Before Collisions
Number of Test Particles~ew NW 50,000

COMPAWSONS W~ SIWA~ONS

An extensive study of the tenth order resonance Q = 8/10 was performed using the
parameters given in Table 1. The nature of the coherent instabtiity is i~ustrated in Figures 2 and 3.
The beam sizes are stable and equal to the nornind sizes for roughly the first 200 turns. They
increase rapidy after that eventually reaching a condition that repeats every fifth turn. The
horizontal size of beam 1 is plotted in Figure 2. Vefiicd sizes behave the same when the tunes are
equrd. As shown in Figure 3 beams 1 and 2 behave identically as do beams 3 and 4. This is as
expected since the tune is above the resonance vrdue of 8/10, and, therefore, the f+ mode should
be unstable. Fig~e 4 shows the sizes on the other side of Q = 8/10 where the f- mode should be
unstable. As expectd in this figure beams 1 and 4 have the same behavior as do beams 2 and 3.
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Figure 2: The MS horizonti size of beam 1 norrnfized to the nominal size.

This resonance corresponds to m = 5, and there should be five-fold structure in the
horizontal and vertical phase spaces as the instability develops. This is seen clearly and is
illustrated in Figure 5 for Q = 0.80075. The difference f2 - ~ starts out essentirdly uniform. Five-
fold structure has developed by turn 300. It persists during the rapid growth of beam size, but
phase space has become badly distorted by the time the beam has reached its limiting behavior.
The vertical phase space dso has five-fold structure during the growth of the instability, and it
evolves in a sitilar manner through turn 1000. Other resonances have phase space structure
determined by the resonance order. Figure 6 is an example for the 18th order resonance Q =
14/18. .

--
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Figme 5: Horizontal phase space plots for Q = 0.80075 and ~ = 0.0173 for barn 2 (f2) on the left
ad for (f2 - f4), the difference htween kams 2 and 4, on the right. me plots cover fi times the
nominal WS sizes, and the dashti lines are contows of negative value.
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Position
Figure 6: Horizontal phase space contours of (f2 - f4) for Q = 0.777853 and ~ = 0.0173, a point
within the Q = 14/18 resonance. The plots cover A5 times the nominal MS sizes, md the dashed
tines are contours of negative value.

The beams are nominally round, but there are no restrictions forcing them to stay round.
However, they do remain round to a substantial degree although some variation with the azimuthal
angle in physical space does occur. This is Nlustratd in Figure 7.

,

——.
Horizontal

Figure 7: Contour plots in physical space for f2 - ~. The figures cover k500, and the conditions
are those of Figure 4: Q = 0.79925 and\= 0.0173.

The instability gro th r te was estimated by fitting the square of the beam size, corrected
for the equilibrium size, o T$– 6., with an exponential during the initial rise of the instabtiity. This
quantity was chosen for fitting since it is proportional to the emittance increase due to the
instability. Figure 8 shows the results. The width is about three-quarters of that given by eq. (21),
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and the growth rate about hti that of q. (22). This is reasonable agreement given the approximate
waterbag distribution and the tenuous connection between the growth rate defined by q. (10) and
the growth rate of O* – o;.

0.06, , n a m I , , , m i , m , , I , , , ,
I

0.04

0.02

0
-0.002 -0.001 0 0.001 0.002

AQ = Q - 8/10

Figure 8: The growth rate of a2 – a: from the simulation compared with eq. (22) (plotted as
solid fines).

Note that the growth at Q = 8/10 is not exacdy zero as would be expected. We found that
the growth rates ‘at the centers of resonances depend on the number of test particles and tend to
zero as N~2 where Nm is the number of test ptiicles. The growth rate at AQ = -0.0005, a point
of maximum growth in Figure 8, changed by less than 25% when the number of test particles was
varied from 25,000 to 150,000.

Resonance widths were measured by tracting for different values of Q and ~. The
resultant dependence on resonance order is given in Figure 9. As expected the widths are linear in
~, but they depend on m as m-2.6 to m-2.9 in contrast to the m-2 dependence expected from the
waterbag model, eq. (21), and the assumption that the largest eigenvdue in the Derbenev solution
scales with the same power of m as the sum tie, q. (20).

-.
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Figure 9: Resonance widths for different resonance orders. The fust stable and last unstable
points on each side of the resonance are indicated. The resonances are: 8/10 (m = 5), 11/14 (m =
7), and 14/18 (m=9). The resonance width form= 5, ~ = 0.0173 was doubld for inclusion in the
figure.

DCI PERFORMANCE

Four DCI operating points documented in LeDuff er a~ were chosen for comparison
between measurements and simulations. Two models of DCI, ONE and TWO, named after the
number of interaction regions, were used. Reference [9] has details of these models. Pwarneters

nare given in Table 2.

Table 2: Parameters of DCI Models

Parameter “ ONE TWO
kteraction re~ons 1 2
Q -0.88 -1.76

P* (m) Horizonti 2.18 2.18
Vertical 2.18 2.18

&(Km) Horizonti 0.282 0.282
Vertical 0.015 0.015

Coupling Resonance Width13 0.001 0.002
Arc Errors {Horizontal, Vertical} ---- {.0005, -.002}, {-.0005, .002]
Energy (y) 1.57X103 1.57X103
Fractional Energy hss per Turn 7.1X1O-6 14.2x10-6
Fedback No Feedback No Feedback
Nominal Beam Sizes (Mm) 569 (fully coupled) 569 (fu~y coupl~)

Number of Test Particles~earn, Nn 10,OOO 10,OOO
Ttis of Tracking 20,000 10,OOO

12
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Figure 10 shows the results for one point, Q = 0.865 and ~ = 0.022. There are strong, low
order resonances, Q = 12/14 and Q = 7/8, on the two sides of this operating point leading to a
region of width AQ = 0.011 where the beam size has increased by less than 1070after tracting for
20,000 turns. This is to be compard with a measured stable operating region of AQ = 0.0020
which was extractd from Figure 3 of reference [8] and reduced by a factor of two for comparison
with the one interaction region model. The measured widths for stable operation at the four
operating points are compared with the widths from simulation in Table 3. The simulation
predicts smble regions 3-5 times wider than those measured.

The measurements themselves could be in error due to effects such as quadruple power
supply regulation narrowing the observed stable operating point, but this cannot be testd md must
remain speculation at best. Synchro-betatron resonances could play a role, but the DCI bunch
length was short compard to D*, and the dispersion at the interaction region was smdl.14 There
are indications that phase advance errors between the interaction regions affected the DCI tune shift
limit with two beams.9 A simulation of DCI with two interaction regions and phase advance
errors was performed to see if these errors affect the four-beam performance. These results are
shown in Figure 10. Phase advance errors between interaction points do not change the width of
the stable region in this case.

1.6

1.4

Go
b

r
1.2

1
0.85 0.855 0.86 0.865 0.87 0.875

Arc Tune = Phase Advance Between IR’s/2n

Figure 10: RMS beam size in DCI normalizd to the nominal size for operating point 1: Q -
0.865, < = 0.0218. Even order resonances up to 30th order are plotted with widths from eq. (21).
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The resonances bounding each of the regions as well as the resonances up to 30th order
within each region are tisted in Table 3. In three of the regions (dl except IV) one of the bounding
resonances could be a lower, odd order resonance if the round beam symmetry were broken. In
addition, two of the regions, I and IV, overlap resonances that could be lower odd order
resonances if the round beam symmetry were broken. Closed orbit offsets at the collision point or
unequal honmnti and vertical tunes cotid break this symmetry and could possibly be the cause of
the disagreement between measurements and this simulation.

Table 3: Comparison of Measured and Simulated Width of Stable Operating Regions

Region I II III Iv

Q,~ 0.865,0.022 0.884,0.018 0.894,0.014 0.907,0.011
Measured Width 0.0020 0.0027 0.0027 0.0034
Simulated Width 0.011 0.009 0.009 0.013
Bounding Resonances 12/14, 7/8 7/8, 16/18 16/18, 9/10 9/10, 11/12
Overlapped Resonances 19/22, 26D0 23126 25P8 2022

1(up to 30th order) I I
Measured widths are from LeDuff et al.8 The table entries are the stable operating regions from
Figure 3 of that reference dividd by two for comparison with simdations of ONE.

SUMMARY AND CONCLUSIONS

The simulation results are in excellent agreement with the qutitative features of Derbenev’s
theo~: i) the tune dependence of the stabifity of the f+ and f- modes, and ii) the phase space
swcture of the unstable modes are as expected. The widths and growth rates are comparable to
those calculated from an extension of the waterbag model of Chao and Ruth, but the widths
observed in the simulation decrease more rapi~y with resonance order.

The simulation agrees with the locations of stable operating points in DCI, but predicts
- operating regions three to five times wider than those measured. There are a number of possible

explanations, but they ue difficult to explore because DCI is no longer avtiable for co~iding beam
experiments.

Wghorder coherent beam-beam instabilities have been observti with modest beam-beam
strength parameter, ~ -0.02- 0.04; the width of an 18th order resonance was measured for Figure
9, and the effects of 14th and 22nd order resonances are shown in Figure 10. The appearance of
these high order resonances is in contrast to the two-beam situation where resonances higher than
eighth order were never observed in simulation. The absence of Landau damping makes the
coherent beam-beam interaction the important, fimiting phenomena for space charge compensated
colliding beams.

We wish to thank Alex Chao for his interest and for numerous helpful comments. This
work was supported by the Department of Energy, contract DE-AC03-76SFO05 15.
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