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Abstract 

A method is presented for calculating the real part of the longitudinal impedance 

for both a small hole and a long slot in a beam vacuum chamber with a circular 

cross section. The length of the slot can be arbitrarily large, the only requirement 

on the dimensions of the slots is that its width be much smaller than c/w. Regular 

. arrays of N slots periodically distributed along the pipe are also considered. The 

equation relating the real part of the impedance to the energy radiated by the slot 

into waveguide eigenmodes is the basis of this method. We show that in addition to 

broad band impedance, there are narrow peaks in ReZ. For a single slot, the peaks 

are located slightly above the cutoff frequencies of various waveguide modes. For a 

periodic array, additional peaks are generated at frequencies determined by the array 

period. These peaks can be partially suppressed by randomization of the positions 

of the slots. 
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I. INTRODUCTION 

Existing theory for the impedance produced by small holes in the wall of a vacuum 

chamber of the accelerator has been developed in papers by Kurennoy [l] and Gluckstern 

[2]. Their theory applies Bethe’s approach developed for study of diffraction of an 

electromagnetic wave on a perfectly conducting plane screen with a small hole [3] to the 

problem of radiation of the beam propagating in a circular pipe having a hole in its wall. It 

is based on utilization of small parameters ad/b3 and cy,,/b3, where CX~ is the electric and 

crms is the magnetic polarizabilities of the hole, and b is the beam pipe radius. For circular 

holes, ang - ]cY,~] - w3, where w is the radius of the hole, and these ratios are of the order of 

(~/b)~. This theory also assumes that the wavelength of the electromagnetic waves radiated 

by the hole is much larger than the dimensions of the hole. In the first approximation of 

the perturbation theory, the impedance is expressed in terms of polarizabilities crd and CY,~ 

and turns out to be purely imaginary. 

One of the practically important predictions of their theory refers to the optimal shape 

of the holes. To minimize the impedance for a given total area of the holes, they should have 

a shape of long narrow slots in the direction of the pipe axis; however, the theory becomes 

inapplicable if the length of the slot I exceeds either the pipe radius or the wavelength c/w. 

In this paper, we show how to eliminate these constraints and how to calculate the 

impedance for an arbitrary 1, assuming only that the width of the slot w is much smaller 

than b and c/w. Another important issue addressed in this paper is the real part of 

the impedance of holes which is responsible for the Robinson or multibunch instability in 

circular accelerators. As mentioned above, the first order theory predicts a purely imaginary 

impedance. To find ReZ, it is necessary to develop a second order of the perturbation theory. 

Fortunately, for our purpose it is not necessary to derive expressions for electromagnetic 

fields in the second order if use is made of the relation between ReZ and the energy radiated 

by the hole on a given frequency, which can be found using the first order expressions for 

the radiated field. 
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This approach also allows consideration of a periodic array of N slots. A previous paper 

[4] considers this problem, assuming an infinitely long periodic system, N + co. It has been 

shown that in such a system the impedance exhibits sharp peaks at frequencies that allow 

the coherent buildup of waveguide modes due to positive interference of radiated field from 

different holes. For a finite number N, we find the same resonances as in infinite system; 

however, the width and height of the peaks both depend on the N. We discuss how the 

transition to the limit N + 00 occurs. 

To simplify our consideration, we calculate only the longitudinal impedance. 

Section II reviews the approach of Ref. [l]. Section III discusses a method in which a 

- long slot is considered to consist of infinitesimally small dipoles with given polarizabilities 

per unit length, showing that the imaginary part of the impedance for long slots does not 

depend on the length of the slot. In Sec. IV, we find the real part of the impedance of a 

short slot. Sections V and VI extend our consideration to long slots and arrays of slots. 

Section VII discusses randomization of the positions of the slots and how this effects the 

narrow band impedance peaks. Our conclusions are discussed in Sec. 8. 

II. SMALL HOLE 

To calculate the longitudinal impedance of a circular beam pipe with a hole, it is 

convenient to consider an oscillating current traveling with the velocity of light along the 

axis of the pipe, 

I (z, t) = IO exp(-iwt + ilcz) , (1) 

where K = w/c. The pipe is assumed to have a small hole located at z = 0 with characteristic 

dimensions much less than pipe radius b. Perturbation of the electromagnetic field caused 

by the hole can be represented as a superposition of the waveguide modes propagating away 

from the hole. We will consider in this section only axisymmetric E modes that contribute 

to the longitudinal impedance in the first order of the perturbation theory. 
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The electromagnetic field of the mth axisymmetric E mode in a smooth wave guide is 

given by the following equations: 

Eirn) = -OF J1 exp(oiK,z) , (2) - - 

exp(aiKrnz) , 

where Jo and JI me the Bessel functions of the zeroth and first order, pm is the m-th root 

of Jo, b is the radius of the waveguide, rc, = da/c, where w, = cpm/b is the cutoff 

frequency for the mth mode. The variable u denotes the direction of the propagation of . 

the wave; 0 = +l corresponds to the waves propagating in the positive direction along the 

z-axes and 0 = -1 marks the waves traveling in the opposite direction. 

The electromagnetic field scattered by the hole into the waveguide is characterized by 

the amplitudes a, (a) such that 

F = h(z) E a, (a = 1) Hrn) ( T, 2, u = 1) + h(-z) e a, (a = -1) F(m) (r, z,0 = -1) ) (3) 
m=l m=l 

where h(z) is the step function and F denotes any of the components E,, E,, or Ho. The 

factors a, can be expressed in terms of the electric ad and magnetic amg polarizabilities of 

the hole [l] * 

210 
a, = - 

Cb2 Km Pm Jl (pm) 
( KC&q + UKmQd) . 

Calculation using the following equation for the longitudinal impedance, 

&-; Jm cZz E, (z, T = 0) exp (-iwz/c) , 
-CO 

(5) 

showed that 2 is a purely imaginary linear function of the frequency w [l, 21, 

*Our definition of (all and cxmg agrees with the Bethe’s paper [3]. They are two times larger than those 

used by Kurennoy [l, 5). 
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For a long slot of length I and width w, 1 >> w, parallel to the axis of the pipe, od and 

amg almost cancel each other: amg M -ad. The degree of cancellation depends on the exact 

shape of the slot and the thickness of the wall t. For a slot with parallel edges and rounded 

ends in an infinitely thin wall [5], 

amg M -c&J M & zw2 ) ael + Qmg 7% 21x 10-2w3 - . 

In the opposite limiting case of a thick wall, t > w, 

1 
amg M -CT&J = - ZW2) 

479 (8) 

and the sum ad + amg is somewhat smaller than that given by Eq. (7). 

The theory outlined above is based on the assumptions that the dimensions of the slot 

are much smaller than the pipe radius, w, 1 << b, and that the wavelength corresponding to 

the frequency w is much larger than the dimensions of the slot, ICW, KZ << 1. According to 

Eq. (6), in the.first approximation of the perturbation theory, the real part of the impedance 

is equal to zero. In the next section we introduce a principle that allows us to extend the 

theory to the limit 1 > b, KZ > 1 (but w << b) . 

III. LONG SLOTS AND MULTIPLE HOLES 

The applicability requirements of Eq. (6), 1 < b and KZ CC 1, can actually be omitted 

because it is easily seen that the theory leading to Eq. (6) is linear. 

First, let us show that in this theory the impedance of several holes located so that 

they do not cross talk to each other is equal to the sum of their individual impedances.+ 

Indeed, the radiated electromagnetic field of an array of the holes will be the sum of the 

‘For this to be true, the distance between the holes/slots should be large compared with the radius of the 

holes (width of the slots). 
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fields calculated separately for each hole. Since the impedance (5) is a linear functional of 

the electromagnetic field E, on the axis, the impedance of the array is equal to the sum of 

the impedances of the individual holes. 

For a single slot, if length Z of a slot is comparable with b and/or IC-~, we can consider its 

inner part (excluding the regions close to both ends, whose length Zr is such that w < 11 < 1) 

to be a system of infinitesimally small magnetic and electric moments, uniformly distributed 

along the slot with the polarizabilities per unit length equal to crd/Z and cymg/Z, respectively. 

Since for an infinitely long slot (Ed = -amg, the contributions dZ to the impedance from each 

infinitesimal element of length da exactly cancel each other, because cZZ is proportional to the 

sum dzcrd/Z and dzcu,,/Z. The remaining nonvanishing part of 2 is due to the contribution 

of the ends of the slot, and will, as a matter of fact, give Eq. (6). This observation also 

explains why the impedance of a long slot does not depend on its length-only the end 

regions of the slot that have the length of several w contribute to 2 [5]. 

We emphasize here that the conclusions that Eq. (6) remains valid for long slots and 

that the impedance of an array of slots is an additive quantity are true only in the first 

approximation of the perturbation theory. Section IV will show that additivity is not 

applicable for the real part of the impedance. 

The real part of the impedance of a hole arises in the second order of the perturbation 

theory based on the smallness of the parameters amg/b3 and cy,I/b3. At first glance, 

it seems necessary to do one more order of the perturbation theory and estimate the 

electromagneticfield in the second approximation in the small parameters of the theory. It 

turns out, however, that we can find the real part of the impedance without going to higher 

orders if use is made of the following relation between the ReZ and the energy P radiated 

per unit time by the hole (for example, see Ref. [6]): 

P= f IiReZ(w) . (9) 
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The idea to use the energy radiated by the hole for estimating the loss factor due to the 

presence of the hole has been previously explored by M. Sands [7]. 

The energy flux P in Eq. (9) should include all the waves radiated by the hole, both 

inside and outside of the waveguide. The outside radiation will depend on the geometry and 

location of the conducting surfaces in that region and cannot be computed without knowing 

particular details of the specific design. Here we neglect its contribution, assuming that the 

thickness of the pipe wall is large enough so that the electromagnetic field does not penetrate 

through the hole.3 

Inside the waveguide, we have to take into account the radiation going into all E and 

H modes, rather than a&symmetric E modes considered in the previous section. The 

amplitudes u,.,~ (n is the azimut ha1 and m the radial number) of those waves have been 

calculated by Kurennoy [l]. For an E mode, 

(p) = 410 
n,m 

c~~n,rnPn,rn JA (pm,n> (I+ b,o) 
( narng + uhz,m~el) 9 

and for an H mode, 

p) = - 4nIo 
nm 

cb2tc’ nm 
,.q, _ n2> J, (~6,~) (aK”mamg + ,-) ’ 

where Wn,m = cpn,rn/b, W; m = cp’,,, I b, rcn,m = J-/5 4z,m = J-;/C7 jJk,m 

is the mth root of the Bessel function J,, of the nth order, &, is the mth root of the 

derivative JA and 60,~ is the Kronecker delta symbol. Note that for n = 0, Eq. (10) reduces 

to Eq. (4). The energy flow in the mode of unit amplitude is equal to 

(12) 

SNote that though a thick wall strongly suppresses the radiation into the outer space through the slot, it 

does not eliminate it completely in the case of a long slot. Even if the wall is infinitely thick, Hc,r waves 

with the cutoff frequency rrcll can propagate from within the slot to the outside of the vacuum chamber. 

Depending on how effeciently those waves are excited by the beam, a part of the electromagnetic field of 

the beam will eventually channel through the wall. 
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respectively. _ _ 

The energy flux in each mode radiated by the slot is given by la,,, (a = 1)j” Pn,m and 

l%,m (0 = -1)12 Pn,m in the forward and backward directions, respectively. It is evident 

that this radiation occurs only if the frequency w is larger that the cutoff frequency w,,~ (or 

w:,~). It is interesting to notice that since cymg and Ed have opposite signs, radiation in the 

backward direction in each mode is larger than in the forward direction. 

The total energy flux P is 

’ = C C C Pn,m l”n,m12 Y 
E,H n,m a=fl 

04) 

where the summation is carried out over both directions of propagation, cr = fl, all possible 

values of n and m, and also over E and H modes. Combining Eqs. (9)-(13) yields the 

following equation for the contribution of E and H modes into the real part of the impedance: 

&s&E) = ” w2 
W 

-- 
r cZb4 n! (l +'s,,O) F(E) Wn,m ' t-1 

where 

FtE) (x) = 
&,x2 + a; (x2 - 1) 

X@=-T 

for x > 1, and F@) (x) = 0 for x < 1. For the H modes 

where 

&z(H) = ‘0 w2 c n2 
r c2bl n,mPif,m-n2 

FtH) (x) = 
c&x2 + ctkg (x2 - 1) 

X&C-l 

(15) 

(16) 

(17) 

(1% 

for x > 1, and FtH) (x) = 0 for x < 1. 
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For large aspect ratio slots, Z > w (but 1 < b and Zlc < 1 ), arng x -crd, and 

FtE) (x) = FcH) (x). The plot of the Re(ZtE) + ZtH)) measured in units a~gZo/rb6 as 

a function of wb/c is shown in Fig. 1. 

1600 

4 6 
obk 7828Al 10-94 

. 
Figure 1. Real part of the impedance of a short large-aspect-ratio slot as a function 

of the frequency (solid curve), and a high-frequency approximation given by Eq. (20) 

(dotted curve). 

Because the functions FtE) (x) and FtH) (x) go to infinity when x + 1, ReZ has 

singularities at the cutoff frequencies w,,~ and wh,,. Formally, this happens because the 

amplitude of the radiated waves given by Eqs. (10) and (11) scales as K;,$, when w approaches 

a cutoff frequency. The physics of this effect is very simple-the group velocity of the 

- waveguide eigenmodes goes to zero at the cutoff frequency so that the radiated waves almost 

stall when propagating away from the slot. As a result, the energy radiated by the slot will 

be accumulated, amplifying the amplitude of the waves. The situation becomes similar 

to the case when a resonant cavity is driven by an external source. As is well known, 
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the amplitude of the eigenmode goes to infinity when the driving frequency approaches the 

resonant frequency of the cavity. 

The actual height of the cutoff peaks is determined by two effects which lie beyond the 

scope of the present theory. First, in addition to the beam field, the radiation fields must be 

taken into account when calculating the electric and magnetic dipole moments of the slot. 

This results in a finite height for the peaks, even for perfectly conducting walls. Assuming 

finite conductivity of the walls will further reduce the height of the peaks. 

Since the real part of the impedance is of the second order in the ratio amg/b3 and cud/b3, 

it should be smal compared with the imaginary part given by Eq. (6). To compare them by 

an order of magnitude, we assume that w N c/b, 

ReZ(w) N Z2w 

ImZ(w) b3 ’ (19) 

which is indeed a small quantity when the dimensions of the slot are much less than b. 

In the limit w >> c/b, a large number of harmonics is involved in the sums (15) and (16). 

By considering them to be continuous variables, it is possible to integrate over n and m 

instead of summing. This integration is carried out analytically in the Appendix, yielding 

(20) 

This function is also plotted in Fig. 1; it give a good approximation of the averaged 

dependence of the ReZ, even for small frequencies. 

Equation (20) can be derived in a much simpler way by considering radiation of the 

electric and magnetic dipoles representing the hole in a free space, and estimating the energy 

_ flow in a half space corresponding to the inner part of the waveguide [4]. This approach has 

been realized in Ref. [l] with aresult which is four times smaller than ours. The discrepancy 

is due to the fact that the author of paper [4] used polarizabilities that are two times smaller 

than the correct ones. found, for example, in Ref [3]. 
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V. REAL PART OF THE IMPEDANCE FOR A LONG SLOT 

-- 

As pointed out in Sec. II, the imaginary part of the impedance for a long slot does not 

depend on length 1, and is given by Eq. (6). To find the real part of the impedance in the 

case when Z is comparable or larger than b and/or )~-l, we follow the logic of Sec. II, and 

consider the long slot as a distributed system of magnetic and electric dipoles. The field - 

radiated by the slot consists of the waves coming from different elements of the slots with a 

relative phase advance between them. For two infinitesimal elements located at distance z, 

the phase advance is composed of two parts. The first part is due to the change of phase of 

the driving field of the beam, and is equal to KZ. The second part is caused by the relative 

phase shift of the two radiated waves, and is equal to -crnntmz, where 0 = fl for the forward 

and backward propagating waves. The total phase exponent, exp(iKz - ig~,,,z) should be 

integrated over the length of the slot, yielding the factor 

.fn,m (0) = f j&G (6 - ~Kn,rn) Z> dz = iz (n -‘,, ) bp (G - ~~n,m>~> - 11 (21) 

0 n,m 

for the E modes and a similar factor &, (a), for which IC~,~ -+ /c;,~ in Eq. (21), for the 

H modes. These factors multiply the amplitudes CZECH and ui$, in Eqs. (10) and (11). 

. Combining all these changes, and taking into account that for a long slot, ad = -omg, 

results in the following modifications of the functions FtE) and FtH) in Eqs. (15) and (17): 

FtE) (x) = F (y)’ xd&. 
- n.m 

X {sin2[+(x--m)]+sin2[Q$++Jn)] } , (22) 

- and FtH) given by the same expression with CL,,,, substituted by cl;,,. The factors fn,m (a) 

reduce to 1 in the limit Z << IK - UK,,, I-‘, reproducing the result for a short slot. In the 

opposite limit, Z > IK - ale,,, I-l, the effective length of the slot that contributes to the real 

part of the impedance turns out to be equal to IK - al~,,,I-~, which means that ReZ (w) 

also does not depend on Z in the limit Z >> ~-l (but ~-l >> w ). 
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VI. REGULAR ARRAY OF SLOTS 

Consider an array of N identical slots distributed along the beam pipe such that the 

distance between the slots is equal to dr. The system has a period d = I + dr; see Fig. 2 (we 

do not assume here short slots that allow 1 to be comparable with b and 6-r). Notice that - - 

the z-coordinate of the left end of the nth slot is equal to z,, = nd. The electromagnetic 

field scattered by the array is the sum of the fields of individual slots. As discussed above, 

in the first approximation of the perturbation theory, the impedance is equal to NZ, where 

2 is given by Eq. (6). However, since the energy radiated by the array of slots is a quadratic 

function of the amplitude of the waves, it will be shown below that, at resonant frequencies, 

- there is a strong amplification in ReZ which scales as N2. 

l--d---l 1-Q-i 0000 
lo-94 702&v 

-- 

Figure 2. Periodic array of slots. 

. 
To find the radiation from N slots, it is necessary to sum their fields, taking into account 

the relative phase advance between the fields of deferent slots. As shown in the’ previous 

section, the phase advance between two adjacent slots is equal to exp (ilcd - iab,,d). For 

N slots, the amplitude of (n,m) E mode should be multiplied by the following factor: 

The square of the absolute value of gn,m (a), 

(23) 

multiplies each sine term in Eq. (22) modifying the function J’tE) into the following 

expression: 
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sin2 [( dNp,J 2b) (x - J-)] 

sin2 [( d,+J 2b) (x - JZXJI 

1 (25) 

For the H modes, the function FtH) (x) contains pL,m instead of p,,, in Eq. (25). 

The maximum value of 1gn,m12 in Eq. (24) is equal to N2 and is attained when the 

following condition holds 

d (K - CTK,,~) = 2q7r, (26) 

where q is an integer. For large N, Eq. (24) represents narrow peaks with a width at half 

height Aw/w M 1/(2qN) at the resonant frequencies. This implies that the Q factor for 

these resonances can be estimated as Q M qN. For the problems where only the integral 

strength of the impedances is important, and N > 1, lgn,m (o)j2 can be approximated by a 

sum of delta functions, 

lgn,m @)I” = 27rN 2 6 [d(rc - arc,,;) - 2rq] . 
q=-m 

(27) 

If d/b = 2rq/pn,rn (or d/b = 2rq/&,m) t Eq. (26) is satisfied by the cutoff frequency w,,~ 

(or w;,~). In th is case, the height of the resonant peaks will be strongly amplified because 

of the superposition of the cutoff singularity for a single peak with a maximum of the lg,,,12 

function. 

In the limit of very large N, N + 00, the width of the resonances becomes so narrow 

that it will actually be determined by the finite conductivity of the walls CT. The transition 

to this regime occurs when Q becomes comparable to b/S, where S is the skin depth at the 

resonant frequency. Previously, this regime has been studied in detail for an infinitely long 

periodic bellow in Ref. [8], where the resonance conditions (26) have also been found. 
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VII. RANDOMIZATION OF THE SLOT POSITIONS 

In cases when a large number of slots is involved, the resonant peaks in the impedance 

may create a real danger for the stability of the beam. One of the ways to improve the 

situation is to randomize the positions of the slots. As we will show below, randomization 

can help to suppress the resonances. 

f-+dO++'/-dO+~2-t-dO+~3-j 
00 -0 

IO-94 7828A3 

Figure 3. Random distribution of slots on the beam pipe. 

Assume that the slots are randomly distributed along the pipe so that the location of 

the jth slot relative to the (j - 1)th slot is equal to d+[jj, where {j are independent random 

Gaussian variables whose average value is equal to zero, (&) = 0, and the rms value is 

equal to see Fig. 3. The z-coordinate of the jth slot is given by the following 

. expression: 

In this case, Eq. (23) for the factor gn,m (a) takes the following form 

-- 

? = jd+k &. 
s=l 

(28) 

Because the impedance functions contain the square of the absolute value of this factor, we 

will find the averaged value of lgn,m (a) I”. We have 

lSn,m (o)12 = ( xexp[iKd(p- j) +il&(.] ) 
PA .s=p 

= C exp [iKd(p - j>I P,j [ /m 4p (0 exp(W) ] “-” j -CQ (2% 
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where K = IE - CJIE~,~, p ({) is the probability distribution function for the random 

variable x. For the Gaussian distribution of the locations of the slots, p(t) = 

(l/&Ad) exp(-t2/2 (W2), and the integration in Eq. (27) can be easily performed 

yielding 

lgn,m (o>12 = cexp [iKd(p - j) - K2Adl lp - jl/2] . 

Pd 
(30) 

An estimate of the peak value of ]gn,m (CT)]” attained at the K = 2rq/d is 

ma (l%a,m (~)12) = C exp (-A IP -A> 
P9.i 

x Ndj Ndp exp(-X]p-- j]) = 3 JJ (AN - 1 + 8”) , (31) 
0 0 

where X = 2r2q2AdLld2. When Ad < d/rqm, we recover the previous result, 

max (bn,m (a)12) = N2. However, in the opposite limit, Ad >> d/rqm, we have 

max (l!h,m (o)12) = T$iG , (32) 

so that the maximum values of ReZ (w) will be now multiplied by the factor given by Eq. (31). 

. Notice that ReZ (w) now scales oc N, rather than oc N2 [Eq. (24)] in the case of a regular 

structure. According to Eq. (31), higher q values will attenuate faster than the smaller ones. 

VIII. CONCLUSIONS 

We have presented a formalism for calculating the real part of the impedance for slots and 

arrays of slots, suitable for both short and long slots. In addition to broad band impedance, 

- this theory predicts the existence of narrow band peaks at the cutoff frequencies of different 

waveguide modes. In regular arrays of slots, additional peaks develop at the frequencies 

given by Eq. (26). At these frequencies, the radiation of different slots interfere coherently 

so that the amplitude of the field radiated by the slots is equal to the number of slots times 

the amplitude radiated by a single slot. Since the real part of the impedance is proportional 
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to the radiated energy, ReZ at these frequencies turns out to be proportional to the number 

of slots squared. The situation here is completely analogous to the diffraction of light on 

a periodic diffraction grating. As is well known, at some angles, the electromagnetic field 

transmitted through the individual slits of the grating is summed coherently, resulting in 

the intensity of light being proportional to the number of slits squared. 

Notice that in addition to the resonant and cutoff peaks studied in this paper, other 

sources of narrow band impedance in an array of slots are trapped modes below the cutoff 

frequency, which are studied in Ref. [9]. 

Since high values of the shunt impedance can cause instability of the beams, developing 

methods for suppression or even elimination of the peaks is desirable. One such approach 

was considered in this paper. It consists of randomization of the positions of the slots to 

break the periodicity of the array and destroy the coherent buildup of the radiated waves. 

If the degree of randomization is high enough, as shown is Sec. 6, it results in a suppression 

of the height of the peaks, making them eventually proportional to the number of the slots. 

Of course, the price for such a way of decreasing the peaks will be a diminished total area 

of the slots per unit length of the pipe. 
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APPENDIX 

Assume large aspect ratio slots for which orng M -ad. Then Eqs. (15)-(18) can be 

combined to yield 

ReZ = 2 qg (I1 + 12) ) 

where 

W 

I1 = nz (1 +l&,) F wn>m ’ (-1 

12 = c 
n2 

n, m p?,, - n2 

F w 

( > r %,?7I , 

(33) 

- and 

(35) 

1 In the limit of high frequency, w >> c/b, a large number of harmonics in Eqs. (34) will 

contribute to ReZ, and we can change the summation by the integration over n and m. 

Note that, for n, m >> 1, 

where f (x) is implicitly given by the following equation [ 101: 

7rx = Jf2-1- arccos $ . 

This reduces the sum Ii+ 12 to 

0000 

I1 + I2 = JJ f2 wb - - 

0 0 
dndmf2- 7 mf * ( 1 

(37) 

(38) 

The integration can be carried out if, instead of n and m, we use the integration variables 

c = nclwb and C = ncf (n/m)/wb, 

w2b2 ’ ’ 
II + I, = ---& J J c 2w2 b2 

d< 4 J-2 F $ = 3& ’ 
0 t 0 

Together with Eq. (33), Eq. (39) gives Eq. (20). 
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