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1. INTRODUCTION

In unpublished work circa 1948 Richard Feynman discovered that a quantum

mechanical particle whose coordinates and momenta obey the simplest nonrela-

tivistic commutation relations will admit a description of acceleration that is com-

patible with Newton's second law and with the action of a classical electromagnetic

�eld. This remarkable derivation was recently brought to the attention of the sci-

enti�c community by the elegant paper of Freeman Dyson (Dyson 1990). In his

editorial comment on the reconstructed proof Dyson remarks, \: : : here we �nd

Galilean mechanics and Maxwell equations coexisting peacefully. Perhaps it was

lucky that Einstein had not seen Feynman's proof when he started to think about

relativity." The proof has been generalized by Tanimura (Tanimura 1992) in a

paper that embeds the Feynman argument into the contexts of gravity and gauge

theories.

There are many themes to consider in the project of understanding the Feynman-

Dyson derivation. In this paper we concentrate on the following consideration:

Feynman and Dyson assume commuting spatial coordinates X1(t); X2(t); X3(t),

each a di�erentiable function of the time t. This occurs in the context of commu-

tation relations of the form [Xi; _Xj] = ��ij (� a constant) giving the formalism

the outward appearance of quantum mechanics. In the usual approaches to quan-

tum mechanics one has the corresponding equation [qi; pj] = i�h�ij where qi is the

position operator and pjis the momentum operator. These operators are not them-

selves functions of time in the Schroedinger representation of quantum mechanics,

but they are functions of time in the Heisenberg formulation. As a consequence

the Feynman-Dyson derivation does apply directly to quantum mechanics in the

Heisenberg formulation.

The derivation is not classicaL mechanics with the commutator interpreted as a

Poisson Bracket. As noted by Tanimura (Tanimura 1992), the Leibnitz rule needed

in the proof holds for Poisson brackets only if the dynamical variables are derived

from a Hamiltonian or a Lagrangian. One major reason for being interested in the
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proof stems from the fact that this assumption is not made. We wish to point out

that in a context of discrete physics the derivation can still be carried out, and that

in this context there need not be any demand for simultaneous values of position

and momentum operators. In fact, this idea is simply meaningless in our discrete

context.

Because the variables and �elds in the Feynman-Dyson derivation are noncom-

mutative, the question of Lorentz invariance requires a special analysis that we

shall not attempt in this paper, but comment on briey in the Appendix. There

is nothing paradoxical about the Feynman-Dyson derivation as it stands. It is a

piece of mathematical physics asking for a good interpretation.

The purpose of this paper is to analyze the Feynman-Dyson derivation in a

context of discrete physics. In this context a spatial variable Xi has values Xi, X
0

i ,

X 0 0

i ; : : : at successive values of discrete time. A measurement of velocity depends

upon the di�erence of position values at two di�erent (neighboring) values of dis-

crete time. Thus we may (by convention) identify the value of _Xi with X
0

i � Xi

and write _Xi := X 0

i �Xi. Since velocity depends upon two times and position on

only one time, the idea of simultaneous determination of position and velocity is

meaningless in the discrete context.

In order to achieve our aims we have had to go to the roots of the calculus of

discrete di�erences and discover an ordered version of this calculus that just �ts

the desired application. In this discrete ordered calculus (described in x2 and x3

of this paper) the operation of di�erentiation acts also to shift a product to its left

by one time step. Thus X _X := X 0(X 0 � X) while _XX := (X 0 � X)X. In the

discrete ordered calculus, _X and X do not commute and a speci�c commutation

relation such as _XX �X _X = � is regarded as a hypothesis about the structure of

their noncommutativity.

Furthermore, the discrete ordered calculus (DOC) obeys the rule for the dif-

ferentiation of the product, (AB)_= A _B+ _AB, precisely without any time-shifting

(see x2). This makes DOC an appropriate vehicle to support the calculus and
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noncommutative algebra that we need for our work.

In x4 we work out the derivation of electromagnetism in this discrete context.

We begin with the assumption of the commutation relations for Xi(i = 1; 2; 3):

1. [Xi;Xj] = 0

2. [Xi; _Xj] = ��ij.

Here the dot (�) is the discrete derivative and � is a commuting scalar in DOC. We

discuss reformulations of these equations in x4.

With Fi = �Xi and

H` =
1

2�
�jk`[ _Xj; _Xk]

Fj = Ej + �jk` _XkH`

(F = E + v �H)

we show that

(i) div H = 0

(ii) @H
@t

+r� E = 0 :

This is the desired result. Note that �ijk is the alternating symbol, and that

F = E + v �H de�nes E.

In order to interpret these equations as electromagnetism we need the other

two Maxwell equations:

divE = 4��

@E

@t
�r�H = 4�j

In our context, following Dyson, we take these equaions as de�nitions of � and

j. With these conventions we have a non-commutative electromagnetic formalism.

It remains to be understood how this formalism is related to standard electro-

magnetism, and how the considerations of special relativity enter into this non-

commutative context.. It is our purpose, in this �rst paper, to put the derivation
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on a �rm footing in order to provide a platform for consideration of these problems

in subsequent work.

We have taken great care to perform this derivation in the discrete ordered

calculus. This involves taking the following de�nitions for partial derivatives of a

function f(X):

@f

@Xi
=

1

�
[f; _Xi]

_f =
@f

@t
+ _Xj

@f

@Xj
:

(The Einstein summation convention is in e�ect.) These de�nitions are discussed

in x4.

We wish to close this introduction with a remark about the commutativity

of X and X 0. X 0 is regarded as the indicator of X after one discrete time step.

Formally, we can write both XX 0 and X 0X. However, in our conventions XX 0

means [measure X 0, then measure X] and this would require the observer to step

backwards in time! For this reason we do not assume that XX 0 = X 0X, and this

gives us the formal freedom to postulate (in x4) a set of commutation relations

among fXi;X
0

j g that can be regarded as the basis of our derivations. In a sequel

to this paper we shall discuss actual numerical solutions to these relationships.

Obviously, much more work remains to be done in this domain. We shall

discuss gravity/quantum formalism in a sequel to this paper.
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2. Motivating a Discrete Calculus

In one-dimensional standard quantummechanics in the Heisenberg formulation

(Dirac 1947) the uncertainty principle takes the form of a commutation relation

QP � PQ = �hi

where Q and P denote, respectively, the position and momentum operators for the

quantum mechanical particle, and �h is Planck's constant divided by 2� (i2 = �1).

There are many interpretations of this formalism. In the Schr�odinger picture

of quantum mechanics the system is represented by a wave function,  =  (x; t).

where x denotes the spatial coordinate and t denotes the temporal coordinate. The

operators Q and P are de�ned by the equations

Q = x P =
�h

i

@ 

@x
:

Thus

(QP � PQ) = x
�h

i

@ 

@x
�

�h

i

@

@x
(x ) = (�hi) :

Hence QP � PQ = �hi.

The Heisenberg picture is not tied to this particular interpretation. It simply

asserts that the order of application of the position and momentum operators

matters|and that the di�erence of these orders is described by the commutation

relations.

We can �nd an almost identical commutation relation by thinking about posi-

tion and momentum in a classical but discrete context. In a discrete universe time

goes forward in measured ticks, and space occurs only in discrete intervals. We

can imagine position determined at an instant, but to �nd velocity or momentum

the clock must advance one tick to allow computation of the ratio of change of

position to change of time. In measuring position �rst and then momentum, we
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advance the clock after determining position. If momentum is measured before

position, the clock advances before the measurement of position and the position is

determined at a later time. In this way PQ and QP di�er due to the intervening

time step.

Let us quantify these last remarks by working with discrete position X and

discrete velocity _X . Let X, X 0, X 0 0; : : : denote the sequence of values for X at

successive times t0, t1, t2; : : :. De�ne the value of _X to be X 0 � X and write

_X := X 0 �X to indicate this evaluation. We regard _X as a discrete velocity with

the time-step normalized to 1 by convention.

Let X _X denote the process-measure _X then measure X. Thus, on evaluating,

we �nd

X _X := X 0(X 0 �X)

since measuring _X requires stepping forward in time to the position X 0.

On the other hand, _XX denotes the process|measure X then measure _X .

Thus _XX := (X 0 �X)X.

We conclude that

X _X � _XX := X 0(X 0 �X)� (X 0 �X)X :

This di�erence is not zero, and if it turns out to be a constant (�) then we have

the equation X _X � _XX := �, a discrete analog to the Heisenberg commutation

relation.

In order to take the derivations of Dyson (Dyson 1990) and Tanimura (Tan-

imura 1992) and place them on a discrete foundation we shall develop a time

ordered calculus that generalizes the ideas that have been presented in this sec-

tion. We end this section with an informal discussion of some of the issues that

are involved.
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One issue that must be faced is the question of the commutativity of X and

X 0. We can formally write both X 0X and XX 0. The �rst (X 0X) means|measure

X, take a time step, measure X after the time step. However, XX 0 does not have

operational meaning in this same sense, since X 0 demands a time step while X

asks for the value at a previous time. We therefore assume that X 0X and XX 0

are distinct without yet making any explicit assumption about the value of their

di�erence.

The second issue involves evaluation. We have been careful to write _X :=

X 0 � X rather than _X = X 0 � X since the dot in _X is a special instruction to

shift time to its left in the ordered calculus. The directed equals sign (:=) is used

to indicate evaluation. Thus we can write A _B := A 0(B 0 �B) and

A _B _C := (A _B) 0(C 0 � C)

:= A 0 _B 0(C 0 � C)

:= A 0 0(B 0 �B) 0(C 0 � C)

:= A 0 0(B 0 0 �B 0)(C 0 � C) :

(We assume that (XY )0 = X 0Y 0.) Each step in evaluation must perform all the

time shifts for any dot that is eliminated. We shall return to this issue in the next

section.

Returning to X _X and _XX, we evaluate and �nd

X _X � _XX : = X 0(X 0 �X)� (X 0 �X)X

= X 0(X 0 �X)�X(X 0 �X)

+X(X 0 �X) � (X 0 �X)X

= (X 0 �X)(X 0 �X) +XX 0 �X2 �X 0X +X2

= (X 0 �X)2 + [X;X 0] :

Thus

X _X � _XX := (X 0 �X)2 + [X;X 0]

where [A;B] = AB �BA. (In general, we will not assume that [X;X 0] = 0.)
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If X and X 0 commute, then [X; _X ] := (X 0 �X)2. In this context one might

assume that (X 0 �X)2 = � is constant and declare that X _X � _XX = �.

If X and X 0 do not commute then the formula above shows how their com-

mutator is related to [X; _X ].

To summarize: The dot in _X is an instruction to take a time step. A product

AB means do B, then do A. Therefore X _X := X 0(X 0 �X) since measuring X

after one time step yields X 0.

3. A Discrete Ordered Calculus|DOC

By a variable X we mean a collection of algebraic entities X, X 0, X 0 0, X 0 0 0; : : :

called \the values of X at successive steps of discrete time." No assumptions of

commutativity are made for these variables, but we do assume that multiplication

is associative and that multiplication distributes over addition and that there is

a unit element, 1, such that 1X = X1 for all X. Furthermore we assume that

1 0 = 1. Similarly, there is a 0 such that 0 +X = X for all X and 0 0 = 0.

At this point the reader will see that we are assuming that a noncommutative

ring R has been given, and that X;X 0; : : : ; Y; Y 0; : : : belong to R. (Note that this

means that we assme that X 0+Y = Y +X 0.) Thus we can speak concisely by saying

that we assume as a given a (noncommutative) ring R with unit (1) equipped with

a unary operator 0 : R! R such that 1 0 = 1 and 0 0 = 0 and (a+ b) 0 = a 0 + b 0 for

all a and b in R, and (ab) 0 = a 0b 0 for all a; b in R. In the context of the ring R,

we shall de�ne a discrete ordered calculus by �rst adjoining to R a special element

J whose sole purpose is to keep track of the time shifting. We assume that J has

the properties:

1. J 0 = J

2. AJ = JA 0 for all A 2 R

(of course JJ 0 = JJ so this works for J as well).
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We let bR be the ring obtained from R by formally adjoining J to R with these

properties. Since bR is, by de�nition, a ring with unit this means that

(X + Y )J = XJ + Y J

J(X + Y ) = JX + JY

J0 = 0; J1 = 1; etc:

Now note that any expression in bR can be rewritten (using AJ = JA 0) in the form

of a sum of elements of the form JkZ where there is no appearance of J in Z. We

can de�ne an evaluation map E : bR! R by the equations

(i) E(A+B) = E(A) + E(B) for any A;B 2 R

(ii) E(JkZ) = Z whenever Z 2 R.

E is de�ned on bR by writing A 2 bR as a sum of elements of the form JkZ and

then applying (i) and (ii) above. For example

E(AJ +BJ(CJ)) = E(JA 0 + J2B 0 0C 0) = A 0 +B 0 0C 0

(assuming that A;B;C 2 R). It follows from our assumptions that E : bR ! R

is well-de�ned, but we shall omit the proof of this fact. Note that, by de�nition,

E(E(X)) = E(X) where we regard R � bR as the set of expressions in bR without

any J 's. In fact, we note that bR �=
L

1

n=0 J
nR where

JnR = fJnr j r 2 Rg and (Jnr)(Jms) = Jn+mr(m)s

where r; s;2 R and r(m) = r00:::0, with m \primes". With this reformulation, the

evaluation map is obviously well de�ned. Now we are prepared to de�ne di�eren-

tiation in bR and therefore initiate the discrete ordered calculus (DOC).

De�nition 3.1. De�ne D : bR! bR by the equation D(X) = J(X 0 �X). The pres-

ence of J in DX makes it a time-shifter for expressions on its left. [Compare this

approach with (Etter and Kau�man 1994). That approach arose from discussions

about an early version of the present paper.]
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Proposition 3.1. Let A;B 2 bR. Then

D(AB) = D(A)B +AD(B) :

Proof.

D(AB) = J((AB) 0 �AB)

= J(A 0B 0 �A 0B +A 0B �AB)

= J(A 0(B 0 �B) + (A 0 �A)B)

= JA 0(B 0 �B) + J(A 0 �A)B

= AJ(B 0 �B) + J(A 0 �A)B

= AD(B) +D(A)B :

We see from the proof of this proposition how the ordering convention in the

discrete calculus has saved the product rule for di�erentiation.

In a standard commutative time-discrete calculus, one of the terms in the ex-

pansion of the derivative of a product must be time-shifted. The same phenomenon

occurs in the in�nitesimal calculus, but there an in�nitesimal shift is neglected in

the limit:

d

dt
(fg) = lim

h!0

f(t+ h)g(t+ h)� f(t)g(t)

h

= lim
h!0

f(t+ h)g(t+ h)� f(t+ h)g(t) + f(t+ h)g(t)� f(t)g(t)

h

= lim
h!0

f(t+ h)

�
g(t+ h) � g(t)

h

�
+

�
f(t+ h) � f(t)

h

�
g(t)

=

�
lim
h!0

f(t+ h)

�
dg

dt
+

�
df

dt

�
g(t) :

It is interesting to see how the evaluations work in speci�c examples. In writing
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examples it is convenient to write _A for D(A). Thus _A = J(A 0�A). For example:

(X _Y )_= J((X _Y ) 0 �X _Y ))

= J((XJ(Y 0 � Y )) 0 �XJ(Y 0 � Y ))

= J(X 0J(Y 0 0 � Y 0) �XJ(Y 0 � Y ))

= J(JX 0 0(Y 0 0 � Y 0)� JX 0(Y 0 � Y ))

= J2(X 0 0Y 0 0 �X 0 0Y 0 �X 0Y 0 +X 0Y ) :

Thus E((X _Y )_) = X 0 0Y 0 0 �X 0 0Y 0 �X 0Y 0 +X 0Y . On the other hand,

_X _Y = J(X 0 �X)J(Y 0 � Y )

= J2(X 0 0 �X 0)(Y 0 � Y ) :

X �Y = XJ( _Y 0 � _Y )

= XJ(J(Y 0 � Y ) 0 � J(Y 0 � Y ))

= XJ2(Y 0 0 � Y 0 � Y 0 + Y ))

= J2X 0 0(Y 0 0 � 2Y 0 + Y ) :

_X _Y +X �Y = J2[(X 0 0 �X 0)(Y 0 � Y ) +X 0 0(Y 0 0 � 2Y 0 + Y )]

= J2[X 0 0Y 0 �X 0 0Y �X 0Y 0 +X 0Y +X 0 0Y 0 0 � 2X 0 0Y 0 +X 0 0Y ]

= J2[�X 0 0Y 0 �X 0Y 0 +X 0Y +X 0 0Y 0 0]

= (X _Y )_ :

This is a working instance of our formula D(AB) = D(A)B + AD(B). In the

remainder of the paper it will be useful to writeA := B to mean that E(A) = E(B).

In particular, we will often use this to mean that B has been obtained from A by

expanding some derivatives and throwing away some or all of the left-most J 's. This

means that while it is true that E(A) = E(B), A and B cannot be substituted

for one another in larger expressions, since they contain di�erent time-shifting

instructions.
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An example of this usage is:

_X _Y := _X 0(Y 0 � Y ) :

Note that

_X _Y = _XJ(Y 0 � Y ) = J _X 0(Y 0 � Y ) :

Thus

E( _X _Y ) = E( _X 0(Y 0 � Y )) :

In calculating, the := notation allows us to \do the J 's in our heads."

Discussion

With the DOC formalized we can return to the structure of the commutator

[X; _Y ] = X _Y � _Y X. We have

[X; _Y ] := X 0(Y 0 � Y )� (Y 0 � Y )X

:= X 0(Y 0 � Y )�X(Y 0 � Y ) +X(Y 0 � Y )� (Y 0 � Y )X

:= (X 0 �X)(Y 0 � Y ) +XY 0 �XY � Y 0X + Y X

:= (X 0 �X)(Y 0 � Y ) + (XY 0 � Y 0X)� (XY � Y X)

[X; _Y ] := (X 0 �X)(Y 0 � Y ) + [X;Y 0]� [X;Y ] :

This formula will be of use to us in the next section.

Note how, in this formalism, we cannot arbitrarily substitute _X for X 0 � X

since the de�nition of the dot (\�") as a time-shifter can change the value of an

expression. Thus (X 0�X)(Y 0�Y ) 6= _X _Y . It may be useful to writeX 0�X = k _Xk

where k _Xk is by de�nition the di�erence, stripped of its time-shifting properties.

Then (X 0 �X)(Y 0 � Y ) = k _Xk k _Y k and we can write

[X; _Y ] := k _Xk k _Y k+ [X;Y 0]� [X;Y ] :

Since [A;B] = AB �BA these commutators satisfy the Jacobi identity. That
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is, we have

[[A;B]; C] + [[C;A]; B] + [[B;C]; A] = 0:

The proof is by direct calculation.

4. Electromagnetism

In this section we give a discrete version of the Feynman-Dyson (Dyson 1990)

derivation of the Maxwell equations from basic quantummechanical formalism. We

shall work in the discrete ordered calculus (DOC) of x3. We assume time-series

variables X1, X2 and X3 and the commutation relations

(i) [Xi;Xj] = 0 8ij

(ii) [Xi; _Xj] = ��ij

where � is a constant and � commutes with all expressions in DOC.

We further assume that there are functions Fi(X _X) (i = 1; 2; 3) such that �Xi =

Fi(X; _X). (Here writing F (X) means that F is a function of X1; X2; X3.) It is the

purpose of this section to show that Fi takes on the pattern of the electromagnetic

�eld in vacuum. Our �rst task will be to rewrite the above relations in terms of

the discrete ordered calculus.

Proposition 4.1. Given that [Xi;Xj] = 0 for all i; j = 1; 2; 3, and letting �i =

X 0

i �Xi, the equations [Xi; _Xj] = ��ij imply the equations

E([Xi;X
0

j ] + �i�j) = E(��ij) :

Proof. First assume [Xi; _Xj] = ��ij. Then [Xi; _Xj ] := k _Xik k _Xjk + [Xi;X
0

j ] �

[Xi;Xj] by the calculation at the end of x2. Here k _Xik = X 0

i � Xi = �i and

[Xi;Xj] = 0. Thus

[Xi; _Xj ] = �i�j + [Xi;X
0

j ] :

This completes the proof.
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Discussion. This proposition shows how the Heisenberg type relations Xi
_Xj �

_XjXi = ��ij translate into the time-series commutation relations XiX
0

j �X
0

jXi :=

��ij ��i�j. From the point of view of discrete physics it is these relations that

will implicate electromagnetism. Since there is no a priori reason for the elements

of time series to commute with one another, we can regard the equations

XiXj = XjXi

XiX
0

j �X 0

jXi = ��ij ��i�j

(�i = X 0

i �Xi)

as setting the context for the discussion of the physics of a discrete particle. It is

in this context that the patterns of electromagnetism will appear.

Derivatives

We shall need to interpret certain derivatives in terms of our discrete formalism.

First of all, we have

@Xi

@Xj
= �ij :

Therefore

[Xi; _Xj] = �
@Xi

@Xj

:

Consequently, we make the following

De�nition. Let G be a function of X, then we de�ne @G=@Xi by the equation

@G

@Xi
= ��1

h
G; _Xi

i
:

We also wish to de�ne @G=@t. This time derivative is distinct from _G. It should

satisfy the usual relationship for multi-variable calculus:

_G =
@G

@t
+ _Xj

@G

@Xj
(summed over j = 1; 2; 3) :

15



Therefore we de�ne @G=@t by the equation

@G

@t
= _G � _Xj�

�1
h
G; _Xj

i
(summed over j = 1; 2; 3)

when [Xm; G] = 0 for m = 1; 2; 3.

The condition [Xi; G] = 0 for i = 1; 2; 3 implies that G has no dependence on

_Xj (j = 1; 2; 3) under mild hypotheses on G. For if we assume that G is either a

polynomial or a (non-commutative) power series in Xj and _Xj then the equations

[Xi; _Xj] = ��ij and [Xi;Xj] = 0 show that (under these assumptions) that G has

no occurance of _Xj. It is necessary to de�ne @
@t

since our discrete theory does not

carry the conventional time variable t.

With these de�nitions in hand, we can proceed to the consequences of the

commutation relations (i) and (ii).

Lemma 4.2.

[ _Xi;Xj] = [ _Xj;Xi] :

Proof.

XiXj = XjXi

) (XiXj)_= (XjXi)_

) _XiXj +Xi
_Xj = _XjXi +Xj

_Xi

) _XiXj �Xj
_Xi = _XjXi �Xi

_Xj

) [ _Xi;Xj] = [ _Xj;Xi]

Lemma 4.3.

[ _Xj; _Xk] + [Xj; �Xk] = 0 :

Proof.

Xj
_Xk � _XkXj = ��jk

) _Xj
_Xk +Xj

�Xk � �XkXj � _Xk
_Xj = 0

) [ _Xj; _Xk] + [Xj; �Xk] = 0
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Since �Xj = Fj(X; _X) we have

Lemma 4.3 0.

[ _Xj; _Xk] + [Xj; Fk] = 0 :

Thus

[X`; [Xj; Fk]] = �[X`; [ _Xj; _Xk]]

= [ _Xj; [ _Xk;X`]] + [ _Xk; [X`; _Xj]]

(by the Jacobi identity)

= [ _Xj;��k`�] + [ _Xk; ��`j]

= 0 + 0 = 0 :

Also, since

[Xj; Fk] = �[ _Xj; _Xk] = +[ _Xk; _Xj] = �[Xk; Fj] :

Thus

[Xj; Fk] = �[Xk; Fj] :

We now de�ne the �eld H by the equation

���jk`H` = [Xj; Fk]

where �jk` is the alternating symbol for 123. That is, �123 = +1 and �abc = sgn(abc)

if abc is a permutation of 123 where sgn(abc) is the sign of the permutation.

Otherwise, �abc = 0.

Note that [X`; [Xj; Fk]] = 0 implies that [X`;��jk`H`] = 0 which in turn

implies that [X`;Hs] = 0. This implies that Hs has no dependence upon _X since

_X has nontrivial commutator with X. Under these circumstances we will regard
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H as a function of X and compute @H=@t according to the formula

@H

@t
= _H � _Xj�

�1[H; _Xj]

as discussed above.

De�nition.

Ej = Fj � �jk` _XkH` :

With this de�nition of E, we have F = E + v �H where v = _X.

Lemma 4.4.

[Xm; Ej] = 0 :

Proof.

[Xm; Ej] = [Xm; Fj � �jk` _XkH`]

= [Xm; Fj]� [Xm; �jk` _XkH`]

= ���mj`H` � �jk`Xm
_XkH` + �jk` _XkH`Xm

= ���mj`H` � �jk`Xm
_XkH` + �jk` _XkXmH`

= ���mj`H` � �jk`[Xm; _Xk]H`

= ���mj`H` � �jk`��mkH`

= (���mj` � ��jm`)H`

= 0 :

Thus E also has no dependence upon _X.
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Remark 4.5.

H` =
��1

2
�jk`[ _Xj; _Xk] :

Proof.

���jk`H` = [Xj; Fk]

and by Lemma 4.3 0,

[Xj; Fk] = �[ _Xj; _Xk] :

Thus

�jk`H` = ��1[ _Xj; _Xk] :

From this it follows that

H` =
��1

2
�jk`[ _Xj; _Xk] :

Lemma 4.6.

divH =

3X
i=1

@Hi

@Xi
= 0 :

Proof.

X
`

@H`

@X`

= ��1
X
`

[H`; _X`]

=
��2

2
�jk`[[ _Xj; _Xk]; _X`]

= 0 (by the Jacobi identity) :

Thus div H = 0.
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Lemma 4.7.

@H`

@t
= �jk`

@Ej

@Xk

:

Proof.

H` =
��1

2
�jk`[ _Xj; _Xk]

@H`

@t
= _H` � _Xj�

�1[H`; _Xj]

(See the discussion of @=@t given earlier in this section.)

Now

_H` =
��1

2
�jk`[ _Xj; _Xk]_

=
��1

2
�jk`([ �Xj; _Xk] + [ _Xj; �Xk])

= ��1�jk`[ �Xj; _Xk]

= ��1�jk`[Fj; _Xk]

= ��1�jk`[Ej + �jrs _XrHs; _Xk]

= ��1�jk`[Ej; _Xk] + ��1[ _XkH`; _Xk]� ��1[ _X`Hk; _Xk] :

And

[ _XkH`; _Xk]� [ _X`Hk; _Xk]

= _XkH`
_Xk � _Xk

_XkH` � _X`Hk
_Xk + _Xk

_X`Hk

= _Xk[H`; _Xk]� _X`[Hk; _Xk] + [ _Xk; _X`]Hk

= � _Xk

@H`

@Xk

� � _X`

@Hk

@Xk

+ [ _Xk; _X`]Hk :

Thus

_H` = ��1�jk`[Ej; _Xk] + _Xk

@H`

@Xk

� _X`

@Hk

@Xk

+ ��1[ _Xk; _X`]Hk :
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Hence

@H`

@t
= _H` � _Xj

@H`

@Xj
= �jk`

@Ej

@Xk

� _X`

@Hk

@Xk

+ ��1[ _Xk; _X`]Hk :

However the second term on the right vanishes because div H = 0, and the third

term vanishes by symmetry. To see this, note that

H1 = ��1[ _X2; _X2]

H2 = ���1[ _X1; _X3]

H3 = ��1[ _X1; _X2] :

Thus

�[ _Xk; _X`]Hk = [ _X1;X`][ _X2; _X3]� [ _X2; _X`][ _X1; _X3]

+ [ _X3; _X`][ _X2; _X2] :

This vanishes for ` = 1; 2; 3. Therefore

@H`

@t
= �jk`

@Ej

@Xk

:

This Lemma completes the derivation of Maxwell's equations. We have shown that

divH = 0

and

@H

@t
+r� E = 0 :

As Dyson (Dyson 1990) remarks, the other two Maxwell equations

div E = 4��

@E

@t
�r�H = 4�

�!
j

can be taken to de�ne the external charge and current densities � and j. However it

is important to realize that our entire theory has applied only to a single trajectory.
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We can regard this trajectory (and its \particle") as de�ning an electromagnetic

�eld, or we can regard this particle as moving in an external �eld with these

properties. We cannot have it both ways. The analysis so far in no way takes into

account the self-interaction of this particle or its interactions with other particles

and �elds. Of course, our talk at this stage about the \trajectory" of a particle is

an analog of a physical trajectory. The trajectory we talk about is in the space of

A�A�A where A denotes the non-commutative operator algebra that underlies

the theory. An eventual interpretation of this theory in terms of trajectories in

physical space is a possible consequence of further analysis of our formalism. It is

beyond the scope of this preliminary paper.

We feel that the foregoing analysis of the Feynman-Dyson derivation in a dis-

crete context lays bare much of the beautiful structure of the electromagnetic

formalism and its relation to a condition of discrete time. We hope to probe this

structure more deeply in subsequent papers.

APPENDIX 1: Historical Remarks

One of us (HPN) has already claimed that the Feynman proof is not paradox-

ical (Noyes 1991) in the context of the �nite and discrete reconciliation between

quantum mechanics and relativity (Noyes 1987) achieved by a new fundamental

theory (Noyes 1994a, Noyes 1992, McGoveran 1991, McGoveran 1989, Noyes 1989)

Noting that the Feynman postulates,

Fk(x; _x; t) = m�xk; [xi; xj] = 0; m[xi; _xj] = i�h�ij

are independent of or linear in m, we can replace them by the scale invariant

postulates

fk(x; _x; t) = �xk; [xi; xj] = 0; [xi; _xj] = ��ij

where � is any �xed constant with dimensions of area over time [L2=T ] and fk

has the dimensions of acceleration [L=T 2]. This step is suggested by Mach's con-

clusion (Mach 1875) that it is Newton's third law which allows mass ratios to be
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measured, while Newton's second law is simply a de�nition of force. Hence in a the-

ory which contains only \mass points", the Newtonian scale invariance of classical

MLT physics reduces to the Galilean scale invariance of a purely kinematical LT

theory. Breaking scale invariance in such a theory requires not only some unique

speci�cation of a particulate mass standard, but also the requirement that this

particle have some absolute signi�cance.

As has been remarked recently (Noyes 1994b), this aspect of scale invariance

had already been introduced into the subject by Bohr and Rosenfeld in 1933 (Bohr

1933). In their classic paper, they point out that because QED depends only on

the universal constants �h and c, the discussion of the measurability of the �elds

can to a large extent be separated from any discussion of the atomic structure of

matter (involving the mass and charge of the electron). Consequently, they are

able to derive from the non-relativistic uncertainty relations the same restrictions

on measurability (over �nite space-time volumes) of the electromagnetic �elds that

one obtains directly from the second-quantized commutation relations of the �elds

themselves. Hence, to the extent that one could \reverse engineer" their argu-

ment, one might be able to get back to the classical �eld equations and provide an

alternative to the Feynman derivation based on the same physical ideas.

Turning to the commutation relations themselves, we note that a velocity mea-

surement requires a knowledge of the space interval and the time interval between

two events in two well separated space-time volumes. Further, to embed these

two positions in laboratory space, we must (in a relativistic theory) know the time

it takes a light signal to go to one of these two positions and back to the other

via a third reference position with a standard clock. Thus we need three rather

than two reference events to discuss the connection between position and velocity

measurements. We can then distinguish a measurement of position followed by a

measurement of velocity from a measurement of velocity followed by a measure-

ment of position. The minimum value of the di�erence between the product of

position and velocity for measurements performed in the two distinct orders then

speci�es the constant in the basic \commutation relation" needed in the Feynman
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derivation. So long as this value is �nite and �xed, we need not know its metric

value. This speci�es what we mean by discrete physics in the main body of the

text.

Relativity need not change this situation. Specify c in a scale invariant way

as both the maximum speed at which information can be transferred (limiting

group velocity) and the maximum distance for supraluminal correlation without

information transfer (maximum coherence length). If the unit of length is �L and

the unit of time is �T , then the equation (�L=c�T ) = 1 has a scale invariant

signi�cance. Further, the interval I speci�ed by the equation c2�T 2��L2 = I2 can

be given a Lorentz invariant signi�cance. We can extend this analysis to includes

the scale invariant de�nition �E=c�P = 1 and the Lorentz invariant interval

in energy-momentum space (�E2=c2) � �P 2 = �m2 provided we require that

�P�L
�m

= �E�T
�m

. Then, given any arbitrary particulate mass standard �m, mass

ratios can be measured using a Lorentz invariant and scale invariant LT theory. We

trust that this dimensional analysis of the postulates used in the Feynman proof

already removes part of the mystery about why it works, and suggests how it can

be made \Lorentz invariant" in a �nite and discrete sense.

APPENDIX 2. On The Form of the Derivative

In our discrete ordered calculus (see section 3) we have de�ned the derivative

_X by the formula _X = J(X 0 �X) where J is a formal element satisfying J 0 = J

and XJ = JX 0 for all X. Thus we have the equation

_X = JX 0 � JX = XJ � JX = [X;J ]

This suggests that the equation _X = [X;J ] is an analog of the corresponding

equation in the Heisenberg formulation of quantum mechanics:

_X = [X;U ]

where U is the time-evolution operator.
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Michael Peskin has pointed out to us (private conversation) that we could

accomplish the discretization of time in our theory by taking U = e�iH�t (formally)

where �t denotes a discrete timestep. Then _X = [X;U ] and X 0 = U�1XU serves

to de�ne the time-step from X to X 0. Our approach and Peskin's meet if we

identify J and U ! The physical interpretation of this identi�cation deserves further

investigation.

In any case it is interesting to note the di�erentiation formula (XY )� = _XY +

X _Y follows directly from the formula _X = [X;J ] without the necessity of intro-

ducing the step X 0. This relationship between the discrete ordered calculus and

the algebra of commutators will be used in the next installment of our work.
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