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John Ellis†, Marek Karliner‡ and Mark A. Samuel§

Stanford Linear Accelerator Center
Stanford University, Stanford, California 94309, USA

and

Eric Steinfelds
Department of Physics

Oklahoma State University
Stillwater, Oklahoma 74078, USA

Abstract

We use Padé Approximants to obtain improved predictions for the anomalous
magnetic moments of the electron and the muon. These are needed because
of the very precise experimental values presently obtained for the electron,
and soon to be obtained at BNL for the muon. The Padé prediction for the
QED contribution to the anomalous magnetic moment of the muon differs
significantly from the naive perturbative prediction.
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Two of the most important tests of quantum electrodynamics (QED) are
the comparisons between theory and experiment of the anomalous magnetic
moments of the electron and the muon, ae and aµ respectively, where a =
(g−2)/2. The latest Penning trap measurements of the electron and positron

anomalies obtained by the University of Washington group1 are:

aexpt
e− = 1159652188.4(4.3) × 10−12 (1)

and
aexpt
e+ = 1159652187.9(4.3) × 10−12 (2)

The figures in brackets represent the error in the last 2 figures, a convention
we will follow throughout this paper. Taking the average of eqs (1) and (2),
one finds

aexpt
e = 1159652188.2(3.0) × 10−12 (3)

The most accurate measurement for the muon anomaly comes from the
CERN g−2 experiment2 in which it was found that

aexpt
µ− = 1165936(12) × 10−9 (4)

and
aexpt
µ+ = 1165910(11) × 10−9 (5)

and the combined result is

aexpt
µ = 1165923(9) × 10−9 (6)

where correlations are taken into account in combining the errors. A new
g−2 muon experiment is being done at Brookhaven National Laboratory
(BNL)3, and an improvement in the accuracy by a factor of about 20 is
expected. In order to compare properly theory and experiment, one must
improve correspondingly the accuracy of the theoretical predictions.

In an heroic feat, Kinoshita4 has calculated ae in eighth order and Ki-
noshita, Nizic, Okamoto5 and Marciano6 have calculated aµ in eighth or-
der. Moreover, there have been some recent improvements in the analytic
calculations7,8 of ae and aµ.

There have recently been several papers estimating coefficients in Per-
turbative Quantum Field Theory (PQFT) using Padé Approximants9,10.
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This procedure is known to give significant improvements on naive perturba-
tive calculations in many condensed-matter applications11, removes a large
part of the discrepancy between experiment and QED calculations of the
ortho-positronium decay rate10,12 and agrees well with other estimates of
higher-order perturbative coefficients in QCD9,13.

In this paper we will use Padé Approximants (PA’s) to estimate, not just
the next term in the perturbation series, but the entire sum of the series
(as is frequently done in condensed-matter applications), for both ae and
aµ. We obtain in this way a more accurate theoretical prediction of the
QED contribution to aµ, in particular, which lies outside the errors quoted
previously.

The first step is to obtain an accurate value for the fine-structure constant
α. The two most precise measurements of α are14

α−1 = 137.0359979(32) (7)

and15

α−1 = 137.0359840(50) (8)

We note that these two values differ by more than 2 standard deviations, but
nevertheless take the average of eqs (7) and (8) to obtain

α−1
exp = 137.0359939(27) (9)

The accuracy of this result limits the precision of tests of QED in the case
of ae, where both theory and experiment are extremely precise. The pertur-
bation series for ae is4

ae =
1

2
(
α

π
)− 0.328478965(

α

π
)2 + 1.17611(42)(

α

π
)3 − 1.434(138)(

α

π
)4 (10)

and the error in the theoretical prediction is dominated by the error in αexp.
The [N/M] Padé Approximant to a series

S = S0 + S1x+ S2x
2 + ...+ SN+Mx

N+M (11)

is given by

[N/M ] =
a0 + a1x+ ...+ aNxN

1 + b1x+ ...+ bMxM
(12)
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where one chooses the coefficients ai, bj so that

[N/M ] = S +O(xN+M+1) (13)

One can use such a PA either to predict the next coefficient SN+M+1 or to
evaluate [N/M ] for the relevant value of x (in our case x = α

π
), and obtain

an estimate for the sum of the series. Here we do the latter. The PA’s are
known to accelerate the convergence of many series by including the effects
of higher (unknown) terms, thus providing a more accurate estimate of the

series11. The PA’s also provide reliable estimates of many asymptotic series,
as is the case in QED10 and QCD9.

For our application, we first construct PA’s to ae after removing an overall
multiplicative factor of (α

π
). Our result for the [1/2] PA is

[1/2] = 1159652169.1(24.0) × 10−12 (14)

and the [2/1] PA agrees very well with the [1/2]:

[2/1] = 1159652169.0(24.0) × 10−12 (15)

The errors consist of 22.8 from α and 7.4 from the theoretical uncertainty.
To obtain ae one must add the contribution due to muon diagrams

∆ae(muon) = 2.8× 10−12 (16)

the contribution due to τ diagrams

∆ae(tau) = 0.01× 10−12 (17)

the hadronic contribution

∆ae(hadron) = 1.6(2)× 10−12 (18)

and the purely weak contribution

∆ae(weak) = 0.05× 10−12 (19)

for a total of
∆ae = 4.5(2) × 10−12 (20)
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Thus the theoretical prediction for ae is

ae = 1159652173.5(24.0) × 10−12 (21)

Comparing eq (21) with eq (3), we see that there is beautiful agreement
between theory and experiment:

aexpt
e − ae = 14.7(24.0) × 10−12 (0.61σ) (22)

As noted before, the error in eq (21) is dominated by the error in α. If
one now assumes that QED is correct, and hence that theory and experiment
agree, one obtains a new and more accurate value of α: αth, where the [1/2]
PA gives

αth = 137.03599228(86) (23)

and the [2/1] PA leads to

αth = 137.03599227(86) (24)

Comparing eq (23) with eq (9), one sees that there is beautiful agreement
with the less-precise experimental value.

α−1
expt − α−1

th = 16(28) × 10−7 (0.57σ) (25)

corresponding to the good agreement in eq (22). We note in passing that
this provides an a posteriori justification for averaging naively the two most
accurate measurements14,15 of α, and that the difference between the values
of α−1

th extracted using the perturbative series and the PA’s is just 3× 10−8.
We now turn to the anomalous magnetic moment of the muon, aµ. As is

usual, we first consider the difference6,8

aµ − ae = 1.09433583(7)(
α

π
)2 + 22.869265(4)(

α

π
)3 + 127.00(41)(

α

π
)4 (26)

In constructing a PA to this series, we must first remove an overall factor
(α
π
)2 from the perturbative series. In this way, we obtain the [1/1] PA value

(aµ − ae)[1/1] = 6194839(12) × 10−12 (27)

whereas the value from the series in eq (26) is

aµ − ae = 6194791(12) × 10−12 (28)
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Adding ae from eq (21), after subtracting ∆ae from eq (20), we obtain

aQED
µ = 1165847008(12)(27) × 10−12 (29)

where the first error is due to numerical integrations used in evaluating the
perturbative series, and the second error is due to α. This should be com-
pared the value of Kinoshita and Marciano6

aQED
µ = 1165846955(44)(27) × 10−12 (30)

We note that the difference between these two estimates of aQED
µ is consid-

erably larger than the error propagated from α. The reason for our smaller
error is that we have used the new more precise values in ref. [8].

If one now adds the hadronic16 and the weak6 contributions

∆aµ(had) = 7011(76) × 10−11 (31)

and
∆aµ(weak) = 195(10) × 10−11 (32)

one obtains the theoretical value

aµ = 116591907(77) × 10−11 (33)

The error is dominated by the error in ∆aµ(had), and new, more precise

experiments are underway in Novosibirsk and Frascati17 to reduce this error.
Comparing eq (33) with eq (6), we obtain

aexpt
µ − aµ = 4(9) × 10−9 (0.4σ) (34)

The error in the difference between theory and experiment is dominated by
the experimental error in eq (6), which should be reduced by a factor of 20

in the forthcoming BNL experiment3.
In summary, we have used PA to obtain new more precise values for

the QED values of ae and aµ . These PA values, in effect, estimate the
unknown higher-order contributions, and should be more precise than the
naive perturbative values used previously. It would be interesting to compare
our estimates with values obtained in a different way, for example using
the effective charge approach13 which agrees very well with PA’s in QCD
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applications9. Although smaller than some of the other uncertainties, the
shift we find in aµ, in particular, is significantly larger than other theoretical
uncertainties and the error due to α.
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