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Abstract

In order to mitigate the reappearance of the HOM w~efield of a detuned acceler-
ator structure and relax tolerance r~uirements, we propose to provide low level
damping by coupling dl cavities to several identicd and symmetrically located
waveguides (manifolds) which run parallel to each accelerator structure and are
tetinatd at each end by matched loads. me waveguides are designd such
that dl modes wtih couple to the acceleration mode are non-propagating at the
acceleration mode frequency. Hence the coupling irises can be designed to pro-
vide large coupling to higher frequency modes without damping the acceleration
mode. Because the higher order modes are detund, they are locatized and have
a broad specw of phase velocities of both signs, ~ey are therefore capable
of coupling effwtively to dl propagating modes in the waveguides. Methods
of analyzing and results obtained for the very complex system of modes in the
accelerating structure and manifolds are presentd.
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Figure 1: The wakefield envelope function computed from the double band equivalent
circuit of Ref. 3. The detuningdistributionis gaussian(for parameterssee Ref. 1) with a Q
of 6500 assumed.

INTRODUCTION

The accelerationcavities [1] for theNLC testaccelerator(NLCTA) aredisk-loaded structures
composed of 204 cells plustwo couplers, 1.8 metersin length, anddrivenat 11.424 GHz. In
order to suppressthetrmsverse wakefield thestructuresaredetuned. Thatis, thecell radius,
iris radius, and iris thickness[2] are vtied in a smooth (gaussian) way, with the variation
of these parameterscoupled so as to maintaina unifom ce~-to-ce~ phase advance of 120
degrees for themonopole mode when drivenat 11.424 GHz. As a resultof thisvtiation the
widths of the higher order mode (HOM) bands are increased, and thecell-to-cell amplitude
variation of the individud modes in a band is drastic~y altered. As a consequence an
off-center-chargebunch moving at thevelocity of fightexcites many modes per band rather
thm the single (synchronous) mode characteristicof a strictiy periodic structure,md the
averagedeflecting force experienced by a charge at fixed traifingdistances falls off sharply
ins at a rate proportional to the frequency spread of the band. The predicted behavior of
this wakefield over distances of interestis illustratedin Fig. 1. It is based on the two-band
equivalent circuit model [3] and includes an estimate of the effect of wdl losses. While
the wakefield does indeed exhibit an initial rapid fdl off, it is seen to reappearafter a few
meters[4]. This effect is associated with the fact thatthemode distributionwithina band is
discrete ratherthancontinuous, and as the elapsed time begins to exceed tie inversemode
separationthe suppressingeffect of a smooth gaussiandistributionis lost. As discussed in
Ref. 1, this reappearancecan be postponed by interleavingthe detuning among four such
structuresso as to lead to a factor four hcrease in the effective mode spectrum density.
However, submicron tolerances mustbe imposed in order to actually achieve thisextended
suppression.

. . We reportin thispaperthecurrentstatusof our investigationof thepossibtiityof suppress-
. ing thewake reappmrance by providing relativelyweak damping via thevacuummanifolds.

Our proposed structureis illustratedin Fig.2. The four vacuummanifolds runningthelength
of the structuredso function as multimode waveguides which serve to drain power from
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Figure 2: me damped detuned structure.

the HOM’S through the large coupling slots located in each cell, except for a few at each
end of themanifolds. ~is omission of coupfing attheends ti possible because analysishas
shown thatthecontributionof thesecells to thewdefield is negligible, and it enables us to
insert absorbing materialat each end, intended to serve as matched loads, in a convenient
way.

.

As WMbe explaind in thenextsection, thewaveguides aredesigned so thatonly a single
mode propagates at 11.424 GHz, and thatmode is tota~y decoupled from the acceleration
mode by its symmetry. As a cons~uence the size of the coupfig slots is limited ordy by
theireffect on the shuntimpedance of thatmode. We have set a timit of 5% degradationas
a wortig figure, which limits the space occupied by the slok to approximately one third
of the cell circumference. me effectiveness of the manifolds as dampers for the HOM’S
is connected to tie detuning in an essentirdway. me HOM’S of tie detuned structure
are localized standing waves with spatial variation of effective wavelength which varies
smoothly and extensively along the lengti of the mode. ~is is precisely tie featurewhich
a~ows many modes in a band to be excited by a velocity of fight particle. me excitation
patternof the mode as seen by thewaveguide is such thatit can drive a manifold wave at a
broad range of phase velocities. me coupling of a cavity mode b themanifold is strongest
when this range of phase velocities overlaps the phase velocity of one or more manifold
modes at the frquency of thecavity mode. As will be seen below, themanifolds havebeen
designd so thath-s is fie cue, and the calculations to be described indicate thatQ values
in the range 5M to lW can be achieved for most and perhaps dl of the modes which
contribute significandy to the wkefield. }
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MA~OLD Am DET~D DIPOLE MODES

From Fig. 2 we see that the damping waveguidesare approximatelyrectangular in cross
section,andconsequentlytheirmodescanbedesignatedby rectangularwaveguidenotation.
Wso the mode order is simfiarexcept that the degeneracybetween~.” and ~.. modes
is broken with the TM modes lying lower. me cutoff frequencies of the set of potentitiy
relevantmodes are tited in Table 1.

Table 1: Manifold mode cutoff frequencies

mlo 6.042 GHz
ml 11.507 GHz

11.926 GHz
m~~ 12.645 GHz
m~* 13.464 GHz
TM2~ 16.076 GHz

-. We see thatthe only mode which is propagating at 11.424 GHz is the ~lo. Referring
to Fig. 2, we see that the structureis symmetric with respect to reflection in the xz and
yz planes. The accelerating mode and the ~10 (in any of the manifolds) have opposite
behaviorunderone or theotherof thesereflections. Hence therecan be no coupling between
thismanifold mode and theacceleratingmode, andthereforethemanifolds do not damp the
acceleratingmode. Mm plots of the acceleratingmode show thatthe penetrationof tie
fields into the manifolds is weak and confined to tie region near the slots. The frequencies
of thesemodes as a function of phase advance per period are shown in Fig. 3.

We now turnour attentionto tie dipole modes. Figure 3 dso exhibits dispersion curves
of the first two dipole modes for the first, middle, and last cells of the 206 cells of tie
detuned structure, cells 1, 103, and 206. Thus it is apparent that the dispersion curve
for each cell crosses the dispersion curve of seved manifold modes. To qutitatively
explh thedamping process we turnour attentionto thedamping andexcitation of a single
cavity mode. This mode is represent in Fig. 3 by a horizonti tine corresponding to its
frequency. This pticular mode is loc~ed because iti mode he extends over the full
phase range without intersecting the first or last cell, the excited cells being those whose
dispersion curves intersect the mode fine. The value of the phase advance at which tie
dispersion curve of a particularce~ crosses the mode line corresponds roughly to the cell-
to-cell amplitude variation in i@ vicinity. Thus because the fight line crosses the cavity
mode line neara particularcell, we expect thatthe principal excitation of this mode is due
to the interaction of the drive bunch with cells in thatvicinity. Similarly, there is a cell
neighborhood associated with each manifold mode crossing, where effective coupling to
the crossing mode may occur. The lower dipole band dso has mode tines which terminate
at the first or last cell before reaching the 18~ phase advance limit. These modes extend
tQthe first or last cell but terminatein the interior of the structure. It is easy to see that

. every cavity mode ltie of the lower band which crosses the light line must rdso cross tie
dispersion curve of every propagatingmanifold mode. The upper dipole mode has cavity
mode lines which termtiate on the firstand last ce~. These cavity modes arenot loctized
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Figure 3: Dispersion curves for the manifold modes designated in Table I overlaying dis-
persion curves for the firsttwo dipole modes of the first@), middle (M), and last&) cells.
A cavity mode line (horizonti dotted he) is dso shown.

and have a hited phase advance range. There are fewer manifold mode crossings, but
there do not appear to be any cases for which a cavity mode which crosses the light line
has less than two manifold mode crossings. It shotid be mentioned thatthe upper dipole
modes in the light line region arelargely ~ in character(Ref. 3) andhence contibute only
wetiy to the w~efield.

-.

EQWVALENT CIRC~ MODEL

The quantitative results that we report in this paper have dl been obtained with the fo~owing

simplified model. FoUowing [3] we start with a single circuit chain in which each circuit
corresponds to a single cell mode and the cells are coupled magnetically. The coupled
equations for the ce~ exci~tion amplitudes am (m = 1, .... N) are

(1)

Here f. is the resonant frequency of cell m, f is the coupled mode frequency, and the
k’s represent the quivdent coupfing coefficient between adjacent celk. For the strictiy
periodic case with couphng coefficients K and ce~ frequency F one gets the usualsolution

. with constmt phase~dvance per ce~ ~ and frequency f

l/f2 = l/F2 + Kcos ~

5

relatedto ~ by

. (2)



I .

We describe the manifold modes as transmissionEnes and use s~dard transmissionline
equations with a series reactanceper unit length X and shuntsusceptence per unit length
B. For TM modes we tie the usual 2mfC for B, but 2zfL[l – (fC/f)2] for X. Here
jC is the cutoff frequency, c is the velocity of ligh~ and LC = l/c2. The propagation
constantkg = @then ties thecorrect waveguideform andthecharackristic impedence
Z=JW= ZO(kg/k) has the correct TM mode frequency dependence. Zo, which is
the infinite frequency hit of Z, wi~ be amalgamatedwith the cell-waveguide coupling -
parameter. For the TE case it is B ratherthan X which acquires the [1 – (fC/f)2] factor,
and Z = ZO(k/k~) has the correct TE form.

cm

Figure 4: ~uivdent circuit representationof the coupling of a single cell to a manifold
mode.

The TE.. manifold modes (n > O)and theTM manifold modes couple to thece~ modes
via theirtrmsverse magnetic field. Since thesearegeneratedby axial currentswe model the
coupting via a mutualinductanceM between aninductanceLCinthe cefl and aninductance
Lt inthe transmissionline as shown in Fig. 4. We first consider the case in which only
one cell, the mth, is coupled to the fine. It is easy to show thatthe current induced in the
transmissionline by a currenti~ in the ce~ may be written

It(z) = Zmexp(–jk~lz~ – zl) , (3)

where
jwMm .

‘m= – (2z + jwLt)lm (4)

- and Zm representsthe location of the coupbg slot on the transmissionline. Ewe couple
. othercells to thefifie, thelumped line inductancesLtassociated withthis coupling modifies

the transmissioncharacteristicsof the line, and Eq. 3 would have to be modified even if
au of the other i“ are zero. For the calculations reported in this section these inductances
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are assumed to produce a reactance small compared to X and are neglectd. With this
simplification we can immediately apply ~. 3 and Eq. 4 to W of the celh to yield a tod
transmissionhe current

I,(z) = -~ ~~n~”exp(-jkglz” - z]) . (5)
n

The ceU loop equations aremodified by the voltage induced by this currentas fo~ows:

j(wL. – *)i. + jw(~.-~i.-l + Mm+*im+l)

+jwM~l,(z.) = O . (6)

These equations arereduced to a generalizationof Eq. 1 by following Ref. 2 in multiplying
each equation by —2mj~/f and defining am - i./~. We thusobtain tie fo~owing
set of coupled equations

P is the structureperiod, and@ a kgP is the phase advance per period for the manifold
mode [5]. The last term of Eq. 7 (i.e., the summationterm) representscoupling to a single
manifold mode. To representthe actual situationit shotid include a simflar sum over dl
propagating modes, perhapswith some modification for those which do not couple via the
transversemagnetic field. However, the model calculations to be discussed in this paper
will-be limited to a single mode.

APPLICATIONS OF ~E MODEL

.

Equation 7 is a homogeneousmatrix equation for the cell amplitudes am which has non-
trivialsolutions only atvaluesof f (thecavity mode frequencies) for which thedeterminant
of the matrixvanishes. Standardmatrixdiagontization techniquescannot be used because
themanifold coupling term(henceforththedampingmatrixor damping term)depends upon
this frequency in a complicated way. k the absence of the damping term, however, it is
a linear eigenvdue equation for l/f 2, and because the damping matrix is small, the mode
frequencies for the undamped problem provide useful startingfr~uencies for an iterative
procedure to find the roots of the determinantincluding damping.

Using thismethod we studiedthe implications of Eq. 7 for a single set of parametersfor
the undamped problem: These were selated to correspond to a simplified version of the
NLC test accelerator cavity, fo~owing the procedure specified in Ref. 3. To simplify the
exploration of the dependence upon the mmifold coupling parameterswe limit parameter
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variation in the damping matrixto the manifold cutoff frequency fCand to an overrdlscale
factor for the ~~. The specific form Wen was

im = ~/fm , (9)

where $ is thedimensiodess scale factor, andthefactor l/f~ is insertedto obtainthecorrect
dimensions. Itwotid affect theresul~ very titde to replace it by so~e fixd scale frequency. -
Mso we found thatthe effect on the wtiefield was not serious if k. was set equal to zero
for the last six ce~s on each end. This is desirablebecause it males it possible to ksert the
absorbers into the manifold ends without extending tiem beyond the length of the cavity.
me resultsdiscuss~ in this paper include this modification.
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Figure 5: Damping by a single manifold mode computed for the single band model. Mani-
fold mode cutoff = 12 GHz and manifold coupfing parameter fi = .0247.

At frequencies below thewaveguide cutoff thedamping matrixis real and symmetric, so
that modes which occur below fChave red frequencies. Above fCthe mode frequencies
become complex and a Q for the mode is defined as usualby the ratio of the red to twice
the imaghary part of its frequency. Figure 5 provides a plot of the Q values of these
modes as a function of mode number (numberd from lowest to highest frequency), for fC
of 12 GHz and fi = 0.0247. The TE form for Z was sssumed in calculating this example.
me frequencies (i.e., the real part) of the modes are shifted by.amounts of the order of a
part in ld with comparable scatter. For small values of fi both the frequency distributions
and Q distribution-are& good agreementwith theresultsof firstorder perturbationtieo~..
me small fluctuationsseen in Fig. 5 for mode numbers in the 80 to 190 range disappear
for smaflervalues of thecoupling constant and increase for largervrdues. Similarcoupling
dependent fluctuationsappearin tie frequency distributionof thesemodes. These represent

8

.



I .

the main effect of the departurefrom pefirbation theory.We note that Q’s of the order of
1~ correspond to a resonance width, ~/Q, twice as large as the mode separationat the
peak of the mode spectrum. ~us substantialdistortion of the mode patternsis expected,
and because thegroup of ce~s withinthemode which arewe~ coupled to themanifold mode
is Ioctized, a tendency of the modes to sptit into more wetiy and more strongly damped
groups is perhaps not surprising. If this interpretationis correct, we should see smoother
resdts when more manifold modes are taken into account We have rdso varied $Cfrom -
zero to 12 GHz. We find thatthose modes whose mode hes cut the light line aredamped
about as well as those shown in Fig. 5, but thereare a substantialnumber of very wetiy
damped modes atthelow frequency end associatedwith thefact tiat theirmode linesdo not
cut the manifold mode dispersion curve. fiese restits support the physical interpretation
of the damping process given in section 2.
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Figure 6: Wakefield for the parametersused for Fig. 5. me effect of copper losses have
been included by combining the Q values of Fig. 5 with an assumed copper loss value of
65W.

Figure 6 shows the wakefield computed for the Fig. 5 parametersusing
and perturbed frequencies with the kick factors of the undamped modes.

the Q values
It would be

straightforward to obtain the perturbed amplitude distribution functions and to calculate the
wakefield from tiem, but this crdctiation has not yet been carried out. Comparing to Fig. 1,
we see that the reappearance at large distances has been completely suppressed [6]. me
deep minimum shown in Fig. 1 has dso disappeared. me latter resembles an effat which
had been observed when tie tolerance requirements for the undampd structure were studied

. and is befieved to be due to the scatter in the perturbed frequencies. me deep minimum
is not needed for beam stability, however, and the wakefield of Fig. 6 is considered to be
satisfactory.
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MAN~OLD CO~LING PARAMETERS

We discuss here a method we have used to relate the manifold coupling parameter fi to a
physical structure. We have used MAFU to study the spectrum of single ce~s coupled
to the manifolds m a function of phase advance per period. Since this corresponds to the
properties of a periodic structure we specialize ~. 7 to this case. ~us we set fm = F,
k. = K, and am = A exp(j~m). fie sum may then be carried out and in the ~ case the -
resdtant equation ties the form

(+-+ sin +
+ KCOS*)(COS* – cos#) = $*@F. (lo)

k the absence of manifold coupfing the WS of ~. 10 is zero, and a plot of the solution
~(~) would show two curves, the cavi~ dispersion curve associated with the vanishing
of the first factor on the LHS and the waveguide dispersion curve with that of the second.
Since the coupling term wiU be small, it perturbs this pair of curves very titfle except near
the point where both factors vanish. Because the WS of the equation is not zero, the two
curves cannot cross, and thus one gets typical avoided crossing behavior. me detailed form
of the curves in the vicinity of the avoided crossing is very sensitive to the value of fi.

15

13
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Figure 7: MARA computed mode frequencies for cell 10of the detuned structure coupled to
four manifolds with a set of phase advances per period specified. me frequency range shown
restricts the figure to the lower dipole mode and to the avoided crossing manifold modes.
me shunt impdence degradation of the accelerating mode is 2%; coupling constants fi
computed for each avoided crossing are shown on the figure..

Figure 7 is obtained from a series of M~A runs for a single structure but for varying
specifications of phase advance. me frequency range is limited in the plot so that only
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a single ce~ mode is shown. A number of avoided crossings are eviden~ associati with
different manifold modes. We assume that the crossings can be treated as though well
separated from one another, and that the behavior in the immediate vicinity of each crossing
can be fit with ~. 10. The fitting is done by choosing two points at each of two ~ values,
near to but on either side of the point of closest approach. This provides four input point
pairs which are then used to determine W four parameters in ~. 10. For our current
prehtiary assessment we have applid ~. 10 to d of the crossings, regardless of the type -
of the manifold mode. The results of this procedure are shown on Fig. 7. We have carried
out such an analysis for four different ceU designs intended to approximate the current
detuned structure design. The beam iris design corresponds precisely to particular ceUs.
The coupling slots are tien to be of uniform width and thichess and with length equrd to
the distance between beam irises. Because of the couphg slots the cell radius has to be
rduced so as to maintain the proper phase advance for the accelerating mode. The values
found for the effective coupfing vary with the ceU, but the O = 0.0247 used in Figs. 5 and
6 is quite easy to obtain in the proposed geometry. Furthermore the average degradation of
the shunt impedence for the four cefls is 2.3%, consistent with the wortig bit that we set.

~TURE PLANS AND CONCLUDING REMARKS

While the theory presentedabove is quite crude, it does Wow us to hope thatan effective
damped detuned structurecm be designed rdong the tines described in this paper. Some
obvious theoretical improvementsare planed or in progress. These include the improved
manifold theory [5] and coupling au of the relevantmodes at once, tig account of the
differences h couphg behavior of the vtious types of cavity modes. The analysisshould
be repeated for the double band model ting account of the difference in the way the ~
and TM components of the ce~ modes couple to themanifold modes.

An experirnenti programinvolving a fuUscale version of a damped detunedstructureis
behg planned. The presence of themanifolds enhancescold testopportunities. Because of
thel~dization of the impotit detunedmodes withinthestructureit has not been possible
to observe them directiy with cold test procedures. The manifolds provide access to dl of
them, and it shodd be possible to demonstrate HOM damping via W transmissionfrom
one manifold to anotier throughthe cavity cells. Direct observation of the wtiefield as in
[4] is of course also planned. Observation of the frequency spectrum of the beam induced
radiationout of themanifold wi~ dso provide valuablebeam diagnostic information.

We thti the other members of the MC structuresgroup for usefd discussionsand
comments.
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1. K.A. Thompson, et.rd., SLAC-PUB-6032, November 1993, and references therein. To
appear in Particle Accelerators.
2. We WWbe concemd in this paper primarily with the first two dipole bands. These are
effectively detund without thichess variation. Thichess variation is introduced to detune
the ~M..l modes as we~.
3. Karl L.F. Bane and Robert L. Glucbtem, Part. Accel. 42,123 (1993); SLAC-PUB-5783.
4. The wtiefield of an accelerator cavity built as specifid in [1] has recendy been measured
and found to be in reasonable agreement with Fig. 1, although the reappearance effect is
somewhat less than expected. See C. Adolphsen, et.d., submiti to Phys.Rev.Lett; see dso
SLAC-PUB-6629.
5. The series induc~ce which we have omitted can be included in a straightforward way
by treating the waveguide as a periodic structure formed by sections of transmission line of
length Pinseries with the inductances. This leads to small modifications in the expressions
for # and Z that can easily be includd in the above treatment. A small gap in frquency,
within which the mode does not propagate, appears between the forward and bachard
wave branch of each manifold mode. This gap is seen in the MAFIA simulations and can
be used to determine the parameter associated with the series inductance.
6. Because the fr~uency fluctuations increase with increasing coupling strength, the magni-
tude of the w~efield at shofidistances may increase to unacceptable values for unnecess~y
large values of fi. ~is effect rather than shunt impedence degradation of the accelerating
mode may fimit the size of the coupling slots.
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