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Abstract

In order to mitigate the reappearance of the HOM wakefield of a detuned acceler-
ator structure and relax tolerance requirements, we propose to provide low level
damping by coupling all cavities to several identical and symmetrically located
-waveguides (manifolds) which run parallel to each accelerator structure and are
terminated at each end by matched loads. The waveguides are designed such
that all modes which couple to the acceleration mode are non-propagating at the
acceleration mode frequency. Hence the coupling irises can be designed to pro-
vide large coupling to higher frequency modes without damping the acceleration
mode. Because the higher order modes are detuned, they are localized and have
a broad spectrum of phase velocities of both signs. They are therefore capable
of coupling effectively to all propagating modes in the waveguides. Methods
of analyzing and results obtained for the very complex system of modes in the
accelerating structure and manifolds are presented.
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Figure 1: The wakefield envelope function computed from the double band equivalent
circuit of Ref. 3. The detuning distribution is gaussian (for parameters see Ref. 1) with a Q
of 6500 assumed.

INTRODUCTION

The acceleration cavities [1] for the NLC test accelerator (NLCTA) are disk-loaded structures
composed of 204 cells plus two couplers, 1.8 meters in length, and driven at 11.424 GHz. In
order to suppress the transverse wakefield the structures are detuned. That is, the cell radius,
iris radius, and iris thickness [2] are varied in a smooth (gaussian) way, with the variation
of these parameters coupled so as to maintain a uniform cell-to-cell phase advance of 120
degrees for the monopole mode when driven at 11.424 GHz. As a result of this variation the
widths of the higher order mode (HOM) bands are increased, and the cell-to-cell amplitude
variation of the individual modes in a band is drastically altered. As a consequence an
off-center-charge bunch moving at the velocity of light excites many modes per band rather
than the single (synchronous) mode characteristic of a strictly periodic structure, and the
average deflecting force experienced by a charge at fixed trailing distance s falls off sharply
in s at a rate proportional to the frequency spread of the band. The predicted behavior of
this wakefield over distances of interest is illustrated in Fig. 1. It is based on the two-band
equivalent circuit model [3] and includes an estimate of the effect of wall losses. While
the wakefield does indeed exhibit an initial rapid fall off, it is seen to reappear after a few
meters [4]. This effect is associated with the fact that the mode distribution within a band is
discrete rather than continuous, and as the elapsed time begins to exceed the inverse mode
separation the suppressing effect of a smooth gaussian distribution is lost. As discussed in
Ref. 1, this reappearance can be postponed by interleaving the detuning among four such
structures so as to lead to a factor four increase in the effective mode spectrum density.
However, submicron tolerances must be imposed in order to actually achieve this extended
suppression.

- . Wereportin this paper the current status of our investigation of the possibility of suppress-
ing the wake reappearance by providing relatively weak damping via the vacuum manifolds.
Our proposed structure is illustrated in Fig.2. The four vacuum manifolds running the length
of the structure also function as multimode waveguides which serve to drain power from
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Figure 2: The damped detuned structure.

the HOM’s through the large coupling slots located in each cell, except for a few at each
end of the manifolds. This omission of coupling at the ends is possible because analysis has
shown that the contribution of these cells to the wakefield is negligible, and it enables us to
insert absorbing material at each end, intended to serve as matched loads, in a convenient
way.

As will be explained in the next section, the waveguides are designed so that only a single
mode propagates at 11.424 GHz, and that mode is totally decoupled from the acceleration
mode by its symmetry. As a consequence the size of the coupling slots is limited only by
their effect on the shunt impedance of that mode. We have set a limit of 5% degradation as
a working figure, which limits the space occupied by the slots to approximately one third
of the cell circumference. The effectiveness of the manifolds as dampers for the HOM’s
is connected to the detuning in an essential way. The HOM'’s of the detuned structure
are localized standing waves with spatial variation of effective wavelength which varies
smoothly and extensively along the length of the mode. This is precisely the feature which
allows many modes in a band to be excited by a velocity of light particle. The excitation
pattern of the mode as seen by the waveguide is such that it can drive a manifold wave at a
broad range of phase velocities. The coupling of a cavity mode to the manifold is strongest
when this range of phase velocities overlaps the phase velocity of one or more manifold
modes at the frequency of the cavity mode. As will be seen below, the manifolds have been
designed so that this is the case, and the calculations to be described indicate that Q values
in the range 500 to 1000 can be achieved for most and perhaps all of the modes which
contribute significantly to the wakefield. /



MANIFOLD AND DETUNED DIPOLE MODES

From Fig. 2 we see that the damping waveguides are approximately rectangular in cross
section, and consequently their modes can be designated by rectangular waveguide notation.
Also the mode order is similar except that the degeneracy between TM,,,, and TE,,, modes
is broken with the TM modes lying lower. The cutoff frequencies of the set of potentially
relevant modes are listed in Table 1.

Table 1: Manifold mode cutoff frequencies

TEo 6.042 GHz
TEo 11.507 GHz
TEz 11.926 GHz
TMH 12.645 GHz
TEH 13.464 GHz
T™My; 16.076 GHz

We see that the only mode which is propagating at 11.424 GHz is the TEo. Referring
to Fig. 2, we see that the structure is symmetric with respect to reflection in the xz and
yz planes. The accelerating mode and the TE;, (in any of the manifolds) have opposite
behavior under one or the other of these reflections. Hence there can be no coupling between
this manifold mode and the accelerating mode, and therefore the manifolds do not damp the
. accelerating mode. MAFIA plots of the accelerating mode show that the penetration of the
fields into the manifolds is weak and confined to the region near the slots. The frequencies
of these modes as a function of phase advance per period are shown in Fig. 3.

'We now turn our attention to the dipole modes. Figure 3 also exhibits dispersion curves
of the first two dipole modes for the first, middle, and last cells of the 206 cells of the
detuned structure, cells 1, 103, and 206. Thus it is apparent that the dispersion curve
for each cell crosses the dispersion curve of several manifold modes. To qualitatively
expldin the damping process we turn our attention to the damping and excitation of a single
cavity mode. This mode is represented in Fig. 3 by a horizontal line corresponding to its
frequency. This particular mode is localized because its mode line extends over the full
phase range without intersecting the first or last cell, the excited cells being those whose
dispersion curves intersect the mode line. The value of the phase advance at which the
dispersion curve of a particular cell crosses the mode line corresponds roughly to the cell-
to-cell amplitude variation in its vicinity. Thus because the light line crosses the cavity
mode line near a particular cell, we expect that the principal excitation of this mode is due
to the interaction of the drive bunch with cells in that vicinity. Similarly, there is a cell
neighborhood associated with each manifold mode crossing, where effective coupling to
the crossing mode may occur. The lower dipole band also has mode lines which terminate
at the first or last cell before reaching the 180° phase advance limit. These modes extend
- 1o the first or last cell but terminate in the interior of the structure. It is easy to see that
every cavity mode line of the lower band which crosses the light line must also cross the
dispersion curve of every propagating manifold mode. The upper dipole mode has cavity
mode lines which terminate on the first and last cell. These cavity modes are not localized

4



22
20 - 7 R
8- T
= _-F
g | T .
I
- :—--- --.-_-_-_--.r::::: ..... 7
16 el L Ry chs
Light Line
|
0 50 100 150
» ¢ ory (degrees) 7768A7

Figure 3: Dispersion curves for the manifold modes designated in Table I overlaying dis-
persion curves for the first two dipole modes of the first (F), middle (M), and last (L) cells.
A cavity mode line (horizontal dotted line) is also shown.

and have a limited phase advance range. There are fewer manifold mode crossings, but
there do not appear to be any cases for which a cavity mode which crosses the light line
has less than two manifold mode crossings. It should be mentioned that the upper dipole
modes in the light line region are largely TE in character (Ref. 3) and hence contribute only
weakly to the wakefield.

EQUIVALENT CIRCUIT MODEL

The quantitative results that we report in this paper have all been obtained with the following
simplified model. Following [3] we start with a single circuit chain in which each circuit
corresponds to a single cell mode and the cells are coupled magnetically. The coupled
equations for the cell excitation amplitudes a,, (m = 1, ..., N) are

1 1 Kom K
(7_-5 - F)am + —2+iam+1 + Tiam-l =0 . 1)

Here f,, is the resonant frequency of cell m, f is the coupled mode frequency, and the
k’s represent the equivalent coupling coefficient between adjacent cells. For the strictly
- periodic case with coupling coefficients K and cell frequency F one gets the usual solution
with constant phase-advance per cell Y and frequency f related to ¥ by

1/f*=1/F*4+ Kcosy . )
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We describe the manifold modes as transmission lines and use standard transmission line
equations with a series reactance per unit length X and shunt susceptence per unit length
B. For TM modes we take the usual 2w fC for B, but 2w fL{1 — (f./f)?] for X. Here
fe is the cutoff frequency, c is the velocity of light, and LC = 1/c2. The propagation
constant k, = +/X B then takes the correct waveguide form and the characteristic impedence
Z = \/X/B = Zy(kg/k) has the correct TM mode frequency dependence. Z,, which is
the infinite frequency limit of Z, will be amalgamated with the cell-waveguide coupling
parameter. For the TE case it is B rather than X which acquires the [1 — (f./f)?] factor,
and Z = Zy(k/k,) has the correct TE form.
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Figure 4: Equivalent circuit representation of the coupling of a single cell to a manifold
mode.

The TE,,, manifold modes (n > 0) and the TM manifold modes couple to the cell modes
via their transverse magnetic field. Since these are generated by axial currents we model the
coupling via a mutual inductance M between an inductance L. in the cell and an inductance
L, in the transmission line as shown in Fig. 4. We first consider the case in which only
one cell, the mth, is coupled to the line. It is easy to show that the current induced in the
transmission line by a current i,, in the cell may be written

I,(z) = Inexp(—jkglzm — zI) (3)
where M
JWily
Iy=—-—1"" 4
2Z + jwL) @)

- ‘and z,, represents the location of the coupling slot on the transmission line. If we couple
other cells to the line, the lumped line inductances L, associated with this coupling modifies
the transmission characteristics of the line, and Eq. 3 would have to be modified even if
all of the other i, are zero. For the calculations reported in this section these inductances
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are assumed to produce a reactance small compared to X and are neglected. With this
simplification we can immediately apply Eq. 3 and Eq. 4 to all of the cells to yield a total
transmission line current

jw
L(z) = —;—Z 3 Myinexp(—jkglzs — 2l) . 5)

The cell loop equations are modified by the voltage induced by this current as follows:

j(wLm - ﬁ)lm + jw(Mm_iim—l + Mm+§im+1)
+jwMpnli(zn) =0 . (6)

These equations are reduced to a generalization of Eq. 1 by following Ref. 2 in multiplying
each equation by —27j/C,,/f and defining a,, = i,n/+/Cr. We thus obtain the following
set of coupled equations

k k
m+ m-
%) am + _z'iam+l + _2kam—l

—jOL A, knkoexp(—jdln —ma, =0

(4

1 1
(57— 77)

0

km = 27t My \/Cc/ 2P Zo) (8)

P is the structure period, and ¢ = kP is the phase advance per period for the manifold
mode [5]. The last term of Eq. 7 (i.e., the summation term) represents coupling to a single
manifold mode. To represent the actual situation it should include a similar sum over all
propagating modes, perhaps with some modification for those which do not couple via the
transversé magnetic field. However, the model calculations to be discussed in this paper
will be limited to a single mode.

where

APPLICATIONS OF THE MODEL

Equation 7 is a homogeneous matrix equation for the cell amplitudes a,, which has non-
trivial solutions only at values of f (the cavity mode frequencies) for which the determinant
of the matrix vanishes. Standard matrix diagonalization techniques cannot be used because
the manifold coupling term (henceforth the damping matrix or damping term) depends upon
this frequency in a complicated way. In the absence of the damping term, however, it is
a linear eigenvalue equation for 1/f2, and because the damping matrix is small, the mode
frequencies for the undamped problem provide useful starting frequencies for an iterative
procedure to find the roots of the determinant including damping.

-~ Using this method we studied the implications of Eq. 7 for a single set of parameters for
the undamped problem. These were selected to correspond to a simplified version of the
NLC test accelerator cavity, following the procedure specified in Ref. 3. To simplify the
exploration of the dependence upon the manifold coupling parameters we limit parameter
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variation in the damping matrix to the manifold cutoff frequency £ and to an overall scale
factor for the k,,. The specific form taken was

km=1/fu . 9)

where 7] is the dimensionless scale factor, and the factor 1/f,, is inserted to obtain the correct
dimensions. It would affect the results very little to replace it by some fixed scale frequency.
Also we found that the effect on the wakefield was not serious if k,, was set equal to zero
for the last six cells on each end. This is desirable because it makes it possible to insert the
absorbers into the manifold ends without extending them beyond the length of the cavity.
The results discussed in this paper include this modification.
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Figure 5: Damping by a single manifold mode computed for the single band model. Mani-
fold mode cutoff = 12 GHz and manifold coupling parameter # = .0247.

At frequencies below the waveguide cutoff the damping matrix is real and symmetric, so
that modes which occur below f, have real frequencies. Above f. the mode frequencies
become complex and a Q for the mode is defined as usual by the ratio of the real to twice
the imaginary part of its frequency. Figure 5 provides a plot of the Q values of these
modes as a function of mode number (numbered from lowest to highest frequency), for f,
of 12 GHz and # = 0.0247. The TE form for Z was sssumed in calculating this example.
The frequencies (i.e., the real part) of the modes are shifted by-amounts of the order of a
part in 10* with comparable scatter. For small values of # both the frequency distributions
- and Q distributions are in good agreement with the results of first order perturbation theory.
The small flucuations seen in Fig. 5 for mode numbers in the 80 to 190 range disappear
for smaller values of the coupling constant and increase for larger values. Similar coupling
dependent fluctuations appear in the frequency distribution of these modes. These represent
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the main effect of the departure from perturbation theory.We note that Q’s of the order of
1000 correspond to a resonance width, f/Q, twice as large as the mode separation at the
peak of the mode spectrum. Thus substantial distortion of the mode patterns is expected,
and because the group of cells within the mode which are well coupled to the manifold mode
is localized, a tendency of the modes to split into more weakly and more strongly damped
groups is perhaps not surprising. If this interpretation is correct, we should see smoother
results when more manifold modes are taken into account. We have also varied f. from
zero to 12 GHz. We find that those modes whose mode lines cut the light line are damped
about as well as those shown in Fig. 5, but there are a substantial number of very weakly
damped modes at the low frequency end associated with the fact that their mode lines do not
cut the manifold mode dispersion curve. These results support the physical interpretation
of the damping process given in section 2.
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Figure 6: Wakefield for the parameters used for Fig. 5. The effect of copper losses have

been included by combining the Q values of Fig. 5 with an assumed copper loss value of
6500.

Figure 6 shows the wakefield computed for the Fig. 5 parameters using the Q values
and perturbed frequencies with the kick factors of the undamped modes. It would be
straightforward to obtain the perturbed amplitude distribution functions and to calculate the
wakefield from them, but this calculation has not yet been carried out. Comparing to Fig. 1,
we see that the reappearance at large distances has been completely suppressed [6]. The
deep minimum shown in Fig. 1 has also disappeared. The latter resembles an effect which
- had been observed when the tolerance requirements for the undamped structure were studied
and is believed to be die to the scatter in the perturbed frequencies. The deep minimum

is not needed for beam stability, however, and the wakefield of Fig. 6 is considered to be
satisfactory.
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MANIFOLD COUPLING PARAMETERS

We discuss here a method we have used to relate the manifold coupling parameter # to a
physical structure. We have used MAFIA to study the spectrum of single cells coupled
to the manifolds as a function of phase advance per period. Since this corresponds to the
properties of a periodic structure we specialize Eq. 7 to this case. Thus we set f» = F,
kn = K, and a,, = Aexp(jy¥m). The sum may then be carried out and in the TE case the
resultant equation takes the form

(flz' - -;—2 + K cosy)(cos ¢ — cos¢) = ‘2¢81;2¢.
In the absence of manifold coupling the RHS of Eq. 10 is zero, and a plot of the solution
f () would show two curves, the cavity dispersion curve associated with the vanishing
of the first factor on the LHS and the waveguide dispersion curve with that of the second.
Since the coupling term will be small, it perturbs this pair of curves very little except near
the point where both factors vanish. Because the RHS of the equation is not zero, the two
curves cannot cross, and thus one gets typical avoided crossing behavior. The detailed form
of the curves in the vicinity of the avoided crossing is very sensitive to the value of 7.
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Figure 7: MAFIA computed mode frequencies for cell 10 of the detuned structure coupled to

four manifolds with a set of phase advances per period specified. The frequency range shown

restricts the figure to the lower dipole mode and to the avoided crossing manifold modes.

The shunt impedence degradation of the accelerating mode is 2%; coupling constants 7
- computed for each avoided crossing are shown on the figure.

Figure 7 is obtained from a‘series of MAFIA runs for a single structure but for varying
specifications of phase advance. The frequency range is limited in the plot so that only
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a single cell mode is shown. A number of avoided crossings are evident, associated with
different manifold modes. We assume that the crossings can be treated as though well
separated from one another, and that the behavior in the immediate vicinity of each crossing
can be fit with Eq. 10. The fitting is done by choosing two points at each of two ¥ values,
near to but on either side of the point of closest approach. This provides four input point
pairs which are then used to determine all four parameters in Eq. 10. For our current
preliminary assessment we have applied Eq. 10 to all of the crossings, regardless of the type
of the manifold mode. The results of this procedure are shown on Fig. 7. We have carried
out such an analysis for four different cell designs intended to approximate the current
detuned structure design. The beam iris design corresponds precisely to particular cells.
The coupling slots are taken to be of uniform width and thickness and with length equal to
the distance between beam irises. Because of the coupling slots the cell radius has to be
reduced so as to maintain the proper phase advance for the accelerating mode. The values
found for the effective coupling vary with the cell, but the 7j = 0.0247 used in Figs. 5 and
6 is quite easy to obtain in the proposed geometry. Furthermore the average degradation of
the shunt impedence for the four cells is 2.3%, consistent with the working limit that we set.

FUTURE PLANS AND CONCLUDING REMARKS

While the theory presented above is quite crude, it does allow us to hope that an effective
damped detuned structure can be designed along the lines described in this paper. Some
- obvious theoretical improvements are planned or in progress. These include the improved
manifold theory [5] and coupling all of the relevant modes at once, taking account of the
differences in coupling behavior of the various types of cavity modes. The analysis should
be repeated for the double band model taking account of the difference in the way the TE
and TM components of the cell modes couple to the manifold modes.

An experimental program involving a full scale version of a damped detuned structure is
being planned. The presence of the manifolds enhances cold test opportunities. Because of
the localization of the important detuned modes within the structure it has not been possible
to observe them directly with cold test procedures. The manifolds provide access to all of
them, and it should be possible to demonstrate HOM damping via RF transmission from
one manifold to another through the cavity cells. Direct observation of the wakefield as in
[4] is of course also planned. Observation of the frequency spectrum of the beam induced
radiation out of the manifold will also provide valuable beam diagnostic information.

We thank the other members of the NLC structures group for useful dicussions and
comments.
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