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under grant PHY-9218990, by the Commissariat à l’Energie Atomique of France, and by NATO Collaborative
Research Grants CRG–921322 and CRG–910285.



   

Abstract

We describe techniques that simplify the calculation of one-loop QCD amplitudes

with many external legs, which are needed for next-to-leading-order (NLO) corrections

to multi-jet processes. The constraints imposed by perturbative unitarity, collinear sin-

gularities and a supersymmetry-inspired organization of helicity amplitudes are par-

ticularly useful. Certain sequences of one-loop helicity amplitudes may be obtained

for an arbitrary number of external gluons using these techniques. We also report on

progress in completing the set of one-loop helicity amplitudes required for NLO three-

jet production at hadron colliders, namely the amplitudes with two external quarks

and three gluons.

1



    

1 INTRODUCTION

High-pT events in hadronic collisions and high-energy e+e− annihilations often produce a

large number of jets. Quantitative QCD predictions for such multi-jet rates are important,

but require at least next-to-leading-order (NLO) calculations. NLO corrections in turn

require one-loop amplitudes with many external partons. The analytic complexity of one-

loop calculations grows very rapidly with the number of external legs. As a result, complete

NLO results are currently available only for processes with up to four external partons or

vector bosons, such as e+e− → 3 jets, and pp̄ (or pp) production of inclusive jets, di-jets, and

(W,Z) + 1 jet. To go further requires one-loop QCD amplitudes with five or more external

partons or vector bosons. Here we briefly describe some very useful tools for carrying out

such calculations, and summarize recent progress.

2 ORGANIZATIONAL TOOLS

The basic principle in calculating a complicated one-loop amplitude is to break it up into as

many simpler, yet physical, pieces as possible. Traditional Feynman diagrams are not a good

way to do this since individual diagrams are gauge-variant, and hence unphysical. Instead

one should use the quantum numbers of the external particles, namely their helicities (±)

and color quantum-numbers, to decompose the amplitude into color-ordered helicity sub-

amplitudes, or sub-amplitudes for short. The helicity [1] and color [2] decompositions of

multi-parton tree-level amplitudes have been essential to their efficient calculation, and the

same is true at one loop. The analytic properties of the one-loop sub-amplitudes — namely

their collinear behavior (poles) and their unitarity properties (cuts) — are simpler than

those of the full amplitude, yet they provide powerful constraints. They are simpler mainly

because they only involve “color-adjacent” kinematic invariants such as (ki + ki+1)2, where
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ki and ki+1 are adjacent momenta with respect to the color ordering. Consequently the sub-

amplitudes themselves tend to be simple; analytic expressions for each one-loop five-parton

sub-amplitude takes up less than a page [3, 4], whereas the color-summed cross-section would

fill hundreds of pages. Thus one should calculate sub-amplitudes analytically, and carry out

the squaring of amplitudes and the sum over colors and helicities numerically at the very

end.

The analytic properties of the sub-amplitudes can be exploited to simplify their cal-

culation. Consider the constraints from perturbative unitarity. It is well known that the cuts

(absorptive parts) of a loop amplitude are much easier to calculate than the full amplitude,

because they are given by phase-space integrals of products of tree amplitudes [5]. The

phase-space integrals can be performed to obtain integral functions with the correct cuts,

omitting the need to do a dispersion integral [6]. Thus the full amplitude is easily recon-

structed from the various cuts, up to additive “polynomial” terms (lacking branch cuts). It

may be possible to determine the polynomial terms recursively using their collinear singu-

larities (there is still a uniqueness question here). If a certain power-counting criterion holds

— the degree of the loop-momentum polynomial for each diagram should be two fewer than

the maximum possible in gauge theory — then there are actually no polynomial ambiguities

and the sub-amplitudes can be completely reconstructed from the cuts [6, 7]. Supersymmet-

ric amplitudes provide examples satisfying the criterion; infinite sequences of “maximally

helicity violating” n-gluon supersymmetric amplitudes can be efficiently calculated via their

cuts [6, 7].

Direct calculation of sub-amplitudes can also be simplified using a decomposition

based on the internal (spin) quantum numbers of particles going around the loop. For

example, in a one-loop n-gluon amplitude the contribution of a gluon propagating around

the loop would traditionally lead to a large amount of algebra, due to the complicated non-
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abelian self-interaction vertex. However, it is possible to rewrite the gluon self-interaction

(using either background-field gauge [8] or a string-based approach [9]) so that the gluon in

the loop looks like a scalar in the loop, plus “a little bit more”. One can rewrite [3],

gluon = scalar

−4× [fermion + scalar]

+ [gluon + 4× fermion + 3× scalar] , (1)

where all entries correspond to two-component fields circulating in the loop (gluons, Weyl

fermions, complex scalars). The “little bit more” represented by the last two lines is super-

symmetric (the contribution of 4 N = 1 chiral multiplets, and of an N = 4 super-Yang-Mills

theory), and is calculable via its cuts. In this way the gluon computation can be traded for

the easier scalar case.

Recursive techniques, which were first applied at tree-level by Berends and Giele [10,

11], are now beginning to show promise at loop-level. Mahlon [12] has recently obtained two

infinite sequences of one-loop n-gluon amplitudes by “sewing up” recursively determined

off-shell tree amplitudes.

3 EXPLICIT RESULTS

What are the practical consequences of these tools so far? At the one-loop five-parton

level, they have been used to calculate the full set of helicity amplitudes for five external

gluons [3] and for two quarks and three gluons (which are almost complete [13]). In contrast,

the calculation of the four-quark one-gluon amplitudes used (of the above tools) only the

sub-amplitude decomposition [4].

Here we present one of the q̄qggg partial amplitudes, A5;1(1−q̄ , 2
+
q , 3

−, 4+, 5+), which is
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the coefficient of the color structure Nc (T a3T a4T a5) ī1
i2 for the indicated helicity assignments;

particles 3,4,5 are gluons. For the gauge group SU(Nc) with nf flavors of quark and ns

flavors of scalar quarks, A5;1 can be decomposed into primitive amplitudes, from which all

factors of Nc, nf , ns have been extracted, as:

A5;1(1−q̄ , 2
+
q ; 3−, 4+, 5+)

=

(
1 +

1

N2
c

)
AL5 (1−q̄ , 2

+
q , 3

−, 4+, 5+)− 1

N2
c

〈3 2〉
〈3 1〉A

SUSY
5;1 (1−, 2+, 3−, 4+, 5+)

−
(
nf
Nc

+
1

N2
c

)
Af5(1−q̄ , 2

+
q ; 3−, 4+, 5+) +

(
ns − nf
Nc

− 1

N2
c

)
As5(1−q̄ , 2

+
q ; 3−, 4+, 5+), (2)

where ASUSY
5;1 (1−, 2+, 3−, 4+, 5+) is the pure super-Yang-Mills amplitude for five external glu-

ons, taken from ref. [3]. In the remaining components, the poles in ε in D = 4−2ε dimensional

reduction are separated out into “V ” pieces by

Ax5 = cΓ

(
V xAtree

5 + iF x
)
, x = L, f, s , (3)

where

cΓ =
1

(4π)2−ε
Γ(1 + ε)Γ2(1− ε)

Γ(1− 2ε)
, (4)

Atree
5 = i

〈1 3〉3 〈2 3〉
〈1 2〉 〈2 3〉 〈3 4〉 〈4 5〉 〈5 1〉 , (5)

and

V L = − 1

ε2

5∑
j=2

(
µ2

−sj,j+1

)ε
+

5∑
j=1

ln

(
−sj,j+1

−sj+1,j+2

)
ln

(
−sj+2,j−2

−sj−2,j−1

)

+
5

6
π2 − 3

2ε

(
µ2

−s34

)ε
+ ln

(−s51

−s12

)
− 3,

V f = V s = 0. (6)
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The finite terms possess all the analytic complexity, and are given by

FL = F s − 〈1 2〉 〈2 3〉 〈3 4〉 〈4 1〉 [2 4]3

〈4 5〉 〈5 1〉
Ls2

(
−s23

−s51
, −s34

−s51

)
s3

51

−〈1 2〉 〈2 3〉 〈3 5〉2[2 5]3

〈3 4〉 〈4 5〉
Ls2

(
−s12

−s34
, −s51

−s34

)
s3

34

−2
〈1 3〉 〈2 3〉 〈4 1〉 [2 4]2

〈4 5〉 〈5 1〉
Ls1

(
−s23

−s51
, −s34

−s51

)
s2

51

− 2
〈1 3〉 〈2 3〉 〈3 5〉 [2 5]2

〈3 4〉 〈4 5〉
Ls1

(
−s12

−s34
, −s51

−s34

)
s2

34

−〈1 3〉2 [2 4]

〈4 5〉 〈5 1〉
Ls0

(
−s23

−s51
, −s34

−s51

)
s51

− 〈1 3〉2 〈3 5〉 [2 5]

〈3 4〉 〈4 5〉 〈5 1〉
Ls0

(
−s12

−s34
, −s51

−s34

)
s34

−
(
〈1 3〉 〈2 3〉2[2 5]2 〈1 5〉
〈1 2〉 〈3 4〉 〈4 5〉 +

1

2

〈1 3〉2 [1 2] 〈2 3〉 [2 5]

〈3 4〉 〈4 5〉

)
L1

(
−s34

−s51

)
s2

51

+
1

2

〈1 3〉 〈1 4〉 〈2 3〉 [2 4]2

〈4 5〉 〈5 1〉
L1

(
−s23

−s51

)
s2

51

− 1

2

〈1 3〉 〈1 5〉 〈3 4〉 [4 5]2

〈1 2〉 〈4 5〉
L1

(
−s12

−s34

)
s2

34

+
1

2

〈1 3〉2 [2 4]

〈4 5〉 〈5 1〉
L0

(
−s34

−s51

)
s51

−
[
2
〈1 3〉2 [4 5]

〈1 2〉 〈4 5〉 +
〈1 3〉2 〈3 5〉 [2 5]

〈3 4〉 〈4 5〉 〈5 1〉

]
L0

(
−s12

−s34

)
s34

+
1

2

〈1 4〉 [2 4]2 [4 5]

〈4 5〉 [2 3] [3 4] s51

− 〈1 3〉 〈2 3〉 [2 5] [4 5]

〈1 2〉 s34 〈4 5〉 [5 1]
− 1

2

〈1 3〉2 [1 2] 〈2 3〉 [2 5]

s34 〈3 4〉 〈4 5〉 s51

,

F s =
1

3

[
〈1 5〉 [2 5] 〈3 4〉 〈3 5〉 [4 5]2

〈4 5〉
2 L2

(
−s12

−s34

)
s3

34

− 〈1 3〉 〈1 5〉 〈3 4〉 [4 5]2

〈1 2〉 〈4 5〉
L1

(
−s12

−s34

)
s2

34

− 〈1 3〉 [2 4] [4 5]

〈1 2〉 [1 2] [3 4] 〈4 5〉 +
[2 4]2 [2 5]

[1 2] [2 3] [3 4] 〈4 5〉

]
,

F f = −〈1 3〉2 [4 5]

〈1 2〉 〈4 5〉
L0

(
−s12

−s34

)
s34

, (7)
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where the logarithms and dilogarithms (Li2) are contained in

L0(r) =
ln(r)

1− r , L1(r) =
L0(r) + 1

1− r , L2(r) =
ln(r)− 1

2
(r − 1/r)

(1− r)3
,

Ls0(r1, r2) =
Li2(1− r1) + Li2(1− r2) + ln r1 ln r2 − π2

6

(1− r1 − r2)
,

Ls1(r1, r2) =
Ls0(r1, r2) + L0(r1) + L0(r2)

(1− r1 − r2)
,

Ls2(r1, r2) =
Ls1(r1, r2) + (L1(r1) + L1(r2)) /2

(1− r1 − r2)
.

Once the full set of q̄qggg helicity amplitudes are available (roughly speaking, six

expressions of the above type are required), numerical programs can be constructed for NLO

three-jet production at hadron colliders. There are various general formalisms available [14,

15] for combining (n + 1)-parton tree contributions and n-parton loop contributions into a

NLO correction; the one of Giele, Glover, and Kosower is convenient because it is in a color-

ordered framework which meshes well with a color-ordered decomposition of the amplitudes.

4 FUTURE PROSPECTS

Projecting into the future, it seems that recently developed tools — especially the combina-

tion of unitarity, collinear singularities and recursive techniques — will make the calculation

of one-loop six-parton and perhaps even seven-parton amplitudes quite practical within the

next couple of years. Indeed, we expect that the bottleneck in getting NLO results out

will shift from the analytical to the numerical end of the process. On the analytical side,

the emphasis should shift (perhaps fairly soon) to two-loop multi-parton calculations, which

are needed for next-to-next-to-leading (NNLO) results, such as the NNLO correction to
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e+e− annihilation to 3 jets, a result which could significantly reduce the theoretical error in

determining αs at the Z pole.
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